Working Memory in the Prefrontal Cortex
Abstract
:1. Introduction
2. Working Memory
2.1. Working Memory in Human Studies
2.2. Working Memory in Animal Studies
3. Neural Mechanisms of Spatial Working Memory in the Prefrontal Cortex
3.1. Search for Neural Correlates of Working Memory in the Prefrontal Cortex: Historical Overview
3.2. Delay-Period Activity as a Neural Correlate of the Temporary Storage Process in Working Memory
4. Importance of Delay-Period Activity in Working Memory
5. Exploring Neural Mechanisms of the Central Executive
5.1. Neural Mechanisms for Memory Control in the Prefrontal Cortex
5.2. Neural Mechanisms for Monitoring Information Contents in the Prefrontal Cortex
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Goldman-Rakic, P.S. Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In Higher Functions of the Brain: The Nervous System; Handbook of Physiology; Plum, F., Ed.; American Physiological Society: Bethesda, MD, USA, 1987; Section 1; Volume V, pp. 373–417. [Google Scholar]
- Miller, E.K. The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 2000, 1, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [PubMed]
- Fuster, J.M. The Prefrontal Cortex, 4th ed.; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Funahashi, S. Functions of delay-period activity in the prefrontal cortex and mnemonic scotomas revisited. Front. Syst. Neurosci. 2015, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.; Trojanowski, J.Q. Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents. Brain Res. 1977, 132, 209–233. [Google Scholar] [CrossRef]
- Petrides, M.; Pandya, D.N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 1984, 228, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Petrides, M.; Pandya, D.N. Comparative architectonic analysis of the human and the macaque frontal cortex. In Handbook of Neuropsychology; Boller, F., Spinnler, H., Hendler, J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; Volume 9, pp. 17–58. [Google Scholar]
- Selemon, L.D.; Goldman-Rakic, P.S. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior. J. Neurosci. 1988, 8, 4049–4068. [Google Scholar] [PubMed]
- Cavada, C.; Goldman-Rakic, P.S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 1989, 287, 422–445. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Rakic, P.S.; Bates, J.F.; Chafee, M.V. The prefrontal cortex and internally generated motor acts. Curr. Opin. Neurobiol. 1992, 2, 830–835. [Google Scholar] [CrossRef]
- Bates, J.F.; Goldman-Rakic, P.S. Prefrontal connections of medial motor areas in the rhesus monkey. J. Comp. Neurol. 1993, 336, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Stuss, D.T.; Benson, D.F. The Frontal Lobes; Raven Press: New York, NY, USA, 1986. [Google Scholar]
- Jacobsen, C.F. Studies of cerebral function in primate. I. The functions of the frontal association areas in monkeys. Comp. Psychol. Monogr. 1936, 13, 1–60. [Google Scholar]
- Rosenkilde, C.E. Functional heterogeneity of the prefrontal cortex in the monkey: A review. Behav. Neural Biol. 1979, 25, 301–345. [Google Scholar] [CrossRef]
- Curtis, C.E.; D’Esposito, M. The effects of prefrontal lesions on working memory performance and theory. Cogn. Affect. Behav. Neurosci. 2004, 4, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Rakic, P.S. Regional and cellular fractionation of working memory. Proc. Natl. Acad. Sci. USA 1996, 93, 13473–13480. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Rakic, P.S. Cellular basis of working memory. Neuron 1995, 14, 477–485. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Hitch, G.J. Working memory. In The Psychology of Learning and Motivation: Advances in Research and Theory; Bower, G.S., Ed.; Academic Press: New York, NY, USA, 1974; pp. 47–89. [Google Scholar]
- Mahut, H. Spatial and object reversal learning in monkeys with partial temporal lobe ablations. Neuropsychologia 1971, 9, 409–424. [Google Scholar] [CrossRef]
- O’Keefe, J.; Nadel, L. The Hippocampus as a Cognitive Map; Oxford University Press: Oxford, UK, 1978. [Google Scholar]
- Olton, D.S.; Becker, J.T.; Handelmann, G.E. Hippocampus, space, and memory. Behav. Brain Sci. 1979, 2, 313–365. [Google Scholar] [CrossRef]
