Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus
Abstract
:1. Introduction
2. Processing and Encoding Information about Space and Context
2.1. Space: The Hippocampus
2.2. Context: The Medial Prefrontal Cortex
3. Information Sharing
3.1. Functinal Anatomy HC-mPFC
3.2. HC-mPFC Interactions during Spatial Processing
3.3. Prefrontal Influence on HC Function
4. Dependency Shift after Consolidation
4.1. Evidence from Pharmacological Inactivation
4.2. Electrophysiological Evidence
4.3. Activity States during Remote Memory Recall
5. Ideas on the Nature of the mPFC Memory Trace
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Siapas, A.G.; Lubenov, E.V.; Wilson, M.A. Prefrontal phase locking to hippocampal theta oscillations. Neuron 2005, 46, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Wilson, M.A. Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS Boil. 2005, 3, e402. [Google Scholar] [CrossRef] [PubMed]
- Hyman, J.M.; Zilli, E.A.; Paley, A.M.; Hasselmo, M.E. Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates. Front. Integr. Neurosci. 2010, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Benchenane, K.; Peyrache, A.; Khamassi, M.; Tierney, P.L.; Gioanni, Y.; Battaglia, F.P.; Wiener, S.I. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 2010, 66, 921–936. [Google Scholar] [CrossRef] [PubMed]
- Bontempi, B.; Laurent-Demir, C.; Destrade, C.; Jaffard, R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 1999, 400, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Frankland, P.W.; Bontempi, B.; Talton, L.E.; Kaczmarek, L.; Silva, A.J. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 2004, 304, 881–883. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.W.; Fotedar, M.S.; Datey, A.V.; Hasselmo, M.E. The Temporal Context Model in spatial navigation and relational learning: Toward a common explanation of medial temporal lobe function across domains. Psychol. Rev. 2005, 112, 75–116. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.G.M.; Garrud, P.; Rawlins, J.N.P.; O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 1982, 297, 681–683. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.; Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971, 34, 171–175. [Google Scholar] [CrossRef]
- Sanders, H.; Rennó-Costa, C.; Idiart, M.; Lisman, J. Grid Cells and Place Cells: An Integrated View of their Navigational and Memory Function. Trends Neurosci. 2015, 38, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Pastalkova, E.; Itskov, V.; Amarasingham, A.; Buzsáki, G. Internally Generated Cell Assembly Sequences in the Rat Hippocampus. Science (New York, N.Y.) 2008, 321, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Wood, E.R.; Dudchenko, P.A.; Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 1999, 397, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Wood, E.R.; Dudchenko, P.A.; Robitsek, R.J.; Eichenbaum, H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 2000, 27, 623–633. [Google Scholar] [CrossRef]
- Griffin, A.L.; Eichenbaum, H.; Hasselmo, M.E. Spatial representations of hippocampal CA1 neurons are modulated by behavioral context in a hippocampus-dependent memory task. J. Neurosci. 2007, 27, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Seamans, J.K.; Floresco, S.B.; Phillips, A.G. Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex. Behav. Neurosci. 1995, 109, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G.; Moser, E.I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 2013, 16, 130. [Google Scholar] [CrossRef] [PubMed]
- Tsien, J.Z.; Huerta, P.T.; Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor–dependent synaptic plasticity in spatial memory. Cell 1996, 87, 1327–1338. [Google Scholar] [CrossRef]
- Broadbent, N.J.; Squire, L.R.; Clark, R.E. Spatial memory, recognition memory, and the hippocampus. Proc. Natl. Acad. Sci. USA 2004, 101, 14515–14520. [Google Scholar] [CrossRef] [PubMed]
- Hyman, J.M.; Ma, L.; Balaguer-Ballester, E.; Durstewitz, D.; Seamans, J.K. Contextual encoding by ensembles of medial prefrontal cortex neurons. Proc. Natl. Acad. Sci. USA 2012, 109, 5086–5091. [Google Scholar] [CrossRef] [PubMed]
