Brain Magnetic Resonance Imaging (MRI) as a Potential Biomarker for Parkinson’s Disease (PD)
Abstract
:1. Background on Parkinson’s Disease (PD)
2. Imaging and PD
3. Structural Imaging
4. Perfusion Imaging and Pharmacodynamic (Pharmacologic) Imaging
5. BOLD
6. ASL
7. Neurochemical and Metabolic Imaging
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- Warren, J.D.; Rohrer, J.D.; Schott, J.M.; Fox, N.C.; Hardy, J.; Rossor, M.N. Molecular nexopathies: A new paradigm of neurodegenerative disease. Trends Neurosci. 2013, 36, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Sulzer, D.; Surmeier, D.J. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov. Disord. 2013, 28, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Videen, T.O.; Markham, J.; Black, K.J.; Golchin, N.; Perlmutter, J.S. Cerebral mitochondrial metabolism in early Parkinson’s disease. J. Cereb. Blood Flow Metab. 2008, 28, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Tuite, P. Magnetic resonance imaging as a potential biomarker for Parkinson’s disease. Transl. Res. 2016, 175, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, M.; Cheong, I.; Lyu, T.; Deelchand, D.K.; Emir, U.E.; Bednarik, P.; Eberly, L.E.; Oz, G. Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T. Magn. Reson. Med. 2016, 76, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Lenglet, C.; Abosch, A.; Yacoub, E.; De Martino, F.; Sapiro, G.; Harel, N. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI. PLoS ONE 2012, 7, e29153. [Google Scholar] [CrossRef] [PubMed]
- Lehericy, S.; Vaillancourt, D.E.; Seppi, K.; Monchi, O.; Rektorova, I.; Antonini, A.; McKeown, M.J.; Masellis, M.; Berg, D.; Rowe, J.B.; et al. The role of high-field magnetic resonance imaging in parkinsonian disorders: Pushing the boundaries forward. Mov. Disord. 2017, 32, 510–525. [Google Scholar] [CrossRef] [PubMed]
- Saeed, U.; Compagnone, J.; Aviv, R.I.; Strafella, A.P.; Black, S.E.; Lang, A.E.; Masellis, M. Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: Current and emerging concepts. Transl. Neurodegener. 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Strafella, A.P.; Bohnen, N.I.; Perlmutter, J.S.; Eidelberg, D.; Pavese, N.; Van Eimeren, T.; Piccini, P.; Politis, M.; Thobois, S.; Ceravolo, R.; et al. Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: New imaging frontiers. Mov. Disord. 2017, 32, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.; Berezuk, C.; McNeely, A.A.; Gao, F.; McLaurin, J.; Black, S.E. Imaging the Perivascular Space as a Potential Biomarker of Neurovascular and Neurodegenerative Diseases. Cell. Mol. Neurobiol. 2016, 36, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Okun, M.S.; Vaillancourt, D.E.; Vemuri, B.C. A Method for Automated Classification of Parkinson’s Disease Diagnosis Using an Ensemble Average Propagator Template Brain Map Estimated from Diffusion MRI. PLoS ONE 2016, 11, e0155764. [Google Scholar] [CrossRef] [PubMed]
- Gee, M.; Dukart, J.; Draganski, B.; Wayne Martin, W.R.; Emery, D.; Camicioli, R. Regional volumetric change in Parkinson’s disease with cognitive decline. J. Neurol. Sci. 2017, 373, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Nurnberger, L.; Gracien, R.M.; Hok, P.; Hof, S.M.; Rub, U.; Steinmetz, H.; Hilker, R.; Klein, J.C.; Deichmann, R.; Baudrexel, S. Longitudinal changes of cortical microstructure in Parkinson’s disease assessed with T1 relaxometry. NeuroImage Clin. 2017, 13, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Melzer, T.R.; Myall, D.J.; MacAskill, M.R.; Pitcher, T.L.; Livingston, L.; Watts, R.; Keenan, R.J.; Dalrymple-Alford, J.C.; Anderson, T.J. Tracking Parkinson’s Disease over One Year with Multimodal Magnetic Resonance Imaging in a Group of Older Patients with Moderate Disease. PLoS ONE 2015, 10, e0143923. [Google Scholar] [CrossRef] [PubMed]
- Ulla, M.; Bonny, J.M.; Ouchchane, L.; Rieu, I.; Claise, B.; Durif, F. Is R2* a new MRI biomarker for the progression of Parkinson’s disease? A longitudinal follow-up. PLoS ONE 2013, 8, e57904. [Google Scholar] [CrossRef] [PubMed]
