A Scoping Review of Corticosterone-Induced Changes in Ionotropic Glutamate Receptor Levels and Localization in the Rodent Brain: Implications for the Auditory System
Abstract
:1. Introduction
1.1. Stress and the Auditory System
1.2. Glutamate and the Auditory System
1.3. Stress Responses and Neuroplasticity
1.4. Corticosteroids and AMPA Receptors
1.5. Exploring the Impact of Corticosterone on AMPARs
2. Materials and Methods
2.1. Search Strategy and Databases
- Search A: (AMPA) AND (corticosterone)
- Search B: (glutamate receptor) AND (corticosterone)
2.2. Screening Process and Inclusion and Exclusion Criteria
- Publication language—English;
- Type of publication—original research;
- Focused on one or more of the following molecules: AMPA, AMPA1, AMPA2, AMPA3, AMPA4, GluR1, GluR2, GluR3, GluR4, GluA1, GluA2, GluA3, GluA4, GriA1, GriA2, Gria3, Gria4.
- Publication language other than English;
- Type of publication—review, letter to editor, editorial;
- Focused on NMDA or mGlur.
2.3. Study Eligibility and Data Extraction
3. Results
3.1. Characteristics of Included Studies
3.2. Methodology of Included Studies
3.2.1. Experimental Models and Areas
- CORT application on isolated tissues (n = 2)
- CORT application on dispersed tissues or cell lines (n = 15)
- CORT application on live animals (n = 22)
3.2.2. CORT Administration and Exposure
3.2.3. Techniques Used in Included Experiments
3.3. Outcomes of Included Studies
3.3.1. Summary of Findings
3.3.2. Effects of CORT Exposure on AMPAR Levels in Live Animal Models
First Author and Year | Animal | Age in Weeks | Sample Size | Area | CORT Exposure Duration | CORT Concentration | Time from CORT Exposure to Reading | Measuring Method | Main Extracted Findings |
---|---|---|---|---|---|---|---|---|---|
Chen, 2021 [59] | C57BL/6N mice, M + F | 8–16 | 5 | Visual cortex | One intraperitoneal injection | 5 mg/kg | 60, 120, and 180 min post-injection | FRAP | SEP-GluA1 fluorescence recovery significantly increased to 90% three hours after injection of CORT, suggesting that CORT injection causes a shift from a nearly equal split between mobile and immobile pools to an almost entirely mobile pool of GluA1-containing receptors within cortical synapses. |
Choi, 2018 [58] | ICR mice, M | 7 | 5 for WB, 5 for IC | Hippocampus | One intraperitoneal injection | 10 mg/kg | Not specified | WB + IC | Exposure to CORT showed reduced trafficking of AMPAR 1/2 into the synapse due to microtubule destabilization. |
Kula, 2016 [57] | Wistar rats, M | 5–6 | 6–8 | Primary motor cortex | One subcutaneous injection | 10 mg/kg | Tissue collection 2, 4, and 7 days after the last CORT administration | WB | CORT did not influence the protein levels of GluA1 and GluA2 subunits. |
Li, 2019 [61] | Sprague-Dawley rats, M | 3 | 5–6 | Hippocampus | 21 days of 1 intraperitoneal injection/day | 5 mg/kg | Tissue collection 48 h or 4 weeks after last injection | WB | In adolescents, both the GluA1 and GluA2 subunits were significantly upregulated by CORT treatment. GluA3 or GluA4 expression levels remained unchanged. |
Li, 2019 [61] | Sprague-Dawley rats, M | 9 | 5–6 | Hippocampus | 21 days of 1 Intraperitoneal injection/day | 5 mg/kg | Tissue collection 48 h or four weeks after the last injection | WB | No significant changes were observed in the GluR1, 2, 3, or 4 AMPA receptor subunits following CORT treatment in adults. |
Martisova, 2012 [62] | Wistar rats, M | 12 | 6 | Hippocampus | 35 days of subcutaneously implanted pellets | 18 mg/kg | Tissue collection 35 days after pellet implantation | WB | GluR1 and GluR2/3 expression were decreased in chronic treatment with CORT. GluR4 increased. |