- Olton, D.S.; Papas, B. Spatial memory and hippocampal function. Neuropsychologia 1979, 17, 669–682. [Google Scholar] [CrossRef]
- Nadel, L.; MacDonald, L. Hippocampus: Cognitive map or working memory? Behav. Neural Biol. 1980, 29, 405–409. [Google Scholar] [CrossRef]
- Aggleton, J.P.; Hunt, P.R.; Rawlins, J.N.P. The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav. Brain Res. 1986, 19, 133–146. [Google Scholar] [CrossRef]
- Jarrard, L.E. On the role of the hippocampus in learning and memory in the rat. Behav. Neural Biol. 1993, 60, 9–26. [Google Scholar] [CrossRef]
- Atkinson, R.C.; Shiffrin, R.M. Human memory: A proposed system and its control processes. In The Psychology of Learning and Motivation: Advances in Research and Theory; Spence, K.W., Spence, J.T., Eds.; Academic Press: New York, NY, USA, 1968; pp. 89–195. [Google Scholar]
- Baddeley, A.D.; Logie, R.H. Working memory: The multiple component model. In Models of Working Memeory: Mechanisms of Active Maintenance and Executive Control; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 28–61. [Google Scholar]
- Kieras, D.E.; Meyer, D.E.; Mueller, S.; Seymour, T. Insights into working memory from the perspective of the EPIC architecture for modeling skilled perceptual-motor and cognitive human performance. In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 183–223. [Google Scholar]
- Miyake, A.; Shah, P. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Baddeley, A.D. Working Memory; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Baddeley, A.D. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory: Theories, models, and controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, B.J.; Shapiro, M.L.; Olton, D.S. Hippocampal seizures disrupt working memory performance but not reference memory acquisition. Behav. Neurosci. 1989, 103, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Stokes, K.A.; Best, P.J. Mediodorsal thalamic lesions impair “reference” and “working” memory in rats. Physiol. Behav. 1990, 47, 471–476. [Google Scholar] [CrossRef]
- Ando, S.; Ohashi, Y. Longitudinal study on age-related changes of working and reference memory in the rat. Neurosci. Lett. 1991, 128, 17–20. [Google Scholar] [CrossRef]
- Sakurai, Y. Auditory working and reference memory can be tested in a single situation of stimuli for the rat. Behav. Brain Res. 1992, 50, 193–195. [Google Scholar] [CrossRef]
- Bushnell, P.J.; Levin, E.D. Effects of dopaminergic drugs on working and reference memory in rats. Pharmacol. Biochem. Behav. 1993, 45, 765–776. [Google Scholar] [CrossRef]
- Prior, H.; Schwegler, H.; Ducker, G. Dissociation of spatial reference memory, spatial working memory, and hippocampal mossy fiber distribution in two rat strains differing in emotionality. Behav. Brain Res. 1997, 87, 183–194. [Google Scholar] [CrossRef]
- Gresack, J.E.; Frick, K.M. Male mice exhibit better spatial working and reference memory than females in a water-escape radial arm maze task. Brain Res. 2003, 982, 98–107. [Google Scholar] [CrossRef]
- Honig, W.K. Studies of working memory in the pigeon. In Cognitive Processes in Animal Behavior; Hulse, S.H., Fowler, H., Honig, W.K., Eds.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1978; pp. 211–248. [Google Scholar]
- Funahashi, S. Space representation in the prefrontal cortex. Prog. Neurobiol. 2013, 103, 131–155. [Google Scholar] [CrossRef] [PubMed]
- Raffaele, K.C.; Olton, D.S. Hippocampal and Amygdaloid involvement in working memory for nonspatial stimuli. Behav. Neurosci. 1988, 102, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Bachevalier, J.; Mishkin, M. Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav. Brain Res. 1986, 20, 249–261. [Google Scholar] [CrossRef]
- Miller, E.K.; Li, L.; Desimone, R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science 1991, 254, 1377–1379. [Google Scholar] [CrossRef] [PubMed]
- Overman, W.; Bachevalier, J.; Turner, M.; Peuster, A. Object recognition versus object discrimination: Comparison between human infants and infant monkeys. Behav. Neurosci. 1992, 106, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Zola, S.M.; Squire, L.R.; Teng, E.; Stefanacci, L.; Buffalo, E.A.; Clark, R.E. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J. Neurosci. 2000, 20, 451–463. [Google Scholar] [PubMed]