- Wieler, M.; Gee, M.; Martin, W.R. Longitudinal midbrain changes in early Parkinson’s disease: Iron content estimated from R2*/MRI. Parkinsonism Relat. Disord. 2015, 21, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Tessa, C.; Lucetti, C.; Giannelli, M.; Diciotti, S.; Poletti, M.; Danti, S.; Baldacci, F.; Vignali, C.; Bonuccelli, U.; Mascalchi, M.; et al. Progression of brain atrophy in the early stages of Parkinson’s disease: A longitudinal tensor-based morphometry study in de novo patients without cognitive impairment. Hum. Brain Mapp. 2014, 35, 3932–3944. [Google Scholar] [CrossRef] [PubMed]
- Ofori, E.; Pasternak, O.; Planetta, P.J.; Li, H.; Burciu, R.G.; Snyder, A.F.; Lai, S.; Okun, M.S.; Vaillancourt, D.E. Longitudinal changes in free-water within the substantia nigra of Parkinson’s disease. Brain 2015, 138, 2322–2331. [Google Scholar] [CrossRef] [PubMed]
- Schuster, C.; Elamin, M.; Hardiman, O.; Bede, P. Presymptomatic and longitudinal neuroimaging in neurodegeneration-from snapshots to motion picture: A systematic review. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Lehericy, S.; Sharman, M.A.; Dos Santos, C.L.; Paquin, R.; Gallea, C.; Emir, U.E.; Tuite, P.J.; Oz, G. Magnetic resonance imaging of the substantia nigra in Parkinson’s disease Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. Mov. Disord. 2012, 27, 822–830. [Google Scholar] [PubMed]
- Pyatigorskaya, N.; Gallea, C.; Garcia-Lorenzo, D.; Vidailhet, M.; Lehericy, S. A review of the use of magnetic resonance imaging in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2014, 7, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, L.G.; Beyer, M.; Green, A.E.; Hwang, K.S.; Morra, J.H.; Chou, Y.Y.; Avedissian, C.; Aarsland, D.; Janvin, C.C.; Larsen, J.P.; et al. Hippocampal, caudate, and ventricular changes in Parkinson’s disease with and without dementia. Mov. Disord. 2010, 25, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Silbert, L.C.; Kaye, J. Neuroimaging and cognition in Parkinson’s disease dementia. Brain Pathol. 2010, 20, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Ibarretxe-Bilbao, N.; Junque, C.; Marti, M.J.; Tolosa, E. Brain structural MRI correlates of cognitive dysfunctions in Parkinson’s disease. J. Neurol. Sci. 2011, 310, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Camicioli, R. Comment: Brain amyloid increases the risk of falls. Neurology 2013, 81, 441. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Sugaya, K. Neuromelanin-sensitive magnetic resonance imaging: A promising technique for depicting tissue characteristics containing neuromelanin. Neural Regener. Res. 2014, 9, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Blazejewska, A.I.; Schwarz, S.T.; Pitiot, A.; Stephenson, M.C.; Lowe, J.; Bajaj, N.; Bowtell, R.W.; Auer, D.P.; Gowland, P.A. Visualization of nigrosome 1 and its loss in PD: Pathoanatomical correlation and in vivo 7 T MRI. Neurology 2013, 81, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Lehericy, S.; Bardinet, E.; Poupon, C.; Vidailhet, M.; Francois, C. 7 Tesla magnetic resonance imaging: A closer look at substantia nigra anatomy in Parkinson’s disease. Mov. Disord. 2014, 29, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, G.; Fernandez-Seara, M.A.; Lorenzo-Betancor, O.; Ortega-Cubero, S.; Puigvert, M.; Uranga, J.; Vidorreta, M.; Irigoyen, J.; Lorenzo, E.; Munoz-Barrutia, A.; et al. Automated neuromelanin imaging as a diagnostic biomarker for Parkinson’s disease. Mov. Disord. 2015, 30, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Reimao, S.; Pita Lobo, P.; Neutel, D.; Correia Guedes, L.; Coelho, M.; Rosa, M.M.; Ferreira, J.; Abreu, D.; Goncalves, N.; Morgado, C.; et al. Substantia nigra neuromelanin magnetic resonance imaging in de novo Parkinson’s disease patients. Eur. J. Neurol. 2015, 22, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Reimao, S.; Pita Lobo, P.; Neutel, D.; Guedes, L.C.; Coelho, M.; Rosa, M.M.; Azevedo, P.; Ferreira, J.; Abreu, D.; Goncalves, N.; et al. Substantia nigra neuromelanin-MR imaging differentiates essential tremor from Parkinson’s disease. Mov. Disord. 