Monsey, 2014 [60] | Sprague-Dawley rats, M | 12 | 9 | Amygdala | 14 days in drinking water (+subset with 14-day washout period) | 50 mg/mL drinking water | Experiment 1: tissue collection 0 days after the last CORT administration. Experiment 2: tissue collection 14 days after the last CORT administration | WB | Chronic CORT exposure resulted in an increase in GluR1 protein expression in the lateral amygdala. The enhanced expression of GluR1 persisted following the 14-day recovery period. |
Monsey, 2014 [60] | Sprague-Dawley rats, M | 12 | 9 | Hippocampus | 14 days in drinking water (+subset with 14-day washout period) | 50 mg/mL drinking water | Experiment 1: tissue collection 0 days after the last CORT administration. Experiment 2: tissue collection 14 days after the last CORT administration | WB | Chronic CORT exposure resulted in a decrease in GluR1 protein expression in the hippocampal area CA3. The enhanced expression did not persist following the 14-day recovery period. |
3.3.3. Effects of Exposure to CORT on AMPAR Levels in Neuronal Cell Cultures
First Author and Year | Animal | Area | Sample Size | CORT Exposure Duration | CORT Concentration | Time from CORT Exposure to Reading | Measuring Method | Main Extracted Findings |
---|---|---|---|---|---|---|---|---|
Groc, 2008 [65] | Sprague-Dawley rats | Hippocampus | 5 hippocampal cultures | 20 min | 100 nM | 1–150 min | IF | CORT triggers time-dependent increases in GluR2-AMPAR surface mobility and synaptic surface GluR2 content. The peak stimulatory effects of CORT on surface GluR2-AMPAR mobility and relative synaptic content were observed at 150 min after application. |
Li, 2021 [72] | Sprague–Dawley rats | Amygdala | 4 wells | 24 h | 50 mM | Overnight ** | IC | CORT significantly enhanced the surface fluorescence intensity, cluster density and cluster size of GluA1-positive neurons |
Liu, 2010 [63] | Not stated (rat) * | Prefrontal cortex | 24 neurons | 30 min | 100 nM | Experiment 1: 90–240 min. Experiment 2: 120 min | IC | CORT profoundly increased surface GluR1 cluster density. |
Martin, 2009 [69] | Not stated (rat) * | Hippocampus | IC: not specified; FRAP: 10 spines | 180 min | 100 nM | 60–180 min | IC, FRAP | Both GluR1 and GluR2 surface expression are increased by corticosterone, but GluR2 is more sensitive and increases to a greater extent than GluR1. No change in GluR2 after 1 h of CORT but pronounced effects after 3 h. CORT mobilizes usually synaptically anchored surface-expressed AMPARs. |
Sarabdjitsingh, 2014 [66] | Sprague-Dawley rats | Hippocampus | 19 neuronal fields analyzed | 10 min | 100 nM | 60–120 min | SPT | A single CORT pulse significantly increased the surface diffusion of GluA2–AMPAR. The introduction of a second pulse of CORT 60 min after the first abolished this effect. |
Sarabdjitsingh, 2016 [67] | Sprague-Dawley rats | Hippocampus | Sample size not reported; number of experiments = 7 | 10 min | 100 nM | 5–240 min | SPT | GluA2-AMPAR surface trafficking in hippocampal neurons is particularly responsive to the first pulse of CORT, less consistently to the 2nd and 3rd pulse, and insensitive to the 4th pulse. |
Xiong, 2015 [70] | Wistar rats | Hippocampus | surface quantification > 10 cells; FRAP: 10–16 cells | 180 min | 100 nM | Overnight ** | IC, FRAP | CORT increased the surface expression of GluA1 and GluA2 AMPAR subunits. CORT increased the mobile fraction of GluA2-containing AMPAR. |
Yuen, 2011 [64] | Sprague-Dawley rats | Prefrontal cortex | 12 neurons | 20 min | 100 nM | 60–240 min | IC | CORT treatment induced a significant increase in synaptic GluR1 cluster density. |
