Epilepsy and Neuromodulation—Randomized Controlled Trials
Abstract
:1. History of Neuromodulation
2. Mechanism
3. Modes of Treatment and Anatomical Targets for Stimulation in Epilepsy
3.1. Deep Brain Stimulation (DBS)
3.2. Transcranial Direct Current Stimulation (tDCS)
3.3. Vagal Nerve Stimulation (VNS)
3.4. Trigeminal Nerve Stimulation (TNS)
3.5. Repetitive Transcranial Magnetic Stimulation (rTMS)
3.6. Responsive Neurostimulation (RNS)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Spiegel, E.A.; Wycis, H.T.; Marks, M.; Lee, A.J. Stereotaxic Apparatus for Operations on the Human Brain. Science 1947, 106, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Gildenberg, P.L. Evolution of neuromodulation. Stereotact. Funct. Neurosurg. 2005, 83, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Sheer, D.E. Electrical Stimulation of the Brain: An Interdisciplinary Survey of Neurobehavioral Integrative Systems; University of Texas Press: Austin, TX, USA, 1961. [Google Scholar]
- Talairach, J.; Hecaen, H.; David, M.; Monnier, M.; Deajuriaguerra, J. Recherches Sur La Coagulation Therapeutique Des Structures Sous-Corticales Chez Lhomme. Rev. Neurol. 1949, 81, 4–24. [Google Scholar]
- Rosenow, J.; Das, K.; Rovit, R.L.; Couldwell, W.T.; Irving, S. Cooper and his role in intracranial stimulation for movement disorders and epilepsy. Stereotact. Funct. Neurosurg. 2002, 78, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.; Salanova, V.; Witt, T.; Worth, R.; Henry, T.; Gross, R.; Oommen, K.; Osorio, I.; Nazzaro, J.; Labar, D.; et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010, 51, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Velasco, F.; Velasco, M.; Ogarrio, C.; Fanghanel, G. Electrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: A preliminary report. Epilepsia 1987, 28, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Velasco, F.; Velasco, M.; Marquez, I.; Velasco, G. Role of the centromedian thalamic nucleus in the genesis, propagation and arrest of epileptic activity. An electrophysiological study in man. Acta Neurochir. Suppl. 1993, 58, 201–204. [Google Scholar] [PubMed]
- Velasco, F.; Velasco, M.; Velasco, A.L.; Jimenez, F. Effect of chronic electrical stimulation of the centromedian thalamic nuclei on various intractable seizure patterns: I. Clinical seizures and paroxysmal EEG activity. Epilepsia 1993, 34, 1052–1064. [Google Scholar] [CrossRef] [PubMed]
- Velasco, F.; Velasco, M.; Velasco, A.L.; Jimenez, F.; Marquez, I.; Rise, M. Electrical stimulation of the centromedian thalamic nucleus in control of seizures: Long-term studies. Epilepsia 1995, 36, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Bonhage, A. Deep Brain Stimulation: A New Approach to the Treatment of Epilepsy. Dtsch. Arztebl. Int. 2009, 106, 407–412. [Google Scholar] [PubMed]
- Ranck, J.B., Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Res. 1975, 98, 417–440. [Google Scholar] [CrossRef]
- Velasco, F.; Velasco, A.L.; Velasco, M.; Carrillo-Ruiz, J.D.; Castro, G.; Trejo, D.; Nunez, J.M. Central nervous system neuromodulation for the treatment of epilepsy I-Efficiency and safety of the method. Neurochirurgie 2008, 54, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, A.; Mirnajafi-Zadeh, J.; Javan, M.; Mohammad-Zadeh, M.; Rohani, R. The antiepileptogenic effect of electrical stimulation at different low frequencies is accompanied with change in adenosine receptors gene expression in rats. Epilepsia 2009, 50, 1768–1779. [Google Scholar] [CrossRef] [PubMed]
- Boon, P.; Raedt, R.; de Herdt, V.; Wyckhuys, T.; Vonck, K. Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 2009, 6, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Ben-Menachem, E.; Hamberger, A.; Hedner, T.; Hammond, E.J.; Uthman, B.M.; Slater, J.; Treig, T.; Stefan, H.; Ramsay, R.E.; Wernicke, J.F.; et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 1995, 20, 221–227. [Google Scholar] [CrossRef]