2015, 30, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Reimao, S.; Pita Lobo, P.; Neutel, D.; Guedes, L.C.; Coelho, M.; Rosa, M.M.; Ferreira, J.; Abreu, D.; Goncalves, N.; Morgado, C.; et al. Quantitative Analysis Versus Visual Assessment of Neuromelanin MR Imaging for the Diagnosis of Parkinson’s disease. J. Parkinson Dis. 2015, 5, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, C.; Sasaki, M.; Konno, K.; Kato, K.; Takahashi, J.; Yamashita, F.; Terayama, Y. Differentiation of early-stage parkinsonisms using neuromelanin-sensitive magnetic resonance imaging. Parkinsonism Relat. Disord. 2014, 20, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, C.; Sasaki, M.; Konno, K.; Koide, M.; Kato, K.; Takahashi, J.; Takahashi, S.; Kudo, K.; Yamashita, F.; Terayama, Y.; et al. Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging. Neurosci. Lett. 2013, 541, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Shibata, E.; Tohyama, K.; Takahashi, J.; Otsuka, K.; Tsuchiya, K.; Takahashi, S.; Ehara, S.; Terayama, Y.; Sakai, A. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport 2006, 17, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Langley, J.; Huddleston, D.E.; Chen, X.; Sedlacik, J.; Zachariah, N.; Hu, X. A multicontrast approach for comprehensive imaging of substantia nigra. Neuroimage 2015, 112, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Kashihara, K.; Shinya, T.; Higaki, F. Neuromelanin magnetic resonance imaging of nigral volume loss in patients with Parkinson’s disease. J. Clin. Neurosci. 2011, 18, 1093–1096. [Google Scholar] [CrossRef] [PubMed]
- Isaias, I.U.; Trujillo, P.; Summers, P.; Marotta, G.; Mainardi, L.; Pezzoli, G.; Zecca, L.; Costa, A. Neuromelanin Imaging and Dopaminergic Loss in Parkinson’s Disease. Front.Aging Neurosci. 2016, 8, 196. [Google Scholar] [CrossRef] [PubMed]
- Ogisu, K.; Kudo, K.; Sasaki, M.; Sakushima, K.; Yabe, I.; Sasaki, H.; Terae, S.; Nakanishi, M.; Shirato, H. 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson’s disease. Neuroradiology 2013, 55, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Mahlknecht, P.; Krismer, F.; Poewe, W.; Seppi, K. Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson’s disease. Mov. Disord. 2017, 32, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.R.; Wieler, M.; Gee, M. Midbrain iron content in early Parkinson disease: A potential biomarker of disease status. Neurology 2008, 70, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Hopes, L.; Grolez, G.; Moreau, C.; Lopes, R.; Ryckewaert, G.; Carriere, N.; Auger, F.; Laloux, C.; Petrault, M.; Devedjian, J.C.; et al. Magnetic Resonance Imaging Features of the Nigrostriatal System: Biomarkers of Parkinson’s Disease Stages? PLoS ONE 2016, 11, e0147947. [Google Scholar] [CrossRef] [PubMed]
- Devos, D.; Moreau, C.; Devedjian, J.C.; Kluza, J.; Petrault, M.; Laloux, C.; Jonneaux, A.; Ryckewaert, G.; Garcon, G.; Rouaix, N.; et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid. Redox Signal. 2014, 21, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Grolez, G.; Moreau, C.; Sablonniere, B.; Garcon, G.; Devedjian, J.C.; Meguig, S.; Gele, P.; Delmaire, C.; Bordet, R.; Defebvre, L.; et al. Ceruloplasmin activity and iron chelation treatment of patients with Parkinson’s disease. BMC Neurol. 2015, 15, 74. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luo, X.G.; Gao, C. Utility of susceptibility-weighted imaging in Parkinson’s disease and atypical Parkinsonian disorders. Transl. Neurodegener. 2016, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.; Ng, K.M.; Yeoh, C.S.; Rumpel, H.; Fook-Chong, S.; Li, H.H.; Tan, E.K.; Chan, L.L. Susceptibility-weighted MRI of extrapyramidal brain structures in Parkinsonian disorders. Medicine 2016, 95, e3730. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Butros, S.R.; Shuai, X.; Dai, Y.; Chen, C.; Liu, M.; Haacke, E.M.; Hu, J.; Xu, H. Different iron-deposition patterns of multiple system atrophy with predominant parkinsonism and idiopathetic Parkinson diseases demonstrated by phase-corrected susceptibility-weighted imaging. AJNR Am. J. Neuroradiol. 2012, 33, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.T.; Afzal, M.; Morgan, P.S.; Bajaj, N.; Gowland, P.A.; Auer, D.P. The ‘swallow tail’ appearance of the healthy nigrosome—A new accurate test of Parkinson’s disease: A case-control and retrospective cross-sectional MRI study at 3T. PLoS ONE 2014, 9, e93814. [Google Scholar] [CrossRef] [PubMed]