Yuen, 2012 [71] | Not stated * (rat) | Prefrontal cortex | 12 neurons | 7 days | 100 nM | Not specified | IC | Chronic CORT treatment reduced the cluster density of total GluR1 and synaptic GluR1. |
Zhou, 2012 [68] | Not stated * (rat) | Hippocampus | 12–20 neurons | 15 min | 30 nM | Overnight ** | IF | CORT did not change GluA1 and GluA2 surface expression. |
3.3.4. Effects of CORT Exposure on AMPAR Levels in Isolated Tissue Samples
4. Discussion
4.1. Overview of Findings
4.2. Live Animal Models Show High Variability and Need for Stringent Protocols
4.3. Limited Isolated Tissue Models and Region-Specific Changes
4.4. Concentration and Timing-Dependent in AMPAR Level Increases in Neuronal Cell Cultures
4.5. Cross-Model Patterns and Research Gaps
4.6. Implications for the Auditory System
4.7. Limitations
4.8. Directions for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Szczepek, A.J.; Mazurek, B. (Eds.) Introduction. In Tinnitus and Stress: An Interdisciplinary Companion for Healthcare Professionals; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Henton, A.; Tzounopoulos, T. What’s the buzz? The neuroscience and the treatment of tinnitus. Physiol. Rev. 2021, 101, 1609–1632. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.H. Tinnitus Aurium. Lancet 1841, 36, 828–829. [Google Scholar] [CrossRef]
- McKenna, L.; Vogt, F. Stressful life events and tinnitus: Reflections and speculations. HNO 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Baigi, A.; Oden, A.; Almlid-Larsen, V.; Barrenas, M.L.; Holgers, K.M. Tinnitus in the general population with a focus on noise and stress: A public health study. Ear Hear. 2011, 32, 787–789. [Google Scholar] [CrossRef]
- Mazurek, B.; Olze, H.; Haupt, H.; Szczepek, A.J. The more the worse: The grade of noise-induced hearing loss associates with the severity of tinnitus. Int. J. Environ. Res. Public Health 2010, 7, 3071–3079. [Google Scholar] [CrossRef]
- Hebert, S.; Lupien, S.J. The sound of stress: Blunted cortisol reactivity to psychosocial stress in tinnitus sufferers. Neurosci. Lett. 2007, 411, 138–142. [Google Scholar] [CrossRef]
- Xia, L.; He, G.; Feng, Y.; Yu, X.; Zhao, X.; Yin, S.; Chen, Z.; Wang, J.; Fan, J.; Dong, C. COVID-19 associated anxiety enhances tinnitus. PLoS ONE 2021, 16, e0246328. [Google Scholar] [CrossRef]
- Schlee, W.; Hølleland, S.; Bulla, J.; Simoes, J.; Neff, P.; Schoisswohl, S.; Woelflick, S.; Schecklmann, M.; Schiller, A.; Staudinger, S.; et al. The Effect of Environmental Stressors on Tinnitus: A Prospective Longitudinal Study on the Impact of the COVID-19 Pandemic. J. Clin. Med. 2020, 9, 2756. [Google Scholar] [CrossRef]
- Beukes, E.W.; Baguley, D.M.; Jacquemin, L.; Lourenco, M.; Allen, P.M.; Onozuka, J.; Stockdale, D.; Kaldo, V.; Andersson, G.; Manchaiah, V. Changes in Tinnitus Experiences During the COVID-19 Pandemic. Front. Public Health 2020, 8, 592878. [Google Scholar] [CrossRef]
- Erinc, M.; Mutlu, A.; Celik, S.; Kalcioglu, M.T.; Szczepek, A.J. Long-Term Effects of COVID-19 and the Pandemic on Tinnitus Patients. Front. Neurol. 2022, 13, 921173. [Google Scholar] [CrossRef]