- Brown, M.W.; Aggleton, J.P. Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nat. Rev. Neurosci. 2001, 2, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Squire, L.R.; Wixted, J.T.; Clark, R.E. Recognition memory and the medial temporal lobe: A new perspective. Nat. Rev. Neurosci. 2007, 8, 872–883. [Google Scholar] [CrossRef] [PubMed]
- Eichenbaum, H.; Yonelinas, A.P.; Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 2007, 30, 123–152. [Google Scholar] [CrossRef] [PubMed]
- Butters, N.; Pandya, D. Retention of delayed alternation: Effect of selective lesions of sulcus principalis. Science 1969, 165, 1271–1273. [Google Scholar] [CrossRef] [PubMed]
- Malmo, R.B. Interference factors in delayed response in monkeys after removal of frontal lobes. J. Neurophysiol. 1942, 5, 295–308. [Google Scholar]
- Bartus, R.T.; Levere, T.E. Frontal decortication in rhesus monkeys: A test of the interference hypothesis. Brain Res. 1977, 119, 233–248. [Google Scholar] [CrossRef]
- Funahashi, S.; Bruce, C.J.; Goldman-Rakic, P.S. Dorsolateral prefrontal lesions and oculomotor delayed response performance: Evidence for mnemonic “scotomas”. J. Neurosci. 1993, 13, 1479–1497. [Google Scholar] [PubMed]
- Kubota, K.; Niki, H. Prefrontal cortical unit activity and delayed alternation performance in monkeys. J. Neurophysiol. 1971, 34, 337–347. [Google Scholar] [PubMed]
- Fuster, J.M.; Alexander, G.E. Neuron activity related to short-term memory. Science 1971, 173, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Fuster, J.M. Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. J. Neurophysiol. 1973, 36, 61–78. [Google Scholar] [PubMed]
- Niki, H. Differential activity of prefrontal units during right and left delayed response trials. Brain Res. 1974, 70, 346–349. [Google Scholar] [CrossRef]
- Niki, H.; Watanabe, M. Prefrontal unit activity and delayed response: Relation to cue location versus direction of response. Brain Res. 1976, 105, 79–88. [Google Scholar] [CrossRef]
- Niki, H. Prefrontal unit activity during delayed alternation in the monkey. I. Relation to direction of response. Brain Res. 1974, 68, 185–196. [Google Scholar] [CrossRef]
- Niki, H. Prefrontal unit activity during delayed alternation in the monkey. II. Relation to absolute versus relative direction of response. Brain Res. 1974, 68, 197–204. [Google Scholar] [CrossRef]
- Kojima, S.; Goldman-Rakic, P.S. Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res. 1982, 248, 43–49. [Google Scholar] [CrossRef]
- Kojima, S.; Goldman-Rakic, P.S. Functional analysis of spatially discriminative neurons in prefrontal cortex of rhesus monkey. Brain Res. 1984, 291, 229–240. [Google Scholar] [CrossRef]
- Carlson, S.; Rama, P.; Tanila, H.; Linnankoski, I.; Mansikka, H. Dissociation of mnemonic coding and other functional neuronal processing in the monkey prefrontal cortex. J. Neurophysiol. 1997, 77, 761–774. [Google Scholar] [PubMed]
- Carlson, S.; Tanila, H.; Pertovaara, A.; Lahteenmaki, A. Vertical and horizontal coding of space in the monkey dorsolateral prefrontal cortex. Brain Res. 1990, 527, 145–149. [Google Scholar] [CrossRef]
- Funahashi, S.; Inoue, M.; Kubota, K. Delay-period activity in the primate prefrontal cortex encoding multiple spatial positions and their order of presentation. Behav. Brain Res. 1997, 84, 203–223. [Google Scholar] [CrossRef]
- Joseph, J.P.; Barone, P. Prefrontal unit activity during a delayed oculomotor task in the monkey. Exp. Brain Res. 1987, 67, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Barone, P.; Joseph, J.P. Prefrontal cortex and spatial sequencing in macaque monkey. Exp. Brain Res. 1989, 78, 447–464. [Google Scholar] [CrossRef] [PubMed]
- Boch, R.A.; Goldberg, M.E. Participation of prefrontal neurons in the preparation of visually guided eye movements in the rhesus monkey. J. Neurophysiol. 1989, 61, 1064–1084. [Google Scholar] [PubMed]
- Funahashi, S.; Bruce, C.J.; Goldman-Rakic, P.S. Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 1991, 65, 1464–1483. [Google Scholar] [PubMed]