- McNamara, C.G.; Tejero-Cantero, Á.; Trouche, S.; Campo-Urriza, N.; Dupret, D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 2014, 17, 1658–1660. [Google Scholar] [CrossRef] [PubMed]
- Lasztóczi, B.; Klausberger, T. Hippocampal Place Cells Couple to Three Different Gamma Oscillations during Place Field Traversal. Neuron 2016, 91, 34–40. [Google Scholar] [CrossRef] [PubMed]
- O’keefe, J.; Conway, D.H. Hippocampal place units in the freely moving rat: Why they fire where they fire. Exp. Brain Res. 1978, 31, 573–590. [Google Scholar] [CrossRef] [PubMed]
- Eichenbaum, H.; Dudchenko, P.; Wood, E.; Shapiro, M.; Tanila, H. The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron 1999, 23, 209–226. [Google Scholar] [CrossRef]
- Foster, D.J.; Wilson, M.A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 2006, 440, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Leutgeb, S.; Leutgeb, J.K.; Barnes, C.A.; Moser, E.I.; McNaughton, B.L.; Moser, M.B. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 2005, 309, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Alme, C.B.; Miao, C.; Jezek, K.; Treves, A.; Moser, E.I.; Moser, M.B. Place cells in the hippocampus: Eleven maps for eleven rooms. Proc. Natl. Acad. Sci. USA 2014, 111, 18428–18435. [Google Scholar] [CrossRef] [PubMed]
- Jezek, K.; Henriksen, E.J.; Treves, A.; Moser, E.I.; Moser, M.B. Theta-paced flickering between place-cell maps in the hippocampus. Nature 2011, 478, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, S.; Liu, X.; Lin, P.A.; Suh, J.; Pignatelli, M.; Redondo, R.L.; Tonegawa, S. Creating a false memory in the hippocampus. Science 2013, 341, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Bizley, J.K.; King, A.J. Visual–auditory spatial processing in auditory cortical neurons. Brain Res. 2008, 1242, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Sugiura, M.; Miura, N.; Watanabe, Y.; Maeda, Y.; Matsue, Y.; Kawashima, R. The human parietal cortex is involved in spatial processing of tongue movement—an fMRI study. Neuroimage 2004, 21, 1289–1299. [Google Scholar] [CrossRef] [PubMed]
- Rauschecker, J.P.; Tian, B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl. Acad. Sci. USA 2000, 97, 11800–11806. [Google Scholar] [CrossRef] [PubMed]
- Peck, E.L.; Peck, C.J.; Salzman, C.D. Task-Dependent Spatial Selectivity in the Primate Amygdala. J. Neurosci. 2014, 34, 16220–16233. [Google Scholar] [CrossRef] [PubMed]
- Pych, J.C.; Chang, Q.; Colon-Rivera, C.; Haag, R.; Gold, P.E. Acetylcholine release in the hippocampus and striatum during place and response training. Learn. Mem. 2005, 12, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Horst, N.K.; Laubach, M. Working with memory: Evidence for a role for the medial prefrontal cortex in performance monitoring during spatial delayed alternation. J. Neurophysiol. 2012, 108, 3276–3288. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Lissek, S.; Ernst, T.M.; Thürling, M.; Uengoer, M.; Tegenthoff, M.; Timmann, D. Cerebellar contribution to context processing in extinction learning and recall. Cerebellum 2015, 14, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Zelikowsky, M.; Hersman, S.; Chawla, M.K.; Barnes, C.A.; Fanselow, M.S. Neuronal Ensembles in Amygdala, Hippocampus, and Prefrontal Cortex Track Differential Components of Contextual Fear. J. Neurosci. 2014, 34, 8462–8466. [Google Scholar] [CrossRef] [PubMed]
- Roozendaal, B.; Portillo-Marquez, G.; McGaugh, J.L. Basolateral amygdala lesions block glucocorticoid-induced modulation of memory for spatial learning. Behav. Neurosci. 1996, 110, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Custódio, D.S.; Cardoso, J.; Martins, C.W.; Lugon, M.D.; Fregni, F.; Nakamura-Palacios, E.M. Epidural direct current stimulation over the left medial prefrontal cortex facilitates spatial working memory performance in rats. Brain Stimul. 2013, 6, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-T.; Shi, Y.; Wang, Q.; Peng, J.-Y.; Li, B.-M. Neuronal representation of working memory in the medial prefrontal cortex of rats. Mol. Brain 2014, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Floresco, S.B.; Seamans, J.K.; Phillips, A.G. Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J. Neurosci. 1997, 17, 1880–1890. [Google Scholar] [PubMed]