- Korkut, S.; Altıntaş, M. The Frequency of Health Anxiety, Coronavirus Anxiety and Anxiety Disorder in Patients with Tinnitus During the COVID-19 Pandemic and the Impact of Pandemic on Tinnitus. Clin. Otolaryngol. 2024, 49, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Fioretti, A.; Natalini, E.; Triggianese, G.; Eibenstein, R.; Angelone, A.M.; Lauriello, M.; Eibenstein, A. Impact of the COVID-19 Lockdown on Patients with Chronic Tinnitus-Preliminary Results. Audiol. Res. 2022, 12, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Aazh, H.; Danesh, A.A.; Moore, B.C.J. Self-Reported Tinnitus Severity Prior to and During the COVID-19 Lockdown in the United Kingdom. J. Am. Acad. Audiol. 2021, 32, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Beukes, E.; Ulep, A.J.; Eubank, T.; Manchaiah, V. The Impact of COVID-19 and the Pandemic on Tinnitus: A Systematic Review. J. Clin. Med. 2021, 10, 2763. [Google Scholar] [CrossRef]
- National Guideline Centre. Evidence Review for Psychological Therapies: Tinnitus: Assessment and Management; NICE Evidence Reviews Collection; National Institute for Health and Care Excellence (NICE): London, UK, 2020. [Google Scholar]
- Mazurek, B.; Haupt, H.; Olze, H.; Szczepek, A.J. Stress and tinnitus-from bedside to bench and back. Front. Syst. Neurosci. 2012, 6, 47. [Google Scholar] [CrossRef]
- Guetta, R.E.; Siepsiak, M.; Shan, Y.; Frazer-Abel, E.; Rosenthal, M.Z. Misophonia is related to stress but not directly with traumatic stress. PLoS ONE 2024, 19, e0296218. [Google Scholar] [CrossRef]
- Horner, K.C.; Cazals, Y. Stress hormones in Meniere’s disease and acoustic neuroma. Brain Res. Bull. 2005, 66, 1–8. [Google Scholar] [CrossRef]
- Møller, A.R. Hearing: Anatomy, Physiology, and Disorders of the Auditory System; Plural Pub.: San Diego, CA, USA, 2013. [Google Scholar]
- Mazurek, B.; Haupt, H.; Joachim, R.; Klapp, B.F.; Stöver, T.; Szczepek, A.J. Stress induces transient auditory hypersensitivity in rats. Hear. Res. 2010, 259, 55–63. [Google Scholar] [CrossRef]
- Szczepek, A.J.; Dietz, G.P.H.; Reich, U.; Hegend, O.; Olze, H.; Mazurek, B. Differences in Stress-Induced Modulation of the Auditory System Between Wistar and Lewis Rats. Front. Neurosci. 2018, 12, 828. [Google Scholar] [CrossRef]
- Moore, D.R.; Fuchs, P.A.; Rees, A.; Palmer, A.; Plack, C.J. The Oxford Handbook of Auditory Science: The Auditory Brain; OUP: Oxford, UK, 2010. [Google Scholar]
- Wang, Y.; Manis, P.B. Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice. J. Neurophysiol. 2008, 100, 1255–1264. [Google Scholar] [CrossRef]
- Sanes, D.H.; Bao, S. Tuning up the developing auditory CNS. Curr. Opin. Neurobiol. 2009, 19, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Pernia, M.; Diaz, I.; Colmenarez-Raga, A.C.; Rivadulla, C.; Cudeiro, J.; Plaza, I.; Merchan, M.A. Cross-modal reaction of auditory and visual cortices after long-term bilateral hearing deprivation in the rat. Brain Struct. Funct. 2020, 225, 129–148. [Google Scholar] [CrossRef] [PubMed]
- Parks, T.N. The AMPA receptors of auditory neurons. Hear. Res. 2000, 147, 77–91. [Google Scholar] [CrossRef]
- Cai, R.; Zhou, X.; Guo, F.; Xu, J.; Zhang, J.; Sun, X. Maintenance of enriched environment-induced changes of auditory spatial sensitivity and expression of GABAA, NMDA, and AMPA receptor subunits in rat auditory cortex. Neurobiol. Learn. Mem. 2010, 94, 452–460. [Google Scholar] [CrossRef]
- Rosenmund, C.; Stern-Bach, Y.; Stevens, C.F. The tetrameric structure of a glutamate receptor channel. Science 1998, 280, 1596–1599. [Google Scholar] [CrossRef]
- Nakagawa, T. The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors. Mol. Neurobiol. 2010, 42, 161–184. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, S.; Swensen, A.C.; Qian, W.J.; Gouaux, E. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 2019, 364, 355–362. [Google Scholar] [CrossRef]
- Furuta, H.; Mori, N.; Sato, C.B.; Hoshikawa, H.; Sakai, S.; Iwakura, S.; Doi, K. Mineralocorticoid Type-I Receptor in the Rat Cochlea—Messenger-Rna Identification by Polymerase Chain-Reaction (Pcr) and in-Situ Hybridization. Hear. Res. 1994, 78, 175–180. [Google Scholar] [CrossRef]