- Funahashi, S. Saccade-related activity in the prefrontal cortex: Its role in eye movement control and cognitive functions. Front. Integr. Neurosci. 2014, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Azuma, M. Prefrontal neuronal activity during gazing at a light spot in the monkey. Brain Res. 1977, 126, 497–508. [Google Scholar] [CrossRef]
- Suzuki, H.; Azuma, M.; Yumiya, H. Stimulus and behavioral factors contributing to the activation of monkey prefrontal neurons during gazing. Jpn. J. Physiol. 1979, 29, 471–489. [Google Scholar] [CrossRef] [PubMed]
- Boussaoud, D.; Barth, T.M.; Wise, S.P. Effects of gaze on apparent visual responses of frontal cortex neurons. Exp. Brain Res. 1993, 93, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.A.; Essick, G.K.; Siegel, R.M. Encoding of spatial location by posterior parietal neurons. Science 1985, 230, 456–458. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.A.; Mountcastle, V.B. The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 1983, 3, 532–548. [Google Scholar] [PubMed]
- Andersen, R.A.; Snyder, L.H.; Bradley, D.C.; Xing, J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 1997, 20, 303–330. [Google Scholar] [CrossRef] [PubMed]
- Squatrito, S.; Maioli, M.G. Gaze field properties of eye position neurons in area MST and 7a of the macaque monkey. Vis. Neurosci. 1996, 13, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Funahashi, S.; Bruce, C.J.; Goldman-Rakic, P.S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 1989, 61, 331–349. [Google Scholar] [PubMed]
- Wilson, F.A.W.; Scalaidhe, S.P.; Goldman-Rakic, P.S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 1993, 260, 1955–1958. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.V.; Goldman-Rakic, P.S. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995, 376, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, R.; Sawaguchi, T.; Kubota, K. Monkey prefrontal neuronal activity coding the forthcoming saccade in an oculomotor delayed matching-to-sample task. J. Neurophysiol. 1998, 79, 322–333. [Google Scholar] [PubMed]
- Chafee, M.V.; Goldman-Rakic, P.S. Matching patterns of activity in primate prefrontal area 8s and parietal area 7ip neurons during a spatial working memory. J. Neurophysiol. 1998, 79, 2919–2940. [Google Scholar] [PubMed]
- Chafee, M.V.; Goldman-Rakic, P.S. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J. Neurophysiol. 2000, 83, 1550–1566. [Google Scholar] [PubMed]
- Constantinidis, C.; Franowicz, M.N.; Goldman-Rakic, P.S. The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat. Neurosci. 2001, 4, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Constantinidis, C.; Franowicz, M.N.; Goldman-Rakic, P.S. Coding specificity in cortical microcircuits: A multiple-electrode analysis of primate prefrontal cortex. J. Neurosci. 2001, 21, 3646–3655. [Google Scholar] [PubMed]
- Sawaguchi, T.; Iba, M. Prefrontal cortical representation of visuospatial working memory in monkeys examined by local inactivation with muscimol. J. Neurophysiol. 2001, 86, 2041–2053. [Google Scholar] [PubMed]
- Takeda, K.; Funahashi, S. Prefrontal task-related activity representing visual cue location or saccade direction in spatial working memory tasks. J. Neurophysiol. 2002, 87, 567–588. [Google Scholar] [PubMed]
- Williams, G.V.; Rao, S.G.; Goldman-Rakic, P.S. The physiological role of 5HT2A receptors in working memory. J. Neurosci. 2002, 22, 2843–2854. [Google Scholar] [PubMed]
- Tsujimoto, S.; Sawaguchi, T. Properties of delay-period neuronal activity in the primate prefrontal cortex during memory- and sensory-guided saccade tasks. Eur. J. Neurosci. 2004, 19, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Rainer, G.; Asaad, W.F.; Miller, E.K. Memory fields of neurons in the primate prefrontal cortex. Proc. Natl. Acad. Sci. USA 1998, 95, 15008–15013. [Google Scholar] [CrossRef] [PubMed]
- Funahashi, S.; Chafee, M.V.; Goldman-Rakic, P.S. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 1993, 365, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Sawaguchi, T.; Yamane, I. Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task. J. Neurophysiol. 1999, 82, 2070–2080. [Google Scholar] [PubMed]
- Gnadt, J.W.; Andersen, R.A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 1988, 70, 216–220. [Google Scholar] [PubMed]
