Neural Activity for Uninvolved Knee Motor Control After ACL Reconstruction Differs from Healthy Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. MRI Paradigm and Data Acquisition
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grooms, D.R.; Onate, J.A. Neuroscience Application to Noncontact Anterior Cruciate Ligament Injury Prevention. Sports Health 2016, 8, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Schnittjer, A.J.; Simon, J.E.; Whittier, T.T.; Grooms, D.R. The Neuroplastic Outcomes from Impaired Sensory Expectations (NOISE) Hypothesis: How ACL Dysfunction Impacts Sensory Perception and Knee Stability. Musculoskelet. Sci. Pract. 2024, 75, 103222. [Google Scholar] [CrossRef]
- Ross, B.J.; Savage-Elliott, I.; Brown, S.M.; Mulcahey, M.K. Return to Play and Performance After Primary ACL Reconstruction in American Football Players: A Systematic Review. Orthop. J. Sports Med. 2020, 8, 2325967120959654. [Google Scholar] [CrossRef] [PubMed]
- Lisee, C.; Lepley, A.S.; Birchmeier, T.; O’Hagan, K.; Kuenze, C. Quadriceps Strength and Volitional Activation After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Sports Health 2019, 11, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Armitano, C.N.; Morrison, S.; Russell, D.M. Coordination Stability between the Legs Is Reduced after Anterior Cruciate Ligament Reconstruction. Clin. Biomech. Bristol. Avon. 2018, 58, 28–33. [Google Scholar] [CrossRef] [PubMed]
- King, E.; Richter, C.; Franklyn-Miller, A.; Wadey, R.; Moran, R.; Strike, S. Back to Normal Symmetry? Biomechanical Variables Remain More Asymmetrical Than Normal During Jump and Change-of-Direction Testing 9 Months After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2019, 47, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, A.J.; Grandhi, R.K.; Schneider, D.K.; Stanfield, D.; Webster, K.E.; Myer, G.D. Risk of Secondary Injury in Younger Athletes After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2016, 44, 1861–1876. [Google Scholar] [CrossRef]
- Ward, S.H.; Perraton, L.; Bennell, K.; Pietrosimone, B.; Bryant, A.L. Deficits in Quadriceps Force Control After Anterior Cruciate Ligament Injury: Potential Central Mechanisms. J. Athl. Train. 2019, 54, 505–512. [Google Scholar] [CrossRef]
- Kapreli, E.; Athanasopoulos, S. The Anterior Cruciate Ligament Deficiency as a Model of Brain Plasticity. Med. Hypotheses 2006, 67, 645–650. [Google Scholar] [CrossRef]
- Konishi, Y.U. ACL Repair Might Induce Further Abnormality of Gamma Loop in the Intact Side of the Quadriceps Femoris. Int. J. Sports Med. 2011, 32, 292–296. [Google Scholar] [CrossRef]
- Zarzycki, R.; Morton, S.M.; Charalambous, C.C.; Pietrosimone, B.; Williams, G.N.; Snyder-Mackler, L. Examination of Corticospinal and Spinal Reflexive Excitability During the Course of Postoperative Rehabilitation After Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2020, 50, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.S.; Ha, J.K.; Yeom, C.H.; Ra, H.J.; Lim, J.W.; Kwon, M.S.; Kim, J.G. Are Muscle Strength and Function of the Uninjured Lower Limb Weakened After Anterior Cruciate Ligament Injury? Two-Year Follow-up After Reconstruction. Am. J. Sports Med. 2015, 43, 3013–3021. [Google Scholar] [CrossRef]