- Yao, X.; Rarey, K.E. Localization of the mineralocorticoid receptor in rat cochlear tissue. Acta Otolaryngol. 1996, 116, 493–496. [Google Scholar] [CrossRef]
- Kil, S.H.; Kalinec, F. Expression and dexamethasone-induced nuclear translocation of glucocorticoid and mineralocorticoid receptors in guinea pig cochlear cells. Hear. Res. 2013, 299, 63–78. [Google Scholar] [CrossRef]
- Kessels, H.W.; Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009, 61, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Krugers, H.J.; Hoogenraad, C.C.; Groc, L. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nat. Rev. Neurosci. 2010, 11, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 2011, 13, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef]
- Deploey, N.; Van Moortel, L.; Rogatsky, I.; Peelman, F.; De Bosscher, K. The Biologist’s Guide to the Glucocorticoid Receptor’s Structure. Cells 2023, 12, 1636. [Google Scholar] [CrossRef]
- Price, R.B.; Duman, R. Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Mol. Psychiatry 2020, 25, 530–543. [Google Scholar] [CrossRef]
- Marzola, P.; Melzer, T.; Pavesi, E.; Gil-Mohapel, J.; Brocardo, P.S. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci. 2023, 13, 1610. [Google Scholar] [CrossRef]
- Duman, R.S.; Aghajanian, G.K. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012, 338, 68–72. [Google Scholar] [CrossRef]
- McEwen, B.S. Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann. N. Y Acad. Sci. 2004, 1032, 1–7. [Google Scholar] [CrossRef]
- Gray, J.D.; Kogan, J.F.; Marrocco, J.; McEwen, B.S. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat. Rev. Endocrinol. 2017, 13, 661–673. [Google Scholar] [CrossRef]
- De Kloet, E.R.; Vreugdenhil, E.; Oitzl, M.S.; Joels, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 1998, 19, 269–301. [Google Scholar] [CrossRef] [PubMed]
- de Kloet, E.R.; Joels, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005, 6, 463–475. [Google Scholar] [CrossRef] [PubMed]
- van Eekelen, J.A.; Bohn, M.C.; de Kloet, E.R. Postnatal ontogeny of mineralocorticoid and glucocorticoid receptor gene expression in regions of the rat tel- and diencephalon. Brain Res Dev Brain Res. 1991, 61, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Pryce, C.R. Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: Inter-species and intra-species differences. Brain Res. Rev. 2008, 57, 596–605. [Google Scholar] [CrossRef]
- Moghaddam, B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: Comparison to hippocampus and basal ganglia. J. Neurochem. 1993, 60, 1650–1657. [Google Scholar] [CrossRef]
- Karst, H.; Berger, S.; Turiault, M.; Tronche, F.; Schutz, G.; Joels, M. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc. Natl. Acad. Sci. USA 2005, 102, 19204–19207. [Google Scholar] [CrossRef]
- Szczepek, A.J.; Mazurek, B. Neurobiology of Stress-Induced Tinnitus. Curr. Top. Behav. Neurosci. 2021, 51, 327–347. [Google Scholar] [CrossRef]
- Sahley, T.L.; Nodar, R.H. A biochemical model of peripheral tinnitus. Hear. Res. 2001, 152, 43–54. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Speckemeier, C.; Niemann, A.; Wasem, J.; Buchberger, B.; Neusser, S. Methodological guidance for rapid reviews in healthcare: A scoping review. Res. Synth. Methods 2022, 13, 394–404. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Charles River Laboratories. CD® (Sprague Dawley) Rats—Growth Chart. Available online: https://www.criver.com/products-services/find-model/cd-sd-igs-rat?region=23 (accessed on 10 July 2024).