- Song, C.; Ehlers, V.L.; Moyer, J.R. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex–Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices. J. Neurosci. 2015, 35, 13511–13524. [Google Scholar] [CrossRef] [PubMed]
- Euston, D.R.; McNaughton, B.L. Apparent encoding of sequential context in rat medial prefrontal cortex is accounted for by behavioral variability. J. Neurosci. 2006, 26, 13143–13155. [Google Scholar] [CrossRef] [PubMed]
- Poucet, B.; Chaillan, F.; Truchet, B.; Save, E.; Sargolini, F.; Hok, V. Is there a pilot in the brain? Contribution of the self-positioning system to spatial navigation. Front. Behav. Neurosci. 2015, 9, 292. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hyman, J.M.; Durstewitz, D.; Phillips, A.G.; Seamans, J.K. A Quantitative Analysis of Context-Dependent Remapping of Medial Frontal Cortex Neurons and Ensembles. J. Neurosci. 2016, 36, 8258–8272. [Google Scholar] [CrossRef] [PubMed]
- Lapish, C.C.; Durstewitz, D.; Chandler, L.J.; Seamans, J.K. Successful choice behavior is associated with distinct and coherent network states in anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 2008, 105, 11963–11968. [Google Scholar] [CrossRef] [PubMed]
- Durstewitz, D.; Seamans, J.K. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol. Psychiatry 2008, 64, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Caracheo, B.F.; Emberly, E.; Hadizadeh, S.; Hyman, J.M.; Seamans, J.K. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment. Front. Neurosci. 2013, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Reverberi, C.; Görgen, K.; Haynes, J.D. Compositionality of rule representations in human prefrontal cortex. Cereb. Cortex 2012, 22, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.M. Synchronous oscillations in neuronal systems: Mechanisms and functions. J. Comput. Neurosci. 1994, 1, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Winson, J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 1978, 201, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.; Wong, D.; Lynch, G. Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 1986, 368, 347–350. [Google Scholar] [CrossRef]
- O’Keefe, J. Hippocampus, theta, and spatial memory. Curr. Opin. Neurobiol. 1993, 3, 917–924. [Google Scholar] [CrossRef]
- Hyman, J.M.; Wyble, B.P.; Goyal, V.; Rossi, C.A.; Hasselmo, M.E. Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J. Neurosci. 2003, 23, 11725–11731. [Google Scholar] [PubMed]
- Green, J.D.; Arduini, A.A. Hippocampal electrical activity in arousal. J. Neurophysiol. 1954, 17, 533–557. [Google Scholar] [PubMed]
- Vanderwolf, C.H.; Bland, B.H.; Whishaw, I.Q. Diencephalic, Hippocampal, and Neocortical Mechanisms in Voluntary Movement; Academic Press: Oxford, UK, 1973. [Google Scholar]
- McFarland, W.L.; Teitelbaum, H.; Hedges, E.K. Relationship between hippocampal theta activity and running speed in the rat. J. Comp. Physiol. Psychol. 1975, 88, 324. [Google Scholar] [CrossRef] [PubMed]
- Macrides, F.; Eichenbaum, H.B.; Forbes, W.B. Temporal relationship between sniffing and the limbic theta rhythm during odor discrimination reversal learning. J. Neurosci. 1982, 2, 1705–1717. [Google Scholar] [PubMed]
- Vanderwolf, C.H.; Kramis, R.; Gillespie, L.A.; Bland, B.H. Hippocampal Rhythmic Slow Activity and Neocortical Low-Voltage Fast Activity: Relations to Behavior. In The Hippocampus; Plenum Press: New York, NY, USA, 1975; pp. 101–128. [Google Scholar]
- Grastyan, E.; Karmos, G.; Vereczkey, L.; Kellenyi, L. The hippocampal electrical correlates of the homeostatic regulation of motivation. Electroencephalogr. Clin. Neurophysiol. 1966, 21, 34–53. [Google Scholar] [CrossRef]
- Winson, J. Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalogr. Clin. Neurophysiol. 1974, 36, 291–301. [Google Scholar] [CrossRef]