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jette, N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 2017, 88, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Kwan, P.; Brodie, M.J. Early identification of refractory epilepsy. N. Engl. J. Med. 2000, 342, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Engel, J., Jr.; Wiebe, S.; French, J.; Sperling, M.; Williamson, P.; Spencer, D.; Gumnit, R.; Zahn, C.; Westbrook, E.; Enos, B.; et al. Practice parameter: Temporal lobe and localized neocortical resections for epilepsy: Report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology 2003, 60, 538–547. [Google Scholar] [PubMed]
- Cooper, I.S.; Amin, I.; Riklan, M.; Waltz, J.M.; Poon, T.P. Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch. Neurol. 1976, 33, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Van Buren, J.M.; Wood, J.H.; Oakley, J.; Hambrecht, F. Preliminary evaluation of cerebellar stimulation by double-blind stimulation and biological criteria in the treatment of epilepsy. J. Neurosurg. 1978, 48, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D.; McLellan, D.L.; Brice, J.G. A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. J. Neurol. Neurosurg. Psychiatry 1984, 47, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Velasco, F.; Carrillo-Ruiz, J.D.; Brito, F.; Velasco, M.; Velasco, A.L.; Marquez, I.; Davis, R. Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia 2005, 46, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Mondragon, S.; Lamarche, M. Suppression of Motor Seizures after Specific Thalamotomy in Chronic Epileptic Monkeys. Epilepsy Res. 1990, 5, 137–145. [Google Scholar] [CrossRef]
- Miller, R. Cortico-thalamic interplay and the security of operation of neural assemblies and temporal chains in the cerebral cortex. Biol. Cybern. 1996, 75, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.L.; Velasco, F.; Jimenez, F.; Velasco, M.; Castro, G.; Carrillo-Ruiz, J.D.; Fanghanel, G.; Boleaga, B. Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia 2006, 47, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Velasco, F.; Velasco, M.; Jimenez, F.; Velasco, A.L.; Brito, F.; Rise, M.; Carrillo-Ruiz, J.D. Predictors in the treatment of difficult-to-control seizures by electrical stimulation of the centromedian thalamic nucleus. Neurosurgery 2000, 47, 295–304; discussion 304–305. [Google Scholar] [CrossRef] [PubMed]
- Cukiert, A.; Burattini, J.A.; Cukiert, C.M.; Argentoni-Baldochi, M.; Baise-Zung, C.; Forster, C.R.; Mello, V.A. Centro-median stimulation yields additional seizure frequency and attention improvement in patients previously submitted to callosotomy. Seizure 2009, 18, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Valentin, A.; Garcia Navarrete, E.; Chelvarajah, R.; Torres, C.; Navas, M.; Vico, L.; Torres, N.; Pastor, J.; Selway, R.; Sola, R.G.; et al. Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies. Epilepsia 2013, 54, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Valentin, A.; Nguyen, H.Q.; Skupenova, A.M.; Agirre-Arrizubieta, Z.; Jewell, S.; Mullatti, N.; Moran, N.F.; Richardson, M.P.; Selway, R.P.; Alarcon, G. Centromedian thalamic nuclei deep brain stimulation in refractory status epilepticus. Brain Stimul. 2012, 5, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Lehtimaki, K.; Langsjo, J.W.; Ollikainen, J.; Heinonen, H.; Mottonen, T.; Tahtinen, T.; Haapasalo, J.; Tenhunen, J.; Katisko, J.; Ohman, J.; et al. Successful management of super-refractory status epilepticus with thalamic deep brain stimulation. Ann. Neurol. 2017, 81, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Child, N.D.; Benarroch, E.E. Anterior nucleus of the thalamus: Functional organization and clinical implications. Neurology 2013, 81, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Hodaie, M.; Wennberg, R.A.; Dostrovsky, J.O.; Lozano, A.M. Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 2002, 43, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, J.F.; Litt, B.; Fisher, R.S.; Cranstoun, S.; French, J.A.; Blum, D.E.; Dichter, M.; Shetter, A.; Baltuch, G.; Jaggi, J.; et al. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia 2004, 45, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.N.; Lee, S.T.; Tsai, Y.T.; Chen, I.A.; Tu, P.H.; Chen, J.L.; Chang, H.W.; Su, Y.C.; Wu, T. Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: A long-term follow-up study. Epilepsia 2007, 48, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Osorio, I.; Overman, J.; Giftakis, J.; Wilkinson, S.B. High frequency thalamic stimulation for inoperable mesial temporal epilepsy. Epilepsia 2007, 48, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.S.; Kim, H.J.; Lee, K.J.; Kim, Y.I.; Lim, S.C.; Shon, Y.M. Cognitive improvement after long-term electrical stimulation of bilateral anterior thalamic nucleus in refractory epilepsy patients. Seizure 2012, 21, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Lehtimaki, K.; Mottonen, T.; Jarventausta, K.; Katisko, J.; Tahtinen, T.; Haapasalo, J.; Niskakangas, T.; Kiekara, T.; Ohman, J.; Peltola, J. Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy. Brain Stimul. 2016, 9, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Piacentino, M.; Durisotti, C.; Garofalo, P.G.; Bonanni, P.; Volzone, A.; Ranzato, F.; Beggio, G. Anterior thalamic nucleus deep brain Stimulation (DBS) for drug-resistant complex partial seizures (CPS) with or without generalization: Long-term evaluation and predictive outcome. Acta Neurochir. 2015, 157, 1525–1532; discussion 1532. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Jang, K.S.; Shon, Y.M. Chronic deep brain stimulation of subthalamic and anterior thalamic nuclei for controlling refractory partial epilepsy. Acta Neurochir. Suppl. 2006, 99, 87–91. [Google Scholar] [PubMed]
- Wiebe, S. Outcome measures in intractable epilepsy. Adv. Neurol. 2006, 97, 11–15. [Google Scholar] [PubMed]
- Cohen-Gadol, A.A.; Wilhelmi, B.G.; Collignon, F.; White, J.B.; Britton, J.W.; Cambier, D.M.; Christianson, T.J.; Marsh, W.R.; Meyer, F.B.; Cascino, G.D. Long-term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis. J. Neurosurg. 2006, 104, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, S.; Blume, W.T.; Girvin, J.P.; Eliasziw, M. Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N. Engl. J. Med. 2001, 345, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Engel, J., Jr. Why is there still doubt to cut it out? Epilepsy Curr. 2013, 13, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.R.; Li, X.L.; Rosen, J.B.; Li, H.; Heynen, T.; Post, R.M. Quenching: Inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. Neuroreport 1995, 6, 2171–2176. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.R.; Eidsath, A.; Li, X.L.; Heynen, T.; Post, R.M. Quenching revisited: Low level direct current inhibits amygdala-kindled seizures. Exp. Neurol. 1998, 154, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Kile, K.B.; Tian, N.; Durand, D.M. Low frequency stimulation decreases seizure activity in a mutation model of epilepsy. Epilepsia 2010, 51, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.H.; Sun, H.L.; Fang, Q.; Zhong, K.; Wu, D.C.; Wang, S.; Chen, Z. Low-frequency stimulation of the hippocampal CA3 subfield is anti-epileptogenic and anti-ictogenic in rat amygdaloid kindling model of epilepsy. Neurosci. Lett. 2009, 455, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Wyckhuys, T.; De Smedt, T.; Claeys, P.; Raedt, R.; Waterschoot, L.; Vonck, K.; Van den Broecke, C.; Mabilde, C.; Leybaert, L.; Wadman, W.; et al. High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats. Epilepsia 2007, 48, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Wyckhuys, T.; Staelens, S.; Van Nieuwenhuyse, B.; Deleye, S.; Hallez, H.; Vonck, K.; Raedt, R.; Wadman, W.; Boon, P. Hippocampal deep brain stimulation induces decreased rCBF in the hippocampal formation of the rat. Neuroimage 2010, 52, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.L.; Velasco, M.; Velasco, F.; Menes, D.; Gordon, F.; Rocha, L.; Briones, M.; Marquez, I. Subacute and chronic electrical stimulation of the hippocampus on intractable temporal lobe seizures: Preliminary report. Arch. Med. Res. 2000, 31, 316–328. [Google Scholar] [CrossRef]