- Karagulle Kendi, A.T.; Lehericy, S.; Luciana, M.; Ugurbil, K.; Tuite, P. Altered diffusion in the frontal lobe in Parkinson disease. AJNR Am. J. Neuroradiol. 2008, 29, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Vaillancourt, D.E.; Spraker, M.B.; Prodoehl, J.; Abraham, I.; Corcos, D.M.; Zhou, X.J.; Comella, C.L.; Little, D.M. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 2009, 72, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, C.J.; Ebmeier, K.P. Diffusion tensor imaging in parkinsonian syndromes: A systematic review and meta-analysis. Neurology 2013, 80, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Kang, G.A.; Glass, G.A.; Zhang, Y.; Shirley, C.; Millin, R.; Possin, K.L.; Nezamzadeh, M.; Weiner, M.W.; Marks, W.J.J.; et al. Regional alterations of brain microstructure in Parkinson’s disease using diffusion tensor imaging. Mov. Disord. 2012, 27, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.M.; Ehgoetz Martens, K.A.; Walton, C.C.; O’Callaghan, C.; Keller, P.E.; Lewis, S.J.; Moustafa, A.A. Diffusion alterations associated with Parkinson’s disease symptomatology: A review of the literature. Parkinsonism Relat. Disord. 2016, 33, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Zeighami, Y.; Ulla, M.; Iturria-Medina, Y.; Dadar, M.; Zhang, Y.; Larcher, K.M.; Fonov, V.; Evans, A.C.; Collins, D.L.; Dagher, A. Network structure of brain atrophy in de novo Parkinson’s disease. eLife 2015, 4, e08440. [Google Scholar] [CrossRef] [PubMed]
- Tambasco, N.; Nigro, P.; Romoli, M.; Simoni, S.; Parnetti, L.; Calabresi, P. Magnetization transfer MRI in dementia disorders, Huntington’s disease and parkinsonism. J. Neurol. Sci. 2015, 353, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tuite, P.J.; Mangia, S.; Tyan, A.E.; Lee, M.K.; Garwood, M.; Michaeli, S. Magnetization transfer and adiabatic R 1rho MRI in the brainstem of Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18, 623–625. [Google Scholar] [CrossRef] [PubMed]
- Rougemont, D.; Baron, J.C.; Collard, P.; Bustany, P.; Comar, D.; Agid, Y. Local cerebral glucose utilisation in treated and untreated patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1984, 47, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Eidelberg, D. Metabolic brain networks in neurodegenerative disorders: A functional imaging approach. Trends Neurosci. 2009, 32, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, N.I.; Minoshima, S.; Giordani, B.; Frey, K.A.; Kuhl, D.E. Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia. Neurology 1999, 52, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Hershey, T.; Black, K.J.; Carl, J.L.; McGee-Minnich, L.; Snyder, A.Z.; Perlmutter, J.S. Long term treatment and disease severity change brain responses to levodopa in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2003, 74, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Hershey, T.; Black, K.J.; Carl, J.L.; Perlmutter, J.S. Dopa-induced blood flow responses in nonhuman primates. Exp. Neurol. 2000, 166, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Hershey, T.; Black, K.J.; Stambuk, M.K.; Carl, J.L.; McGee-Minnich, L.A.; Perlmutter, J.S. Altered thalamic response to levodopa in Parkinson’s patients with dopa-induced dyskinesias. Proc. Natl. Acad. Sci. USA 1998, 95, 12016–12021. [Google Scholar] [CrossRef] [PubMed]
- Black, K.J.; Hershey, T.; Hartlein, J.M.; Carl, J.L.; Perlmutter, J.S. Levodopa challenge neuroimaging of levodopa-related mood fluctuations in Parkinson’s disease. Neuropsychopharmacology 2005, 30, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Mohl, B.; Berman, B.D.; Shelton, E.; Tanabe, J. Levodopa response differs in Parkinson’s motor subtypes: A task-based effective connectivity study. J. Comp. Neurol. 2017, 525, 2192–2201. [Google Scholar] [CrossRef] [PubMed]