- Buzsáki, G. Theta oscillations in the hippocampus. Neuron 2002, 33, 325–340. [Google Scholar] [CrossRef]
- Seidenbecher, T.; Laxmi, T.R.; Stork, O.; Pape, H.C. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 2003, 301, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, L.C.; Berry, S.D. Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. Proc. Natl. Acad. Sci. USA 2009, 106, 21371–21376. [Google Scholar] [CrossRef] [PubMed]
- Albertin, S.V.; Wiener, S.I. Neuronal Activity in the Nucleus Accumbens and Hippocampus in Rats during Formation of Seeking Behavior in a Radial Maze. Bull. Exp. Biol. Med. 2015, 158, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Aharoni, D.; Shuman, T.; Shobe, J.; Biane, J.; Song, W.; Silva, A. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 2016, 534, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Südhof, T.C. A neural circuit for memory specificity and generalization. Science 2013, 339, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.; Herbeaux, K.; Cosquer, B.; Engeln, M.; Muller, C.; Lazarus, C.; de Vasconcelos, A.P. Context-dependent modulation of hippocampal and cortical recruitment during remote spatial memory retrieval. Hippocampus 2012, 22, 827–841. [Google Scholar] [CrossRef] [PubMed]
- Swanson, L.W. A direct projection from Ammon’s horn to prefrontal cortex in the rat. Brain Res. 1981, 217, 150–154. [Google Scholar] [CrossRef]
- Vertes, R.P. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 2006, 142, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.G.; Witter, M.P. The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience 1989, 31, 571–591. [Google Scholar] [CrossRef]
- Vertes, R.P.; Hoover, W.B.; Sherman, A. Afferent projections to the medial prefrontal cortex in rats. Soc. Neurosci. Abstr. 2002, 282, 2. [Google Scholar]
- Vertes, R.P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 2004, 51, 32–58. [Google Scholar] [CrossRef] [PubMed]
- Laroche, S.; Jay, T.M.; Thierry, A. Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region. Neurosci. Lett. 1990, 114, 184–190. [Google Scholar] [CrossRef]
- Rajasethupathy, P.; Sankaran, S.; Marshel, J.H.; Kim, C.K.; Ferenczi, E.; Lee, S.Y.; Deisseroth, K. Projections from neocortex mediate top-down control of memory retrieval. Nature 2015, 526, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Dolorfo, C.L.; Amaral, D.G. Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J. Comp. Neurol. 1998, 398, 25–48. [Google Scholar] [CrossRef]
- Ferino, F.; Thierry, A.M.; Glowinski, J. Anatomical and electrophysiological evidence for a direct projection from Ammon’s horn to the medial prefrontal cortex in the rat. Exp. Brain Res. 1987, 65, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Jay, T.M.; Thierry, A.M.; Wiklund, L.; Glowinski, J. Excitatory Amino Acid Pathway from the Hippocampus to the Prefrontal Cortex. Contribution of AMPA Receptors in Hippocampo-prefrontal Cortex Transmission. Eur. J. Neurosci. 1992, 4, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y. Theta frequency prefrontal–hippocampal driving relationship during free exploration in mice. Neuroscience 2015, 300, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Hallock, H.L.; Wang, A.; Griffin, A.L. Ventral Midline Thalamus Is Critical for Hippocampal–Prefrontal Synchrony and Spatial Working Memory. J. Neurosci. 2016, 36, 8372–8389. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, P.K.; Gordon, J.A.; Sigurdsson, T. Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. J. Neurosci. 2013, 33, 14211–14224. [Google Scholar] [CrossRef] [PubMed]
- De Hoz, L.; Knox, J.; Morris, R.G. Longitudinal axis of the hippocampus: Both septal and temporal poles of the hippocampus support water maze spatial learning depending on the training protocol. Hippocampus 2003, 13, 587–603. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.J.; Jones, J.; Richards, B.; Hong, N.S. A double dissociation of dorsal and ventral hippocampal function on a learning and memory task mediated by the dorso-lateral striatum. Eur. J. Neurosci. 2006, 24, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Ferbinteanu, J.; Ray, C.; McDonald, R.J. Both dorsal and ventral hippocampus contribute to spatial learning in Long–Evans rats. Neurosci. Lett. 2003, 345, 131–135. [Google Scholar] [CrossRef]