- Tellez-Zenteno, J.F.; McLachlan, R.S.; Parrent, A.; Kubu, C.S.; Wiebe, S. Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology 2006, 66, 1490–1494. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.L.; Velasco, F.; Velasco, M.; Trejo, D.; Castro, G.; Carrillo-Ruiz, J.D. Electrical stimulation of the hippocampal epileptic foci for seizure control: A double-blind, long-term follow-up study. Epilepsia 2007, 48, 1895–1903. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, R.S.; Pigott, S.; Tellez-Zenteno, J.F.; Wiebe, S.; Parrent, A. Bilateral hippocampal stimulation for intractable temporal lobe epilepsy: Impact on seizures and memory. Epilepsia 2010, 51, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, S.; Kiss, Z.; Ahmed, N. Medical vs. electrical therapy for mesial temporal lobe epilepsy: A multicenter randomized trial. Epilepsy Curr. 2013, 13 (Suppl. 1), 288. [Google Scholar]
- Cukiert, A.; Cukiert, C.M.; Burattini, J.A.; Mariani, P.P.; Bezerra, D.F. Seizure outcome after hippocampal deep brain stimulation in patients with refractory temporal lobe epilepsy: A prospective, controlled, randomized, double-blind study. Epilepsia 2017, 58, 1728–1733. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.L.; Velasco, F.; Velasco, M.; Jimenez, F.; Carrillo-Ruiz, J.D.; Castro, G. The role of neuromodulation of the hippocampus in the treatment of intractable complex partial seizures of the temporal lobe. Acta Neurochir. Suppl. 2007, 97, 329–332. [Google Scholar] [PubMed]
- Cukiert, A.; Cukiert, C.M.; Argentoni-Baldochi, M.; Baise, C.; Forster, C.R.; Mello, V.A.; Burattini, J.A.; Lima, A.M. Intraoperative neurophysiological responses in epileptic patients submitted to hippocampal and thalamic deep brain stimulation. Seizure 2011, 20, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Cukiert, A.; Cukiert, C.M.; Burattini, J.A.; Lima, A.M. Seizure outcome after hippocampal deep brain stimulation in a prospective cohort of patients with refractory temporal lobe epilepsy. Seizure 2014, 23, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Sturm, V.; Lenartz, D.; Koulousakis, A.; Treuer, H.; Herholz, K.; Klein, J.C.; Klosterkotter, J. The nucleus accumbens: A target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J. Chem. Neuroanat. 2003, 26, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Lothman, E.W.; Hatlelid, J.M.; Zorumski, C.F. Functional mapping of limbic seizures originating in the hippocampus: A combined 2-deoxyglucose and electrophysiologic study. Brain Res. 1985, 360, 92–100. [Google Scholar] [CrossRef]
- Ma, J.; Leung, L.S. Kindled seizure in the prefrontal cortex activated behavioral hyperactivity and increase in accumbens gamma oscillations through the hippocampus. Behav. Brain Res. 2010, 206, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Kowski, A.B.; Voges, J.; Heinze, H.J.; Oltmanns, F.; Holtkamp, M.; Schmitt, F.C. Nucleus accumbens stimulation in partial epilepsy—A randomized controlled case series. Epilepsia 2015, 56, e78–e82. [Google Scholar] [CrossRef] [PubMed]
- Klinger, N.V.; Mittal, S. Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy. Clin. Neurol. Neurosurg. 2016, 140, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Chabardes, S.; Kahane, P.; Minotti, L.; Koudsie, A.; Hirsch, E.; Benabid, A.L. Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus. Epileptic Disord. 2002, 4 (Suppl. 3), S83–S93. [Google Scholar] [PubMed]