- Kula, J.; Blasiak, A.; Czerw, A.; Tylko, G.; Sowa, J.; Hess, G. Short-term repeated corticosterone administration enhances glutamatergic but not GABAergic transmission in the rat motor cortex. Pflugers Arch. 2016, 468, 679–691. [Google Scholar] [CrossRef]
- Choi, G.E.; Oh, J.Y.; Lee, H.J.; Chae, C.W.; Kim, J.S.; Jung, Y.H.; Han, H.J. Glucocorticoid-mediated ER-mitochondria contacts reduce AMPA receptor and mitochondria trafficking into cell terminus via microtubule destabilization. Cell Death Dis. 2018, 9, 1137. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Roth, R.H.; Lopez-Ortega, E.; Tan, H.L.; Huganir, R.L. AMPA Receptors Exist in Tunable Mobile and Immobile Synaptic Fractions In Vivo. eNeuro 2021, 8, ENEURO.0015–21.2021. [Google Scholar] [CrossRef] [PubMed]
- Monsey, M.S.; Boyle, L.M.; Zhang, M.L.; Nguyen, C.P.; Kronman, H.G.; Ota, K.T.; Duman, R.S.; Taylor, J.R.; Schafe, G.E. Chronic corticosterone exposure persistently elevates the expression of memory-related genes in the lateral amygdala and enhances the consolidation of a Pavlovian fear memory. PLoS ONE 2014, 9, e91530. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Sun, Y.; Wang, H.; Liu, X.; Zhao, Y.; Wang, H.; Su, Y.; Si, T. Chronic mild corticosterone exposure during adolescence enhances behaviors and upregulates neuroplasticity-related proteins in rat hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 89, 400–411. [Google Scholar] [CrossRef]
- Martisova, E.; Solas, M.; Horrillo, I.; Ortega, J.E.; Meana, J.J.; Tordera, R.M.; Ramirez, M.J. Long lasting effects of early-life stress on glutamatergic/GABAergic circuitry in the rat hippocampus. Neuropharmacology 2012, 62, 1944–1953. [Google Scholar] [CrossRef]
- Liu, W.; Yuen, E.Y.; Yan, Z. The stress hormone corticosterone increases synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI-Rab4 complex. J. Biol. Chem. 2010, 285, 6101–6108. [Google Scholar] [CrossRef]
- Yuen, E.Y.; Liu, W.; Karatsoreos, I.N.; Ren, Y.; Feng, J.; McEwen, B.S.; Yan, Z. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol. Psychiatry 2011, 16, 156–170. [Google Scholar] [CrossRef]
- Groc, L.; Choquet, D.; Chaouloff, F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat. Neurosci. 2008, 11, 868–870. [Google Scholar] [CrossRef]
- Sarabdjitsingh, R.A.; Jezequel, J.; Pasricha, N.; Mikasova, L.; Kerkhofs, A.; Karst, H.; Groc, L.; Joels, M. Ultradian corticosterone pulses balance glutamatergic transmission and synaptic plasticity. Proc. Natl. Acad. Sci. USA 2014, 111, 14265–14270. [Google Scholar] [CrossRef] [PubMed]
- Sarabdjitsingh, R.A.; Pasricha, N.; Smeets, J.A.; Kerkhofs, A.; Mikasova, L.; Karst, H.; Groc, L.; Joels, M. Hippocampal Fast Glutamatergic Transmission Is Transiently Regulated by Corticosterone Pulsatility. PLoS ONE 2016, 11, e0145858. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Hoogenraad, C.C.; Joels, M.; Krugers, H.J. Combined beta-adrenergic and corticosteroid receptor activation regulates AMPA receptor function in hippocampal neurons. J. Psychopharmacol. 2012, 26, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Henley, J.M.; Holman, D.; Zhou, M.; Wiegert, O.; van Spronsen, M.; Joels, M.; Hoogenraad, C.C.; Krugers, H.J. Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity. PLoS ONE 2009, 4, e4714. [Google Scholar] [CrossRef]