- Moser, E.; Moser, M.B.; Andersen, P. Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J. Neurosci. 1993, 13, 3916–3925. [Google Scholar] [PubMed]
- Moser, M.B.; Moser, E.I. Functional differentiation in the hippocampus. Hippocampus 1998, 8, 608–619. [Google Scholar] [CrossRef]
- Kesner, R.P.; Hunsaker, M.R.; Ziegler, W. The role of the dorsal and ventral hippocampus in olfactory working memory. Neurobiol. Learn. Mem. 2011, 96, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.L.; Hunsaker, M.R.; Kesner, R.P. Effects of ventral and dorsal CA1 subregional lesions on trace fear conditioning. Neurobiol. Learn. Mem. 2006, 86, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Rudy, J.W.; Matus-Amat, P. The ventral hippocampus supports a memory representation of context and contextual fear conditioning: Implications for a unitary function of the hippocampus. Behav. Neurosci. 2005, 119, 154. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.; Otto, T. Differential contributions of dorsal vs. ventral hippocampus to auditory trace fear conditioning. Neurobiol. Learn. Mem. 2007, 87, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Nadel, L. Dorsal and ventral hippocampal lesions and behavior. Physiol. Behav. 1968, 3, 891–900. [Google Scholar] [CrossRef]
- Maurer, A.P.; VanRhoads, S.R.; Sutherland, G.R.; Lipa, P.; McNaughton, B.L. Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus. Hippocampus N. Y. Churchill Livingstone 2005, 15, 841. [Google Scholar] [CrossRef] [PubMed]
- Kjelstrup, K.B.; Solstad, T.; Brun, V.H.; Hafting, T.; Leutgeb, S.; Witter, M.P.; Moser, M.B. Finite scale of spatial representation in the hippocampus. Science 2008, 321, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Royer, S.; Sirota, A.; Patel, J.; Buzsáki, G. Distinct representations and theta dynamics in dorsal and ventral hippocampus. J. Neurosci. 2010, 30, 1777–1787. [Google Scholar] [CrossRef] [PubMed]
- Keinath, A.T.; Wang, M.E.; Wann, E.G.; Yuan, R.K.; Dudman, J.T.; Muzzio, I.A. Precise spatial coding is preserved along the longitudinal hippocampal axis. Hippocampus 2014, 24, 1533–1548. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Wilson, M.A. Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm. Hippocampus 2005, 15, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Hyman, J.M.; Zilli, E.A.; Paley, A.M.; Hasselmo, M.E. Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus 2005, 15, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Kyd, R.J.; Bilkey, D.K. Prefrontal cortex lesions modify the spatial properties of hippocampal place cells. Cereb. Cortex 2003, 13, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Kyd, R.J.; Bilkey, D.K. Hippocampal place cells show increased sensitivity to changes in the local environment following prefrontal cortex lesions. Cereb. Cortex 2005, 15, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Hok, V.; Chah, E.; Save, E.; Poucet, B. Prefrontal cortex focally modulates hippocampal place cell firing patterns. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 3443. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Redish, A.D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 2007, 27, 12176–12189. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, N.S.; Park, E.H.; Hen, R.; Fenton, A.A. Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus 2012, 22, 1795–1808. [Google Scholar] [CrossRef] [PubMed]
- Hok, V.; Chah, E.; Reilly, R.B.; O’Mara, S.M. Hippocampal dynamics predict inter individual cognitive differences in rats. J. Neurosci. 2012, 32, 3540–3551. [Google Scholar] [CrossRef] [PubMed]