- Black, K.J.; Carl, J.L.; Hartlein, J.M.; Warren, S.L.; Hershey, T.; Perlmutter, J.S. Rapid intravenous loading of levodopa for human research: Clinical results. J. Neurosci. Methods 2003, 127, 19–29. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Brownell, A.L.; Iris Chen, Y.C.; Livni, E.; Coyle, J.T.; Rosen, B.R.; Cavagna, F.; Jenkins, B.G. Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse 2000, 36, 57–65. [Google Scholar] [CrossRef]
- Delfino, M.; Kalisch, R.; Czisch, M.; Larramendy, C.; Ricatti, J.; Taravini, I.R.; Trenkwalder, C.; Murer, M.G.; Auer, D.P.; Gershanik, O.S. Mapping the effects of three dopamine agonists with different dyskinetogenic potential and receptor selectivity using pharmacological functional magnetic resonance imaging. Neuropsychopharmacology 2007, 32, 1911–1921. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.H.; Hardy, P.A.; Forman, E.; Gerhardt, G.A.; Gash, D.M.; Grondin, R.C.; Zhang, Z. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson’s disease-related from age-related changes in basal ganglia function. Neurobiol. Aging 2015, 36, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Andersen, A.H.; Avison, M.J.; Gerhardt, G.A.; Gash, D.M. Functional MRI of apomorphine activation of the basal ganglia in awake rhesus monkeys. Brain Res. 2000, 852, 290–296. [Google Scholar] [CrossRef]
- Zhang, Z.; Andersen, A.; Grondin, R.; Barber, T.; Avison, R.; Gerhardt, G.; Gash, D. Pharmacological MRI mapping of age-associated changes in basal ganglia circuitry of awake rhesus monkeys. Neuroimage 2001, 14, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Andersen, A.H.; Ai, Y.; Loveland, A.; Hardy, P.A.; Gerhardt, G.A.; Gash, D.M. Assessing nigrostriatal dysfunctions by pharmacological MRI in parkinsonian rhesus macaques. Neuroimage 2006, 33, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Luan, L.; Ding, F.; Ai, Y.; Andersen, A.; Hardy, P.; Forman, E.; Gerhardt, G.A.; Gash, D.M.; Grondin, R.; Zhang, Z. Pharmacological MRI (phMRI) monitoring of treatment in hemiparkinsonian rhesus monkeys. Cell Transplant. 2008, 17, 417–425. [Google Scholar] [PubMed]
- Gao, L.L.; Wu, T. The study of brain functional connectivity in Parkinson’s disease. Transl. Neurodegener. 2016, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Tahmasian, M.; Bettray, L.M.; van Eimeren, T.; Drzezga, A.; Timmermann, L.; Eickhoff, C.R.; Eickhoff, S.B.; Eggers, C. A systematic review on the applications of resting-state fMRI in Parkinson’s disease: Does dopamine replacement therapy play a role? Cortex 2015, 73, 80–105. [Google Scholar] [CrossRef] [PubMed]
- Haslinger, B.; Erhard, P.; Kampfe, N.; Boecker, H.; Rummeny, E.; Schwaiger, M.; Conrad, B.; Ceballos-Baumann, A.O. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 2001, 124, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Ng, B.; Palmer, S.; Abugharbieh, R.; McKeown, M.J. Focusing effects of l-dopa in Parkinson’s disease. Hum. Brain Mapp. 2010, 31, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Eckert, T.; Peschel, T.; Heinze, H.J.; Rotte, M. Increased pre-SMA activation in early PD patients during simple self-initiated hand movements. J. Neurol. 2006, 253, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Long, X.; Zang, Y.; Wang, L.; Hallett, M.; Li, K.; Chan, P. Regional homogeneity changes in patients with Parkinson’s disease. Hum. Brain Mapp. 2009, 30, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Buhmann, C.; Glauche, V.; Stürenburg, H.J.; Oechsner, M.; Weiller, C.; Büchel, C. Pharmacologically modulated fMRI—Cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 2003, 126, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Suchan, B.; Rusin, J.; Daum, I.; Koster, O.; Przuntek, H.; Muller, T.; Schmid, G. Apomorphine reduces BOLD signal in fMRI during voluntary movement in Parkinsonian patients. Neuroreport 2003, 14, 809–812. [Google Scholar] [CrossRef] [PubMed]