- Lepley, A.S.; Lepley, L.K. Mechanisms of Arthrogenic Muscle Inhibition. J. Sport Rehabil. 2021, 31, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Grooms, D.R.; Page, S.J.; Nichols-Larsen, D.S.; Chaudhari, A.M.W.; White, S.E.; Onate, J.A. Neuroplasticity Associated With Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2017, 47, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Criss, C.R.; Onate, J.A.; Grooms, D.R. Neural Activity for Hip-Knee Control in Those with Anterior Cruciate Ligament Reconstruction: A Task-Based Functional Connectivity Analysis. Neurosci. Lett. 2020, 730, 134985. [Google Scholar] [CrossRef]
- Baumeister, J.; Reinecke, K.; Schubert, M.; Weiß, M. Altered Electrocortical Brain Activity after ACL Reconstruction during Force Control. J. Orthop. Res. 2011, 29, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, J.; Reinecke, K.; Weiss, M. Changed Cortical Activity after Anterior Cruciate Ligament Reconstruction in a Joint Position Paradigm: An EEG Study. Scand. J. Med. Sci. Sports 2008, 18, 473–484. [Google Scholar] [CrossRef]
- Sherman, D.A.; Baumeister, J.; Stock, M.S.; Murray, A.M.; Bazett-Jones, D.M.; Norte, G.E. Inhibition of Motor Planning and Response Selection after Anterior Cruciate Ligament Reconstruction. Med. Sci. Sports Exerc. 2023, 55, 440–449. [Google Scholar] [CrossRef]
- Schnittjer, A.J.; Kim, H.; Lepley, A.S.; Onate, J.A.; Criss, C.R.; Simon, J.E.; Grooms, D.R. Organization of Sensorimotor Activity in Anterior Cruciate Ligament Reconstructed Individuals: An fMRI Conjunction Analysis. Front. Hum. Neurosci. 2023, 17, 1263292. [Google Scholar] [CrossRef]
- Chaput, M.; Onate, J.A.; Simon, J.E.; Criss, C.R.; Jamison, S.; McNally, M.; Grooms, D.R. Visual Cognition Associated with Knee Proprioception, Time to Stability, and Sensory Integration Neural Activity after ACL Reconstruction. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2022, 40, 95–104. [Google Scholar] [CrossRef]
- Lehmann, T.; Büchel, D.; Mouton, C.; Gokeler, A.; Seil, R.; Baumeister, J. Functional Cortical Connectivity Related to Postural Control in Patients Six Weeks After Anterior Cruciate Ligament Reconstruction. Front. Hum. Neurosci. 2021, 15, 655116. [Google Scholar] [CrossRef]
- Sherman, D.A.; Baumeister, J.; Stock, M.S.; Murray, A.M.; Bazett-Jones, D.M.; Norte, G.E. Brain Activation and Single-Limb Balance Following Anterior Cruciate Ligament Reconstruction. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2023, 149, 88–99. [Google Scholar] [CrossRef]
- Friston, K.J.; Frith, C.D.; Turner, R.; Frackowiak, R.S. Characterizing Evoked Hemodynamics with fMRI. NeuroImage 1995, 2, 157–165. [Google Scholar] [CrossRef]
- Friston, K.J.; Holmes, A.P.; Worsley, K.J.; Poline, J.-P.; Frith, C.D.; Frackowiak, R.S.J. Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Hum. Brain Mapp. 1994, 2, 189–210. [Google Scholar] [CrossRef]