- Scoville, W.B.; Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 1957, 20, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Aota, Y.; Sasto, N.; Wagatsuma, H.; Wu, Z. Synchronization of neural oscillations as a possible mechanism underlying episodic memory: A study of theta rhythm in the hippocampus. J. Integr. Neurosci. 2004, 3, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Squire, L.R.; Spanis, C.W. Long gradient of retrograde amnesia in mice: Continuity with the findings in humans. Behav. Neurosci. 1984, 98, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Takehara-Nishiuchi, K.; McNaughton, B.L. Spontaneous changes of neocortical code for associative memory during consolidation. Science 2008, 322, 960–963. [Google Scholar] [CrossRef] [PubMed]
- Takehara, K.; Kawahara, S.; Kirino, Y. Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning. J. Neurosci. 2003, 23, 9897–9905. [Google Scholar] [PubMed]
- Wiig, K.A.; Bilkey, D.K. Perirhinal cortex lesions in rats disrupt performance in a spatial DNMS task. Neuroreport 1994, 5, 1405–1408. [Google Scholar] [PubMed]
- Rothschild, G.; Eban, E.; Frank, L.M. A cortical-hippocampal-cortical loop of information processing during memory consolidation. Nat. Neurosci. 2016, 20, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Mishkin, M. A memory system in the monkey. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982, 298, 85–95. [Google Scholar] [CrossRef]
- Tonegawa, S.; Liu, X.; Ramirez, S.; Redondo, R. Memory engram cells have come of age. Neuron 2015, 87, 918–931. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Gerkin, R.C.; Nauen, D.W.; Bi, G.Q. Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat. Neurosci. 2005, 8, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Krug, M.; Lössner, B.; Ott, T. Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res. Bull. 1984, 13, 39–42. [Google Scholar] [CrossRef]
- Schafe, G.E.; Nadel, N.V.; Sullivan, G.M.; Harris, A.; Le Doux, J.E. Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn. Mem. 1999, 6, 97–110. [Google Scholar] [PubMed]
- Apergis-Schoute, A.M.; Dębiec, J.; Doyere, V.; Le Doux, J.E.; Schafe, G.E. Auditory fear conditioning and long-term potentiation in the lateral amygdala require ERK/MAP kinase signaling in the auditory thalamus: A role for presynaptic plasticity in the fear system. J. Neurosci. 2005, 25, 5730–5739. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.; Fox, R.; Proulx, C.D.; Lin, J.Y.; Tsien, R.Y.; Malinow, R. Engineering a memory with LTD and LTP. Nature 2014, 511, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.K.; Teixeira, C.M.; Frankland, P.W. Inactivation of the anterior cingulate cortex blocks expression of remote, but not recent, conditioned taste aversion memory. Learn. Mem. 2008, 15, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Maviel, T.; Durkin, T.P.; Menzaghi, F.; Bontempi, B. Sites of neocortical reorganization critical for remote spatial memory. Science 2004, 305, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Meunier, M.; Destrade, C. Paradoxical transitory facilitation of performance in the Hebb-Williams labyrinth after lesion of the cingulate cortex in mice. C. R. Acad. Sci. III 1986, 302, 43–46. [Google Scholar] [PubMed]
- Liu, F.; Zheng, X.L.; Li, B.M. The anterior cingulate cortex is involved in retrieval of long-term/long-lasting but not short-term memory for step-through inhibitory avoidance in rats. Neurosci. Lett. 2009, 460, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Poucet, B. Searching for spatial unit firing in the prelimbic area of the rat medial prefrontal cortex. Behav. Brain Res. 1997, 84, 151–159. [Google Scholar] [CrossRef]
- Niki, H.; Watanabe, M. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res. 1979, 171, 213–224. [Google Scholar] [CrossRef]
- Adhikari, A.; Topiwala, M.A.; Gordon, J.A. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 2011, 71, 898–910. [Google Scholar] [CrossRef] [PubMed]
- Hyman, J.M.; Hasselmo, M.E.; Seamans, J.K. What is the functional relevance of prefrontal cortex entrainment to hippocampal theta rhythms? Front. Neurosci. 2011, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Takehara-Nishiuchi, K.; Nakao, K.; Kawahara, S.; Matsuki, N.; Kirino, Y. Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning. J. Neurosci. 2006, 26, 5049–5058. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.K.; Wilson, M.A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 2002, 36, 1183–1194. [Google Scholar] [CrossRef]