- Cerasa, A.; Donzuso, G.; Morelli, M.; Mangone, G.; Salsone, M.; Passamonti, L.; Augimeri, A.; Arabia, G.; Quattrone, A. The motor inhibition system in Parkinson’s disease with levodopa-induced dyskinesias. Mov. Disord. 2015, 30, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- Ellmore, T.M.; Castriotta, R.J.; Hendley, K.L.; Aalbers, B.M.; Furr-Stimming, E.; Hood, A.J.; Suescun, J.; Beurlot, M.R.; Hendley, R.T.; Schiess, M.C. Altered nigrostriatal and nigrocortical functional connectivity in rapid eye movement sleep behavior disorder. Sleep 2013, 36, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, L.; Hallett, M.; Chen, Y.; Li, K.; Chan, P. Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. Neuroimage 2011, 55, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Long, X.; Wang, L.; Hallett, M.; Zang, Y.; Li, K.; Chan, P. Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Hum. Brain Mapp. 2011, 32, 1443–1457. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, L.; Chen, Y.; Zhao, C.; Li, K.; Chan, P. Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci. Lett. 2009, 460, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.; Peltier, S.; Bohnen, N.I.; Müller, M.L.; Dayalu, P.; Seidler, R.D. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front. Syst. Neurosci. 2010, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Baudrexel, S.; Witte, T.; Seifried, C.; von Wegner, F.; Beissner, F.; Klein, J.C.; Steinmetz, H.; Deichmann, R.; Roeper, J.; Hilker, R. Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. Neuroimage 2011, 55, 1728–1738. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, F.M.; Yang, M.; Baxter, L.; von Deneen, K.M.; Collingwood, J.; He, G.; White, K.; Korenkevych, D.; Savenkov, A.; Heilman, K.M.; et al. Reliability analysis of the resting state can sensitively and specifically identify the presence of Parkinson disease. Neuroimage 2013, 75, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Krajcovicova, L.; Mikl, M.; Marecek, R.; Rektorova, I. The default mode network integrity in patients with Parkinson’s disease is levodopa equivalent dose-dependent. J. Neural Transm. 2012, 119, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Rolinski, M.; Griffanti, L.; Szewczyk-Krolikowski, K.; Menke, R.A.; Wilcock, G.K.; Filippini, N.; Zamboni, G.; Hu, M.T.; Mackay, C.E. Aberrant functional connectivity within the basal ganglia of patients with Parkinson’s disease. NeuroImage. Clin. 2015, 8, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, F.M.; Yang, M.; Baxter, L.; von Deneen, K.; Collingwood, J.; He, G.; Tandon, R.; Korenkevych, D.; Savenkov, A.; Heilman, K.M.; et al. Apathy, depression, and motor symptoms have distinct and separable resting activity patterns in idiopathic Parkinson disease. Neuroimage 2013, 81, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Festini, S.B.; Bernard, J.A.; Kwak, Y.; Peltier, S.; Bohnen, N.I.; Muller, M.L.; Dayalu, P.; Seidler, R.D. Altered cerebellar connectivity in Parkinson’s patients ON and OFF L-DOPA medication. Front. Hum. Neurosci. 2015, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.; Müller, M.L.; Bohnen, N.I.; Dayalu, P.; Seidler, R.D. l-DOPA changes ventral striatum recruitment during motor sequence learning in Parkinson’s disease. Behav. Brain Res. 2012, 230, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Monchi, O.; Petrides, M.; Mejia-Constain, B.; Strafella, A.P. Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain 2007, 130, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Rieckmann, A.; Gomperts, S.N.; Johnson, K.A.; Growdon, J.H.; Van Dijk, K.R. Putamen-midbrain functional connectivity is related to striatal dopamine transporter availability in patients with Lewy body diseases. NeuroImage Clin. 2015, 8, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Chan, P.; Hallett, M. Effective connectivity of neural networks in automatic movements in Parkinson’s disease. Neuroimage 2010, 49, 2581–2587. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Ma, Y.; Zheng, Z.; Peng, S.; Wu, X.; Eidelberg, D.; Chan, P. Parkinson’s disease-related spatial covariance pattern identified with resting-state functional MRI. J. Cereb. Blood Flow Metab. 