- Crammond, D.J.; Kalaska, J.F. Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period. Exp. Brain Res. 1989, 76, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.W.; Fuster, J.M. Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp. Brain Res. 1989, 76, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Constantinidis, C.; Steinmetz, M.A. Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J. Neurophysiol. 1996, 76, 1352–1355. [Google Scholar] [PubMed]
- Snyder, L.H.; Batista, A.P.; Andersen, R.A. Coding of intention in the posterior parietal cortex. Nature 1997, 386, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Quintana, J.; Fuster, J.M. From perception to action: Temporal integrative functions of prefrontal and parietal neurons. Cereb. Cortex 1999, 9, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Calton, J.L.; Dickinson, A.R.; Snyder, L.H. Non-spatial, motor-specific activation in posterior parietal cortex. Nat. Neurosci. 2002, 5, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Pesaran, B.; Pezaris, J.S.; Sahani, M.; Mitra, P.P.; Andersen, R.A. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 2002, 5, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Huk, A.C.; Shadlen, M.N. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 2005, 25, 10420–10436. [Google Scholar] [CrossRef] [PubMed]
- Nieder, A.; Diester, I.; Tudusciuc, O. Temporal and spatial enumeration processes in the primate parietal cortex. Science 2006, 313, 1431–1435. [Google Scholar] [CrossRef] [PubMed]
- Tudusciuc, O.; Nieder, A. Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proc. Natl. Acad. Sci. USA 2007, 104, 14513–14518. [Google Scholar] [CrossRef] [PubMed]
- Katsuki, F.; Constantinidis, C. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Front. Integr. Neurosci. 2012, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Fuster, J.M.; Jervey, J.P. Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J. Neurosci. 1982, 2, 361–375. [Google Scholar] [PubMed]
- Miyashita, Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 1988, 335, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, Y.; Chang, H.S. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 1988, 331, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Miyashita, Y. Neural organization for the long-term memory of paired associates. Nature 1991, 354, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.K.; Li, L.; Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 1993, 13, 1460–1478. [Google Scholar] [PubMed]
- Chelazzi, L.; Duncan, J.; Miller, E.K.; Desimone, R. Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol. 1998, 80, 2918–2940. [Google Scholar] [PubMed]
- Yakovlev, V.; Fisi, S.; Berman, E.; Zohary, E. Inter-trial neuronal activity in inferior temporal cortex: A putative vehicle to generate long-term visual associations. Nat. Neurosci. 1998, 1, 310–317. [Google Scholar] [PubMed]
- Zhou, Y.-D.; Fuster, J.M. Mnemonic neuronal activity in somatosensory cortex. Proc. Natl. Acad. Sci. USA 1996, 93, 10533–10537. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-D.; Fuster, J.M. Neuronal activity of somatosensory cortex in a cross-modal (visuo-haptic) memory task. Exp. Brain Res. 1997, 116, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Weinrich, M.; Wise, S.P. The premotor cortex of the monkey. J. Neurosci. 1982, 2, 1329–1345. [Google Scholar] [PubMed]
- Kurata, K.; Wise, S.P. Premotor cortex of rhesus monkeys: Set-related activity during two conditional motor tasks. Exp. Brain Res. 1988, 69, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Crammond, D.J.; Kalaska, J.F. Prior information in motor and premotor cortex: Activity during the delay period and effect on pre-movement activity. J. Neurophysiol. 2000, 84, 986–1005. [Google Scholar] [PubMed]
- Ohbayashi, M.; Ohki, K.; Miyashita, Y. Conversion of working memory to motor sequence in the monkey premotor cortex. Science 2003, 301, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.R.; Maunsell, J.H.R. Sensory modality specificity of neural activity related to memory in visual cortex. J. Neurophysiol. 1997, 78, 1263–1275. [Google Scholar] [PubMed]