- Xiong, H.; Casse, F.; Zhou, Y.; Zhou, M.; Xiong, Z.Q.; Joels, M.; Martin, S.; Krugers, H.J. mTOR is essential for corticosteroid effects on hippocampal AMPA receptor function and fear memory. Learn. Mem. 2015, 22, 577–583. [Google Scholar] [CrossRef]
- Yuen, E.Y.; Wei, J.; Liu, W.; Zhong, P.; Li, X.; Yan, Z. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 2012, 73, 962–977. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Fan, H.; Wang, Z.; Huang, J.; Wen, G.; Wang, X.; Xie, Q.; Qiu, P. Brain-derived neurotrophic factor upregulates synaptic GluA1 in the amygdala to promote depression in response to psychological stress. Biochem. Pharmacol. 2021, 192, 114740. [Google Scholar] [CrossRef]
- Thacker, J.S.; Mielke, J.G. The combined effects of corticosterone and brain-derived neurotrophic factor on plasticity-related receptor phosphorylation and expression at the synaptic surface in male Sprague-Dawley rats. Horm. Behav. 2022, 145, 105233. [Google Scholar] [CrossRef]
- Perez-Valenzuela, C.; Garate-Perez, M.F.; Sotomayor-Zarate, R.; Delano, P.H.; Dagnino-Subiabre, A. Reboxetine Improves Auditory Attention and Increases Norepinephrine Levels in the Auditory Cortex of Chronically Stressed Rats. Front. Neural Circuits 2016, 10, 108. [Google Scholar] [CrossRef]
- Bagley, J.; Moghaddam, B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: Effects of pretreatment with saline or diazepam. Neuroscience 1997, 77, 65–73. [Google Scholar] [CrossRef]
- Stadtler, H.; Neigh, G.N. Sex Differences in the Neurobiology of Stress. Psychiatr. Clin. North. Am. 2023, 46, 427–446. [Google Scholar] [CrossRef]
- Sathler, M.F.; Khatri, L.; Roberts, J.P.; Schmidt, I.G.; Zaytseva, A.; Kubrusly, R.C.C.; Ziff, E.B.; Kim, S. Phosphorylation of the AMPA receptor subunit GluA1 regulates clathrin-mediated receptor internalization. J. Cell Sci. 2021, 134, jcs257972. [Google Scholar] [CrossRef]
- Prager, E.M.; Johnson, L.R. Stress at the synapse: Signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci. Signal. 2009, 2, re5. [Google Scholar] [CrossRef]
- Prager, E.M.; Brielmaier, J.; Bergstrom, H.C.; McGuire, J.; Johnson, L.R. Localization of mineralocorticoid receptors at mammalian synapses. PLoS ONE 2010, 5, e14344. [Google Scholar] [CrossRef]
- Whitehead, G.; Jo, J.; Hogg, E.L.; Piers, T.; Kim, D.H.; Seaton, G.; Seok, H.; Bru-Mercier, G.; Son, G.H.; Regan, P.; et al. Acute stress causes rapid synaptic insertion of Ca2+-permeable AMPA receptors to facilitate long-term potentiation in the hippocampus. Brain 2013, 136, 3753–3765. [Google Scholar] [CrossRef]