2015, 35, 1764–1770. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk-Krolikowski, K.; Menke, R.A.; Rolinski, M.; Duff, E.; Salimi-Khorshidi, G.; Filippini, N.; Zamboni, G.; Hu, M.T.; Mackay, C.E. Functional connectivity in the basal ganglia network differentiates PD patients from controls. Neurology 2014, 83, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Wang, J.; Xuan, M.; Gu, Q.; Xu, X.; Kong, D.; Zhang, M. Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PLoS ONE 2012, 7, e47714. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.B.; Koller, J.M.; Campbell, M.C.; Black, K.J. Arterial spin labeling versus BOLD in direct challenge and drug-task interaction pharmacological fMRI. PeerJ 2014, 2, e687. [Google Scholar] [CrossRef] [PubMed]
- Agosta, F.; Caso, F.; Stankovic, I.; Inuggi, A.; Petrovic, I.; Svetel, M.; Kostic, V.S.; Filippi, M. Cortico-striatal-thalamic network functional connectivity in hemiparkinsonism. Neurobiol. Aging 2014, 35, 2592–2602. [Google Scholar] [CrossRef] [PubMed]
- Bell, P.T.; Gilat, M.; O’Callaghan, C.; Copland, D.A.; Frank, M.J.; Lewis, S.J.; Shine, J.M. Dopaminergic basis for impairments in functional connectivity across subdivisions of the striatum in Parkinson’s disease. Hum. Brain Mapp. 2015, 36, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Herz, D.M.; Haagensen, B.N.; Nielsen, S.H.; Madsen, K.H.; Lokkegaard, A.; Siebner, H.R. Resting-state connectivity predicts levodopa-induced dyskinesias in Parkinson’s disease. Mov. Disord. 2016, 31, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.L.; Detre, J.A. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics 2007, 4, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Brusa, L.; Bassi, A.; Pierantozzi, M.; Frasca, F.G.S.; Floris, R.; Stanzione, P. Perfusion-weighted dynamic susceptibility (DSC) MRI: Basal ganglia hemodynamic changes after apomorphine in Parkinson’s disease. Neurol. Sci. 2002, 23 (Suppl. 2), S61–S62. [Google Scholar] [CrossRef] [PubMed]
- Kamagata, K.; Motoi, Y.; Hori, M.; Suzuki, M.; Nakanishi, A.; Shimoji, K.; Kyougoku, S.; Kuwatsuru, R.; Sasai, K.; Abe, O.; et al. Posterior hypoperfusion in Parkinson’s disease with and without dementia measured with arterial spin labeling MRI. J. Magn. Reson. Imaging 2011, 33, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Melzer, T.R.; Watts, R.; MacAskill, M.R.; Pearson, J.F.; Rueger, S.; Pitcher, T.L.; Livingston, L.; Graham, C.; Keenan, R.; Shankaranarayanan, A.; et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain 2011, 134, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Seara, M.A.; Mengual, E.; Vidorreta, M.; Aznarez-Sanado, M.; Loayza, F.R.; Villagra, F.; Irigoyen, J.; Pastor, M.A. Cortical hypoperfusion in Parkinson’s disease assessed using arterial spin labeled perfusion MRI. Neuroimage 2012, 59, 2743–2750. [Google Scholar] [CrossRef] [PubMed]
- Madhyastha, T.M.; Askren, M.K.; Boord, P.; Zhang, J.; Leverenz, J.B.; Grabowski, T.J. Cerebral perfusion and cortical thickness indicate cortical involvement in mild Parkinson’s disease. Mov. Disord. 2015, 30, 1893–1900. [Google Scholar] [CrossRef] [PubMed]
- Teune, L.K.; Renken, R.J.; de Jong, B.M.; Willemsen, A.T.; van Osch, M.J.; Roerdink, J.B.; Dierckx, R.A.; Leenders, K.L. Parkinson’s disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging. NeuroImage Clin. 2014, 5, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Black, K.J.; Koller, J.M.; Campbell, M.C.; Gusnard, D.A.; Bandak, S.I. Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease. J. Neurosci. 2010, 30, 16284–16292. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Hiwatashi, A.; Togao, O.; Kikuchi, K.; Yamaguchi, H.; Suzuki, Y.; Kamei, R.; Yamasaki, R.; Kira, J.I.; Honda, H. Cerebral blood flow laterality derived from arterial spin labeling as a biomarker for assessing the disease severity of parkinson’s disease. J. Magn. Reson. Imaging 2017, 45, 1821–1826. [Google Scholar] [CrossRef] [PubMed]