- Lee, H.; Simpson, G.V.; Logothetis, N.K.; Rainer, G. Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 2006, 45, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, O.; Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulate. III. Memory-contingent visual and saccade responses. J. Neurophysiol. 1983, 49, 1268–1284. [Google Scholar] [PubMed]
- Basso, M.A.; Wurtz, R.H. Modulation of neuronal activity in superior colliculus by changes in target propability. J. Neurosci. 1998, 18, 7519–7534. [Google Scholar] [PubMed]
- Niki, H.; Sakai, M.; Kubota, K. Delayed alternation performance and unit activity of the caudate head and medial orbitofrontal gyrus in the monkey. Brain Res. 1972, 38, 343–353. [Google Scholar] [CrossRef]
- Soltysik, S.; Hull, C.D.; Buchwald, N.A.; Fekete, T. Single unit activity in basal ganglia of monkeys during performance of a delayed response task. Electroencephalogr. Clin. Neurophysiol. 1975, 39, 65–78. [Google Scholar] [CrossRef]
- Hikosaka, O.; Sakamoto, M.; Usui, S. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J. Neurophysiol. 1989, 61, 814–832. [Google Scholar] [PubMed]
- Apicella, P.; Scarnati, E.; Ljungberg, T.; Schultz, W. Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J. Neurophysiol. 1992, 68, 945–960. [Google Scholar] [PubMed]
- Watanabe, T.; Niki, H. Hippocampal unit activity and delayed response in the monkey. Brain Res. 1985, 325, 241–254. [Google Scholar] [CrossRef]
- Riches, I.P.; Wilson, F.A.W.; Brown, M.W. The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J. Neurosci. 1991, 11, 1763–1779. [Google Scholar] [PubMed]
- Watanabe, Y.; Funahashi, S. Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-response. I. Cue-, delay-, and response-period activity. J. Neurophysiol. 2004, 92, 1738–1755. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Funahashi, S. Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-response. II. Activity encoding visual versus motor signal. J. Neurophysiol. 2004, 92, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Prut, Y.; Fetz, E.E. Primate spinal interneurons show re-movement instructed delay activity. Nature 1999, 401, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Romo, R.; Brody, C.D.; Hernandez, A.; Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 1999, 399, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi-Yorioka, Y.; Sawaguchi, T. Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex. Nat. Neurosci. 2000, 3, 1075–1076. [Google Scholar] [PubMed]
- White, I.M.; Wise, S.P. Rule-dependent neuronal activity in the prefrontal cortex. Exp. Brain Res. 1999, 126, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, E.; Shima, K.; Tanji, J. Neuronal activity in the primate prefrontal cortex in the process of motor selection based on two behavioral rules. J. Neurophysiol. 2000, 83, 2355–2373. [Google Scholar] [PubMed]
- Wallis, J.D.; Anderson, K.C.; Miller, E.K. Single neurons in prefrontal cortex encode abstract rules. Nature 2001, 411, 953–956. [Google Scholar] [CrossRef] [PubMed]
- Amemori, K.; Sawaguchi, T. Rule-dependent shifting of sensorimotor representation in the primate prefrontal cortex. Eur. J. Neurosci. 2006, 23, 1895–1909. [Google Scholar] [CrossRef] [PubMed]
- Asaad, W.F.; Rainer, G.; Miller, E.K. Task-specific neural activity in the primate prefrontal cortex. J. Neurophysiol. 2000, 84, 451–459. [Google Scholar] [PubMed]
- Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 1996, 382, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.I.; Shadlen, M.N. Effects of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 1999, 24, 415–425. [Google Scholar] [CrossRef]
- Kobayashi, S.; Lauwereyns, J.; Koizumi, M.; Sakagami, M.; Hikosaka, O. Influence of reward expectation on visuospatial processing in macaque lateral prefrontal cortex. J. Neurophysiol. 2002, 87, 1488–1498. [Google Scholar] [PubMed]
- Watanabe, M.; Hikosaka, K.; Sakagami, M.; Shirakawa, S. Coding and monitoring of motivational context in the primate prefrontal cortex. J. Neurosci. 2002, 22, 2391–2400. [Google Scholar] [PubMed]
- Nieder, A.; Freedman, D.J.; Miller, E.K. Representation of the quantity of visual items in the primate prefrontal cortex. Science 2002, 297, 1708–1711. [Google Scholar] [CrossRef] [PubMed]
- Nieder, A.; Miller, E.K. Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron 2003, 37, 149–157. [Google Scholar] [CrossRef]