- Kapreli, E.; Athanasopoulos, S.; Papathanasiou, M.; Van Hecke, P.; Strimpakos, N.; Gouliamos, A.; Peeters, R.; Sunaert, S. Lateralization of Brain Activity during Lower Limb Joints Movement. An fMRI Study. NeuroImage 2006, 32, 1709–1721. [Google Scholar] [CrossRef]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage 2002, 17, 825–841. [Google Scholar] [CrossRef]
- Pruim, R.H.R.; Mennes, M.; Buitelaar, J.K.; Beckmann, C.F. Evaluation of ICA-AROMA and Alternative Strategies for Motion Artifact Removal in Resting State fMRI. NeuroImage 2015, 112, 278–287. [Google Scholar] [CrossRef]
- Pruim, R.H.R.; Mennes, M.; van Rooij, D.; Llera, A.; Buitelaar, J.K.; Beckmann, C.F. ICA-AROMA: A Robust ICA-Based Strategy for Removing Motion Artifacts from fMRI Data. NeuroImage 2015, 112, 267–277. [Google Scholar] [CrossRef]
- Eklund, A.; Nichols, T.E.; Knutsson, H. Cluster Failure: Why fMRI Inferences for Spatial Extent Have Inflated False-Positive Rates. Proc. Natl. Acad. Sci. USA 2016, 113, 7900–7905. [Google Scholar] [CrossRef]
- Worsley, K.J. Statistical Analysis of Activation Images. In Functional Magnetic Resonance Imaging: An Introduction to Methods; Oxford University Press: Oxford, UK, 2012; ISBN 978-0-19-172477-0. [Google Scholar]
- Wellsandt, E.; Failla, M.; Snyder-Mackler, L. Limb Symmetry Indexes Can Overestimate Knee Function After ACL Injury. J. Orthop. Sports Phys. Ther. 2017, 47, 334–338. [Google Scholar] [CrossRef]
- Hart, J.M.; Pietrosimone, B.; Hertel, J.; Ingersoll, C.D. Quadriceps Activation Following Knee Injuries: A Systematic Review. J. Athl. Train. 2010, 45, 87–97. [Google Scholar] [CrossRef]
- Norte, G.E.; Knaus, K.R.; Kuenze, C.; Handsfield, G.G.; Meyer, C.H.; Blemker, S.S.; Hart, J.M. MRI-Based Assessment of Lower-Extremity Muscle Volumes in Patients Before and After ACL Reconstruction. J. Sport Rehabil. 2018, 27, 201–212. [Google Scholar] [CrossRef]
- Lepley, A.S.; Gribble, P.A.; Thomas, A.C.; Tevald, M.A.; Sohn, D.H.; Pietrosimone, B.G. Quadriceps Neural Alterations in Anterior Cruciate Ligament Reconstructed Patients: A 6-Month Longitudinal Investigation. Scand. J. Med. Sci. Sports 2015, 25, 828–839. [Google Scholar] [CrossRef]
- Lepley, A.S.; Grooms, D.R.; Burland, J.P.; Davi, S.M.; Kinsella-Shaw, J.M.; Lepley, L.K. Quadriceps Muscle Function Following Anterior Cruciate Ligament Reconstruction: Systemic Differences in Neural and Morphological Characteristics. Exp. Brain Res. 2019, 237, 1267–1278. [Google Scholar] [CrossRef]
- Lee, J.; Dong, S.; Jeong, J.; Yoon, B. Effects of Transcranial Direct Current Stimulation Over the Dorsolateral Prefrontal Cortex (PFC) on Cognitive-Motor Dual Control Skills. Percept. Mot. Skills 2020, 127, 803–822. [Google Scholar] [CrossRef]
- Pedersen, J.R.; Johannsen, P.; Bak, C.K.; Kofoed, B.; Saermark, K.; Gjedde, A. Origin of Human Motor Readiness Field Linked to Left Middle Frontal Gyrus by MEG and PET. NeuroImage 1998, 8, 214–220. [Google Scholar] [CrossRef]
- Bueti, D.; Walsh, V.; Frith, C.; Rees, G. Different Brain Circuits Underlie Motor and Perceptual Representations of Temporal Intervals. J. Cogn. Neurosci. 2008, 20, 204–214. [Google Scholar] [CrossRef]
- Wang, L.; Yu, G.; Chen, Y. Effects of Dual-Task Training on Chronic Ankle Instability: A Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 2023, 24, 814. [Google Scholar] [CrossRef]