- Wille, C.; Steinhoff, B.J.; Altenmuller, D.M.; Staack, A.M.; Bilic, S.; Nikkhah, G.; Vesper, J. Chronic high-frequency deep-brain stimulation in progressive myoclonic epilepsy in adulthood—Report of five cases. Epilepsia 2011, 52, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Capecci, M.; Ricciuti, R.A.; Ortenzi, A.; Paggi, A.; Durazzi, V.; Rychlicki, F.; Provinciali, L.; Scerrati, M.; Ceravolo, M.G. Chronic bilateral subthalamic stimulation after anterior callosotomy in drug-resistant epilepsy: Long-term clinical and functional outcome of two cases. Epilepsy Res. 2012, 98, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Chkhenkeli, S.A.; Chkhenkeli, I.S. Effects of therapeutic stimulation of nucleus caudatus on epileptic electrical activity of brain in patients with intractable epilepsy. Stereotact. Funct. Neurosurg. 1997, 69, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Chkhenkeli, S.A.; Sramka, M.; Lortkipanidze, G.S.; Rakviashvili, T.N.; Bregvadze, E.; Magalashvili, G.E.; Gagoshidze, T.; Chkhenkeli, I.S. Electrophysiological effects and clinical results of direct brain stimulation for intractable epilepsy. Clin. Neurol. Neurosurg. 2004, 106, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Best, J.G.; Stephenson, M.C.; O’Shea, J.; Wylezinska, M.; Kincses, Z.T.; Morris, P.G.; Matthews, P.M.; Johansen-Berg, H. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 2009, 29, 5202–5206. [Google Scholar] [CrossRef] [PubMed]
- Cogiamanian, F.; Vergari, M.; Pulecchi, F.; Marceglia, S.; Priori, A. Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin. Neurophysiol. 2008, 119, 2636–2640. [Google Scholar] [CrossRef] [PubMed]
- San-Juan, D.; Lopez, D.A.E.; Gregorio, R.V.; Trenado, C.; Aragon, M.F.G.; Morales-Quezada, L.; Ruiz, A.H.; Hernandez-Gonzalez, F.; Alcaraz-Guzman, A.; Anschel, D.J.; et al. Transcranial Direct Current Stimulation in Mesial Temporal Lobe Epilepsy and Hippocampal Sclerosis. Brain Stimul. 2017, 10, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, A.; Wright, S. Effects on the knee jerk of stimulation of the central end of the vagus and of various changes in the circulation and respiration. J. Physiol. 1937, 88, 459–475. [Google Scholar] [CrossRef] [PubMed]
- Rutecki, P. Anatomical, Physiological, and Theoretical Basis for the Antiepileptic Effect of Vagus Nerve-Stimulation. Epilepsia 1990, 31, S1–S6. [Google Scholar] [CrossRef] [PubMed]
- Groves, D.A.; Brown, V.J. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 2005, 29, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Vonck, K.; De Herdt, V.; Boon, P. Vagal nerve stimulation—A 15-year survey of an established treatment modality in epilepsy surgery. Adv. Tech. Stand. Neurosurg. 2009, 34, 111–146. [Google Scholar] [PubMed]
- Chae, J.H.; Nahas, Z.; Lomarev, M.; Denslow, S.; Lorberbaum, J.P.; Bohning, D.E.; George, M.S. A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J. Psychiatr. Res. 2003, 37, 443–455. [Google Scholar] [CrossRef]
- Benmenachem, E.; Manonespaillat, R.; Ristanovic, R.; Wilder, B.J.; Stefan, H.; Mirza, W.; Tarver, W.B.; Wernicke, J.F.; Augustinsson, L.; Barolat, G.; et al. Vagus Nerve-Stimulation for Treatment of Partial Seizures: 1. A Controlled-Study of Effect on Seizures. Epilepsia 1994, 35, 616–626. [Google Scholar] [CrossRef]
- Handforth, A.; DeGiorgio, C.M.; Schachter, S.C.; Uthman, B.M.; Naritoku, D.K.; Tecoma, E.S.; Henry, T.R.; Collins, S.D.; Vaughn, B.V.; Gilmartin, R.C.; et al. Vagus nerve stimulation therapy for partial-onset seizures—A randomized active-control trial. Neurology 1998, 51, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Klinkenberg, S.; Aalbers, M.W.; Vles, J.S.H.; Cornips, E.M.J.; Rijkers, K.; Leenen, L.; Kessels, F.G.H.; Aldenkamp, A.P.; Majoie, M. Vagus nerve stimulation in children with intractable epilepsy: A randomized controlled trial. Dev. Med. Child Neurol. 2012, 54, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Ryvlin, P.; Gilliam, F.G.; Nguyen, D.K.; Colicchio, G.; Iudice, A.; Tinuper, P.; Zamponi, N.; Aguglia, U.; Wagner, L.; Minotti, L. The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: The PuLsE (Open Prospective Randomized Long-term Effectiveness) trial. Epilepsia 2014, 55, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Aihua, L.; Lu, S.; Liping, L.; Xiuru, W.; Hua, L.; Yuping, W. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav. 2014, 39, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Magdaleno-Madrigal, V.M.; Valdes-Cruz, A.; Martinez-Vargas, D.; Martinez, A.; Almazan, S.; Fernandez-Mas, R.; Fernandez-Guardiola, A. Effect of electrical stimulation of the nucleus of the solitary tract on the development of electrical amygdaloid kindling in the cat. Epilepsia 2002, 43, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Neuman, R.S. Suppression of Penicillin-Induced Focal Epileptiform Activity by Locus-Ceruleus Stimulation—Mediation by an Alpha-1-Adrenoceptor. Epilepsia 1986, 27, 359–366. [Google Scholar] [CrossRef] [PubMed]