- Genovesio, A.; Tsujimoto, S.; Wise, S.P. Prefrontal cortex activity during the discrimination of relative distance. J. Neurosci. 2011, 31, 3968–3980. [Google Scholar] [CrossRef] [PubMed]
- Genovesio, A.; Tsujimoto, S.; Wise, S.P. Feature- and order-based timing representations in the frontal cortex. Neuron 2009, 63, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, J.P.; Kusunoki, M.; Goldberg, M.E. The representation of visual salience in monkey parietal cortex. Nature 1998, 391, 481–484. [Google Scholar] [PubMed]
- Tomita, H.; Ohbayashi, M.; Nakahara, K.; Hasegawa, I.; Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 1999, 401, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, T.; van Reekum, C.M.; Urry, H.L.; Kalin, N.H.; Davidson, R.J. Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J. Neurosci. 2007, 27, 8877–8884. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.; Velanova, K.; Luna, B. Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: A functional magnetic resonance imaging effective connectivity study. J. Neurosci. 2010, 30, 15535–15545. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.G.; D’Esposito, M. The dynamic nature of top-down signals originating from prefrontal cortex: A combined fMRI-TMS study. J. Neurosci. 2012, 32, 15458–15466. [Google Scholar] [CrossRef] [PubMed]
- Funahashi, S.; Andreau, J.M. Prefrontal cortex and neural mechanisms of executive function. J. Physiol. Paris 2013, 107, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Just, M.A.; Carpenter, P.A. A capacity theory of comprehension: Individual differences in working memory. Psychol. Rev. 1992, 99, 122–149. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A.D. Exploring the central executive. Q. J. Exp. Psychol. 1996, 49A, 5–28. [Google Scholar] [CrossRef]
- Moray, N. Where is capacity limited? A survey and a model. Acta Psychol. 1967, 27, 84–92. [Google Scholar] [CrossRef]
- Wickens, C.D. The structure of attentional resources. In Attention and Performance VIII; Nickerson, R.S., Ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1980; pp. 239–257. [Google Scholar]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Stuss, D.T.; Alexander, M.P. Executive functions and the frontal lobes: A conceptual view. Psychol. Res. 2000, 63, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.A.; Emory, E. Executive function and the frontal lobes: A meta-analytic review. Neuropsychol. Rev. 2006, 16, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Funahashi, S. Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex. Nat. Neurosci. 2014, 17, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Funahashi, S. A dual-task paradigm for behavioral and neurobiological studies in nonhuman primates. J. Neurosci. Methods 2015, 246, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.F.; Bichot, N.P.; Desimone, R.; Ungerleider, L.G. Top-down attentional deficits in macaques with lesions of lateral prefrontal cortex. J. Neurosci. 2007, 27, 11306–11314. [Google Scholar] [CrossRef] [PubMed]
- Kadohisa, M.; Petrov, P.; Stokes, M.; Sigala, N.; Buckley, M.; Gaffan, D.; Kusunoki, M.; Duncan, J. Dynamic construction of a coherent attentional state in a prefrontal cell population. Neuron 2013, 80, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, A.; Tanaka, M. Different neuronal computations of spatial working memory for multiple locations within versus across visual hemifields. J. Neurosci. 2014, 34, 5621–5626. [Google Scholar] [CrossRef] [PubMed]
- Buschman, T.J.; Siegel, M.; Roy, J.E.; Miller, E.K. Neural substrates of cognitive capacity limitations. Proc. Natl. Acad. Sci. USA 2011, 108, 11252–11255. [Google Scholar] [CrossRef] [PubMed]
- Nelson, T.O.; Narens, L. Metamemory: A theoretical framework and new findings. In The Psychology of Learning and Motivation: Advances in Research and Theory; Bower, G., Ed.; Academic Press: New York, NY, USA, 1990; pp. 125–173. [Google Scholar]
- Janowsky, J.S.; Shimamura, A.P.; Squire, L.R. Memory and metamemory: Comparisons between patients with frontal lobe lesions and amnesiac patients. Psychobiology 1989, 17, 3–11. [Google Scholar]