- Arnsten, A.F. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 2009, 10, 410–422. [Google Scholar] [CrossRef]
- Mitra, R.; Sapolsky, R.M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. USA 2008, 105, 5573–5578. [Google Scholar] [CrossRef]
- Roozendaal, B.; McEwen, B.S.; Chattarji, S. Stress, memory and the amygdala. Nat. Rev. Neurosci. 2009, 10, 423–433. [Google Scholar] [CrossRef]
- Rutherford, M.A.; Bhattacharyya, A.; Xiao, M.; Cai, H.M.; Pal, I.; Rubio, M.E. GluA3 subunits are required for appropriate assembly of AMPAR GluA2 and GluA4 subunits on cochlear afferent synapses and for presynaptic ribbon modiolar-pillar morphology. Elife 2023, 12, e80950. [Google Scholar] [CrossRef]
- de Kloet, E. Corticosteroid receptor balance hypothesis: Implications for stress-adaptation. In Stress: Concepts, Cognition, Emotion, and Behavior; Elsevier: Amsterdam, The Netherlands, 2016; pp. 21–31. [Google Scholar]
- McEwen, B.S.; Wingfield, J.C. What is in a name? Integrating homeostasis, allostasis and stress. Horm. Behav. 2010, 57, 105–111. [Google Scholar] [CrossRef]
Region | Outcomes After Acute CORT Exposure (<1 h) | Outcomes After Subchronic CORT Exposure (3 h) | Outcomes After Chronic CORT Exposure (>24 h) |
---|---|---|---|
Amygdala | — | — | ↑ Protein levels; ↑ Surface localization |
Hippocampus | ↑↓ = Surface Localization; ↑ Mobility; ↓ Protein Levels | ↑ Surface Localization; ↑ Mobility | ↑↓ = Protein Levels |
Prefrontal Cortex | ↑ Surface localization | — | ↓ Surface localization |
Primary Motor Cortex | — | — | = Protein Levels |
Sensorimotor Cortex | = Protein Levels | — | — |
Visual Cortex | ↑ Surface Localization; ↑ Mobility | — | — |
Auditory system | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edlund, E.; Domarecka, E.; Olze, H.; Szczepek, A. A Scoping Review of Corticosterone-Induced Changes in Ionotropic Glutamate Receptor Levels and Localization in the Rodent Brain: Implications for the Auditory System. Brain Sci. 2025, 15, 110. https://doi.org/10.3390/brainsci15020110
Edlund E, Domarecka E, Olze H, Szczepek A. A Scoping Review of Corticosterone-Induced Changes in Ionotropic Glutamate Receptor Levels and Localization in the Rodent Brain: Implications for the Auditory System. Brain Sciences. 2025; 15(2):110. https://doi.org/10.3390/brainsci15020110
Chicago/Turabian StyleEdlund, Elsa, Ewa Domarecka, Heidi Olze, and Agnieszka Szczepek. 2025. "A Scoping Review of Corticosterone-Induced Changes in Ionotropic Glutamate Receptor Levels and Localization in the Rodent Brain: Implications for the Auditory System" Brain Sciences 15, no. 2: 110. https://doi.org/10.3390/brainsci15020110
APA StyleEdlund, E., Domarecka, E., Olze, H., & Szczepek, A. (2025). A Scoping Review of Corticosterone-Induced Changes in Ionotropic Glutamate Receptor Levels and Localization in the Rodent Brain: Implications for the Auditory System. Brain Sciences, 15(2), 110. https://doi.org/10.3390/brainsci15020110