- Deodato, M.; Granato, A.; Buoite Stella, A.; Martini, M.; Marchetti, E.; Lise, I.; Galmonte, A.; Murena, L.; Manganotti, P. Efficacy of a Dual Task Protocol on Neurophysiological and Clinical Outcomes in Migraine: A Randomized Control Trial. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2024, 45, 4015–4026. [Google Scholar] [CrossRef]
- Park-Braswell, K.; Grooms, D.; Shultz, S.; Raisbeck, L.; Rhea, C.; Schmitz, R. Sex-Specific Brain Activations during Single-Leg Exercise. Int. J. Sports Phys. Ther. 2022, 17, 1249–1258. [Google Scholar] [CrossRef]
- Stone, A.E.; Roper, J.A.; Herman, D.C.; Hass, C.J. Cognitive Performance and Locomotor Adaptation in Persons With Anterior Cruciate Ligament Reconstruction. Neurorehabil. Neural Repair 2018, 32, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Miko, S.C.; Simon, J.E.; Monfort, S.M.; Yom, J.P.; Ulloa, S.; Grooms, D.R. Postural Stability during Visual-Based Cognitive and Motor Dual-Tasks after ACLR. J. Sci. Med. Sport 2021, 24, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Lepley, L.K.; Grooms, D.R.; Burland, J.P.; Davi, S.M.; Mosher, J.L.; Cormier, M.L.; Lepley, A.S. Eccentric Cross-Exercise after Anterior Cruciate Ligament Reconstruction: Novel Case Series to Enhance Neuroplasticity. Phys. Ther. Sport 2018, 34, 55–65. [Google Scholar] [CrossRef] [PubMed]
ACLR (mean ± SD) | Control (mean ± SD) | Significance | |
---|---|---|---|
Gender (male/female) | 8F/7M | 8F/7M | |
Age (years) | 21.53 ± 2.7 | 23.33 ± 2.7 | p = 0.081 |
Height (cm) | 173.22 ± 10.0 | 174.92 ± 9.7 | p = 0.643 |
Weight (kg) | 72.15 ± 16.1 | 72.14 ± 15.4 | p = 0.998 |
Tegner Activity Level | 7.40 ± 1.1 | 7.33 ± 1.0 | p = 0.863 |
Time Since Surgery (months) | 43.33 ± 33.1 | __ | __ |
Graft (Patella Tendon/Hamstring) | 2 PT/13 HS | __ | __ |
Cluster Index | Brain Regions | Voxel | p-Value | Peak MNI Voxel | Z Stat-Max | ||
---|---|---|---|---|---|---|---|
x | y | z | |||||
1 | Middle Frontal Gyrus/Frontal Pole | 843 | 0.00184 | −32 | 28 | 38 | 3.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaput, M.; Criss, C.R.; Onate, J.A.; Simon, J.E.; Grooms, D.R. Neural Activity for Uninvolved Knee Motor Control After ACL Reconstruction Differs from Healthy Controls. Brain Sci. 2025, 15, 109. https://doi.org/10.3390/brainsci15020109
Chaput M, Criss CR, Onate JA, Simon JE, Grooms DR. Neural Activity for Uninvolved Knee Motor Control After ACL Reconstruction Differs from Healthy Controls. Brain Sciences. 2025; 15(2):109. https://doi.org/10.3390/brainsci15020109
Chicago/Turabian StyleChaput, Meredith, Cody R. Criss, James A. Onate, Janet E. Simon, and Dustin R. Grooms. 2025. "Neural Activity for Uninvolved Knee Motor Control After ACL Reconstruction Differs from Healthy Controls" Brain Sciences 15, no. 2: 109. https://doi.org/10.3390/brainsci15020109
APA StyleChaput, M., Criss, C. R., Onate, J. A., Simon, J. E., & Grooms, D. R. (2025). Neural Activity for Uninvolved Knee Motor Control After ACL Reconstruction Differs from Healthy Controls. Brain Sciences, 15(2), 109. https://doi.org/10.3390/brainsci15020109