- Le Heron, C.J.; Wright, S.L.; Melzer, T.R.; Myall, D.J.; MacAskill, M.R.; Livingston, L.; Keenan, R.J.; Watts, R.; Dalrymple-Alford, J.C.; Anderson, T.J. Comparing cerebral perfusion in Alzheimer’s disease and Parkinson’s disease dementia: An ASL-MRI study. J. Cereb. Blood Flow Metab. 2014, 34, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Oz, G.; Terpstra, M.; Tkác, I.; Aia, P.; Lowary, J.; Tuite, P.J.; Gruetter, R. Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: Detection of high GABA concentrations. Magn. Reson. Med. 2006, 55, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Holmay, M.J.; Terpstra, M.; Coles, L.D.; Mishra, U.; Ahlskog, M.; Oz, G.; Cloyd, J.C.; Tuite, P.J. N-Acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases. Clin. Neuropharmacol. 2013, 36, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Coles, L.D.; Terpstra, M.; Oz, G.; Mangia, S.; Heller, B.; Mishra, U.; Cloyd, J.C.; Tuite, P. Repeated-dose oral N-acetylcysteine: Pharmacokinetics and effect on brain glutathione. Mov. Disord. 2015, 30, e10. [Google Scholar]
- Mischley, L.K.; Leverenz, J.B.; Lau, R.C.; Polissar, N.L.; Neradilek, M.B.; Samii, A.; Standish, L.J. A randomized, double-blind phase I/IIa study of intranasal glutathione in Parkinson’s disease. Mov. Disord. 2015, 30, 1696–1701. [Google Scholar] [CrossRef] [PubMed]
- Emir, U.E.; Tuite, P.J.; Öz, G. Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PLoS ONE 2012, 7, e30918. [Google Scholar] [CrossRef]
- Franco-Iborra, S.; Vila, M.; Perier, C. The Parkinson Disease Mitochondrial Hypothesis: Where Are We at? Neuroscientist 2015. [Google Scholar] [CrossRef] [PubMed]
- Mortiboys, H.; Aasly, J.; Bandmann, O. Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain 2013, 136, 3038–3050. [Google Scholar] [CrossRef] [PubMed]
- Mortiboys, H.; Furmston, R.; Bronstad, G.; Aasly, J.; Elliott, C.; Bandmann, O. UDCA exerts beneficial effect on mitochondrial dysfunction in LRRK2G2019S carriers and in vivo. Neurology 2015, 85, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Parry, G.J.; Rodrigues, C.M.; Aranha, M.M.; Hilbert, S.J.; Davey, C.; Kelkar, P.; Low, W.C.; Steer, C.J. Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic Acid in patients with amyotrophic lateral sclerosis. Clin. Neuropharmacol. 2010, 33, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Weiduschat, N.; Mao, X.; Beal, M.F.; Nirenberg, M.J.; Shungu, D.C.; Henchcliffe, C. Usefulness of proton and phosphorus MR spectroscopic imaging for early diagnosis of Parkinson’s disease. J. Neuroimaging 2015, 25, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Weiduschat, N.; Mao, X.; Beal, M.F.; Nirenberg, M.J.; Shungu, D.C.; Henchcliffe, C. Sex differences in cerebral energy metabolism in Parkinson’s disease: A phosphorus magnetic resonance spectroscopic imaging study. Parkinsonism Relat. Disord. 2014, 20, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-H.; Lee, B.-Y.; Rolandelli, S.; Tuite, P.; Chen, W. Abnormal occipital metabolism in mild-moderate Parkinson’s disease revealed by in vivo 31P-MRS at 7T. Mov. Disord. 2014, 29, e2. [Google Scholar]
- Du, F.; Zhu, X.H.; Zhang, Y.; Friedman, M.; Zhang, N.; Ugurbil, K.; Chen, W. Tightly coupled brain activity and cerebral ATP metabolic rate. Proc. Natl. Acad. Sci. USA 2008, 105, 6409–6414. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuite, P. Brain Magnetic Resonance Imaging (MRI) as a Potential Biomarker for Parkinson’s Disease (PD). Brain Sci. 2017, 7, 68. https://doi.org/10.3390/brainsci7060068
Tuite P. Brain Magnetic Resonance Imaging (MRI) as a Potential Biomarker for Parkinson’s Disease (PD). Brain Sciences. 2017; 7(6):68. https://doi.org/10.3390/brainsci7060068
Chicago/Turabian StyleTuite, Paul. 2017. "Brain Magnetic Resonance Imaging (MRI) as a Potential Biomarker for Parkinson’s Disease (PD)" Brain Sciences 7, no. 6: 68. https://doi.org/10.3390/brainsci7060068
APA StyleTuite, P. (2017). Brain Magnetic Resonance Imaging (MRI) as a Potential Biomarker for Parkinson’s Disease (PD). Brain Sciences, 7(6), 68. https://doi.org/10.3390/brainsci7060068