- Schnyer, D.; Verfaellie, M.; Alexander, M.; LaFleche, G.; Nicholls, L.; Kaszniak, A.W. A role for right medial prefrontal cortex in accurate feeling-of-knowing judgments: Evidence from patients with lesions to frontal cortex. Neuropsychologia 2004, 42, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Kikyo, H.; Ohki, K.; Miyashita, Y. Neural correlates for feeling-of-knowing: An fMRI parametric analysis. Neuron 2002, 36, 177–186. [Google Scholar] [CrossRef]
- Maril, A.; Simons, J.S.; Mitchell, J.P.; Schwartz, B.L.; Schacter, D.L. Feeling-of-knowing in episodic memory: An event-related fMRI study. Neuroimage 2003, 18, 827–836. [Google Scholar] [CrossRef]
- Schnyer, D.M.; Nicholls, L.; Verfaellie, M. The role of VMPC in metamemorial judgments of content retrievability. J. Cogn. Neurosci. 2005, 17, 832–846. [Google Scholar] [CrossRef] [PubMed]
- Pannu, J.K.; Kaszniak, A.W. Metamemory experiments in neurological populations: A review. Neuropsychol. Rev. 2005, 15, 105–130. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.L.; Bacon, E. Metacognitive neuroscience. In Handbook of Metamemory and Memory; Dunlosky, J., Bjork, R.A., Eds.; Psychology Press: New York, NY, USA, 2008; pp. 355–371. [Google Scholar]
- Shimamura, A.P. A neurocognitive approach to metacognitive monitoring and control. In Handbook of Metamemory and Memory; Dunlosky, J., Bjork, R.A., Eds.; Psychology Press: New York, NY, USA, 2008; pp. 373–390. [Google Scholar]
- Fleming, S.M.; Lau, H.C. How to measure metacognition. Front. Hum. Neurosci. 2014, 8, 443. [Google Scholar] [CrossRef] [PubMed]
- Kepecs, A.; Uchida, N.; Zariwala, H.; Mainen, Z.F. Neural correlates, computation and behavioural impact of decision confidence. Nature 2008, 455, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Kiani, R.; Shadlen, M.N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 2009, 324, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S.M.; Huijgen, J.; Dolan, R.J. Prefrontal contribution to metacognition in perceptual decision making. J. Neurosci. 2012, 32, 6117–6125. [Google Scholar] [CrossRef] [PubMed]
- Komura, Y.; Nikkuni, A.; Hirashima, N.; Uetake, T.; Miyamoto, A. Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nat. Neurosci. 2013, 16, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Middlebrooks, P.G.; Sommer, M.A. Metacognition in monkeys during an oculomotor task. J. Exp. Psychol. Learn. Mem. Cogn. 2011, 37, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Middlebrooks, P.G.; Sommer, M.A. Neuronal correlates of metacognition in primate frontal cortex. Neuron 2012, 75, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Funahashi, S. Macaque monkeys exhibit behavioral signs of metamemory in an oculomotor working memory task. Behav. Brain Res. 2012, 233, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Shields, W.E.; Allendoerfer, K.R.; Washburn, D.A. Memory monitoring by animals and humans. J. Exp. Psychol. Gen. 1998, 127, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Hampton, R.R. Rhesus monkeys know when they remember. Proc. Natl. Acad. Sci. USA 2001, 98, 5359–5362. [Google Scholar] [CrossRef] [PubMed]
- Kornell, N.; Son, L.K.; Terrace, H.S. Transfer of metacognitive skills and hint seeking in monkeys. Psychol. Sci. 2007, 18, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Shields, W.E.; Washburn, D.A. The comparative psychology of uncertainty monitoring and metacognition. Behav. Brain Sci. 2003, 26, 317–339. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Funahashi, S. Persistent activity of prefrontal neurons as a source of confidence in working memory. In 2016 Neuroscience Meeting Planner, Program No. 550.01, Online; Society for Neuroscience: San Diego, CA, USA, 2016. [Google Scholar]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funahashi, S. Working Memory in the Prefrontal Cortex. Brain Sci. 2017, 7, 49. https://doi.org/10.3390/brainsci7050049
Funahashi S. Working Memory in the Prefrontal Cortex. Brain Sciences. 2017; 7(5):49. https://doi.org/10.3390/brainsci7050049
Chicago/Turabian StyleFunahashi, Shintaro. 2017. "Working Memory in the Prefrontal Cortex" Brain Sciences 7, no. 5: 49. https://doi.org/10.3390/brainsci7050049
APA StyleFunahashi, S. (2017). Working Memory in the Prefrontal Cortex. Brain Sciences, 7(5), 49. https://doi.org/10.3390/brainsci7050049