- Euston, D.R.; Tatsuno, M.; McNaughton, B.L. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 2007, 318, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Peyrache, A.; Khamassi, M.; Benchenane, K.; Wiener, S.I.; Battaglia, F.P. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat. Neurosci. 2009, 12, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Nádasdy, Z.; Hirase, H.; Czurkó, A.; Csicsvari, J.; Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 1999, 19, 9497–9507. [Google Scholar] [PubMed]
- Louie, K.; Wilson, M.A. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 2001, 29, 145–156. [Google Scholar] [CrossRef]
- Carr, M.F.; Jadhav, S.P.; Frank, L.M. Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. Nat. Neurosci. 2011, 14, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Benchenane, K.; Tiesinga, P.H.; Battaglia, F.P. Oscillations in the prefrontal cortex: A gateway to memory and attention. Curr. Opin. Neurobiol. 2011, 21, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Takashima, A.; Jensen, O.; Oostenveld, R.; Maris, E.; Van de Coevering, M.; Fernandez, G. Successful declarative memory formation is associated with ongoing activity during encoding in a distributed neocortical network related to working memory: A magnetoencephalography study. Neuroscience 2006, 139, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Mulder, A.B.; Nordquist, R.E.; Örgüt, O.; Pennartz, C.M. Learning-related changes in response patterns of prefrontal neurons during instrumental conditioning. Behav. Brain Res. 2003, 146, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Alberini, C.M. The role of reconsolidation and the dynamic process of long-term memory formation and storage. Front. Behav. Neurosci. 2011, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.A.; Kaplan, R.F.; Moser, D.J.; Jenkins, M.A.; Wilkinson, H. Impairments of attention after cingulotomy. Neurology 1999, 53, 819. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.L.; Teixeira, C.M.; Wang, A.H.; Xiong, X.; Kovacevic, N.; Lerch, J.P.; Frankland, P.W. Identification of a functional connectome for long-term fear memory in mice. PLoS Comput. Biol. 2013, 9, e1002853. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.M.; Pomedli, S.R.; Maei, H.R.; Kee, N.; Frankland, P.W. Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J. Neurosci. 2006, 26, 7555–7564. [Google Scholar] [CrossRef] [PubMed]
- Frankland, P.W.; Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 2005, 6, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Insel, N.; Takehara-Nishiuchi, K. The cortical structure of consolidated memory: A hypothesis on the role of the cingulate–entorhinal cortical connection. Neurobiol. Learn. Mem. 2013, 106, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Hasselmo, M.E. A model of prefrontal cortical mechanisms for goal-directed behavior. J. Cognit. Neurosci. 2005, 17, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Otto, T.; Eichenbaum, H. Neuronal activity in the hippocampus during delayed non-match to sample performance in rats: Evidence for hippocampal processing in recognition memory. Hippocampus 1992, 2, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.W.; McNaughton, B.L. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 1993, 3, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hyman, J.M.; Lindsay, A.J.; Phillips, A.G.; Seamans, J.K. Differences in the emergent coding properties of cortical and striatal ensembles. Nat. Neurosci. 2014, 17, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Warren, C.M.; Hyman, J.M.; Seamans, J.K.; Holroyd, C.B. Feedback-related negativity observed in rodent anterior cingulate cortex. J. Physiol.-Paris 2015, 109, 87–94. [Google Scholar] [CrossRef] [PubMed]
- De Saint Blanquat, P.; Hok, V.; Alvernhe, A.; Save, E.; Poucet, B. Tagging items in spatial working memory: A unit-recording study in the rat medial prefrontal cortex. Behav. Brain Res. 2010, 209, 267–273. [Google Scholar] [CrossRef] [PubMed]
- De Bruin, J.P.; Sànchez-Santed, F.; Heinsbroek, R.P.; Donker, A.; Postmes, P. A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: Evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res. 1994, 652, 323–333. [Google Scholar] [CrossRef]
- Hart, E.E.; Stolyarova, A.; Conoscenti, M.A.; Minor, T.R.; Izquierdo, A. Rigid patterns of effortful choice behavior after acute stress in rats. Stress 2016, 20, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Lapiz, M.D.S.; Morilak, D.A. Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience 2006, 137, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Brady, A.M.; Floresco, S.B. Operant Procedures for Assessing Behavioral Flexibility in Rats. J. Vis. Exp. 2015, 96, e52387. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, Y.; Zhang, F.; Yuan, S.; Shao, F.; Wang, W. Effects of Duloxetine Treatment on Cognitive Flexibility and BDNF Expression in the mPFC of Adult Male Mice Exposed to Social Stress during Adolescence. Front. Mol. Neurosci. 2016, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Floresco, S.B. Prefrontal dopamine and behavioral flexibility: Shifting from an “inverted-U” toward a family of functions. Front. Neurosci. 2013, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hyman, J.M.; Phillips, A.G.; Seamans, J.K. Tracking progress toward a goal in corticostriatal ensembles. J. Neurosci. 2014, 34, 2244–2253. [Google Scholar] [CrossRef] [PubMed]
- Ragozzino, M.E.; Detrick, S.; Kesner, R.P. Involvement of the prelimbic–infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J. Neurosci. 1999, 19, 4585–4594. [Google Scholar] [PubMed]
- Jo, Y.S.; Park, E.H.; Kim, I.H.; Park, S.K.; Kim, H.; Kim, H.T.; Choi, J.S. The medial prefrontal cortex is involved in spatial memory retrieval under partial-cue conditions. J. Neurosci. 2007, 27, 13567–13578. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.; Aggleton, J.P. Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching-and matching-to-place in the T-maze in the rat: Differential involvement of the prelimbic–infralimbic and anterior cingulate cortices in providing behavioural flexibility. Eur. J. Neurosci. 2000, 12, 4457–4466. [Google Scholar] [CrossRef] [PubMed]
- Granon, S.; Poucet, B. Medial prefrontal lesions in the rat and spatial navigation: Evidence for impaired planning. Behav. Neurosci. 1995, 109, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Fenton, A.A.; Lytton, W.W.; Barry, J.M.; Lenck-Santini, P.P.; Zinyuk, L.E.; Kubík, Š.; Olypher, A.V. Attention-like modulation of hippocampus place cell discharge. J. Neurosci. 2010, 30, 4613–4625. [Google Scholar] [CrossRef] [PubMed]
- Loftus, E.F.; Loftus, G.R. On the permanence of stored information in the human brain. Am. Psychol. 1980, 35, 409. [Google Scholar] [CrossRef] [PubMed]
- Weible, A.P. Remembering to attend: The anterior cingulate cortex and remote memory. Behav. Brain Res. 2013, 245, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Place, R.; Farovik, A.; Brockmann, M.; Eichenbaum, H. Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nat. Neurosci. 2016, 19, 992–994. [Google Scholar] [CrossRef] [PubMed]
- Weible, A.P.; Rowland, D.C.; Monaghan, C.K.; Wolfgang, N.T.; Kentros, C.G. Neural correlates of long-term object memory in the mouse anterior cingulate cortex. J. Neurosci. 2012, 32, 5598–5608. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wirt, R.A.; Hyman, J.M. Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus. Brain Sci. 2017, 7, 43. https://doi.org/10.3390/brainsci7040043
Wirt RA, Hyman JM. Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus. Brain Sciences. 2017; 7(4):43. https://doi.org/10.3390/brainsci7040043
Chicago/Turabian StyleWirt, Ryan A., and James M. Hyman. 2017. "Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus" Brain Sciences 7, no. 4: 43. https://doi.org/10.3390/brainsci7040043
APA StyleWirt, R. A., & Hyman, J. M. (2017). Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus. Brain Sciences, 7(4), 43. https://doi.org/10.3390/brainsci7040043