- DeGiorgio, C.M.; Shewmon, D.A.; Whitehurst, T. Trigeminal nerve stimulation for epilepsy. Neurology 2003, 61, 421–422. [Google Scholar] [CrossRef] [PubMed]
- Fanselow, E.E.; Reid, A.P.; Nicolelis, M.A.L. Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation. J. Neurosci. 2000, 20, 8160–8168. [Google Scholar] [CrossRef] [PubMed]
- DeGiorgio, C.M.; Soss, J.; Cook, I.A.; Markovic, D.; Gornbein, J.; Oviedo, D.M.S.; Oviedo, S.; Gordon, S.; Corralle-Leyva, G.; Kealey, C.P.; et al. Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology 2013, 80, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Faught, E.; Tatum, W. Trigeminal stimulation A superhighway to the brain? Neurology 2013, 80, 780–781. [Google Scholar] [CrossRef] [PubMed]
- Kimiskidis, V.K. Transcranial Magnetic Stimulation for Drug-Resistant Epilepsies: Rationale and Clinical Experience. Eur. Neurol. 2010, 63, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Reithler, J.; Peters, J.C.; Sack, A.T. Multimodal transcranial magnetic stimulation: Using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Prog. Neurobiol. 2011, 94, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Otachi, P.T.M.; do Valle, A.; Boggio, P.S.; Thut, G.; Rigonatti, S.P.; Pascual-Leone, A.; Valente, K.D. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann. Neurol. 2006, 60, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Mao, W.; Meng, X.H.; Wang, D.Q.; Qiao, L.; Tao, W.; Li, L.P.; Jia, X.Y.; Han, C.Y.; Fu, M.M.; et al. Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: A controlled clinical study. Epilepsia 2012, 53, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Yang, D.B.; Wang, S.X.; Zhao, X.Q.; Zhang, L.L.; Chen, Z.Q.; Sun, X.R. Effects of low-frequency repetitive transcranial magnetic stimulation on electroencephalogram and seizure frequency in 15 patients with temporal lobe epilepsy following dipole source localization. Neural Regen. Res. 2008, 3, 1257–1260. [Google Scholar]
- Cantello, R.; Rossi, S.; Varrasi, C.; Ulivelli, M.; Civardi, C.; Bartalini, S.; Vatti, G.; Cincotta, M.; Borgheresi, A.; Zaccara, G.; et al. Slow repetitive TMS for drug-resistant epilepsy: Clinical and EEG findings of a placebo-controlled trial. Epilepsia 2007, 48, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Morrell, M.J. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 2011, 77, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Heck, C.N.; King-Stephens, D.; Massey, A.D.; Nair, D.R.; Jobst, B.C.; Barkley, G.L.; Salanova, V.; Cole, A.J.; Smith, M.C.; Gwinn, R.P.; et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: Final results of the RNS System Pivotal trial. Epilepsia 2014, 55, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Geller, E.B.; Skarpaas, T.L.; Gross, R.E.; Goodman, R.R.; Barkley, G.L.; Bazil, C.W.; Berg, M.J.; Bergey, G.K.; Cash, S.S.; Cole, A.J.; et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia 2017, 58, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Jobst, B.C.; Kapur, R.; Barkley, G.L.; Bazil, C.W.; Berg, M.J.; Bergey, G.K.; Boggs, J.G.; Cash, S.S.; Cole, A.J.; Duchowny, M.S.; et al. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia 2017, 58, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Child, N.D.; Stead, M.; Wirrell, E.C.; Nickels, K.C.; Wetjen, N.M.; Lee, K.H.; Klassen, B.T. Chronic subthreshold subdural cortical stimulation for the treatment of focal epilepsy originating from eloquent cortex. Epilepsia 2014, 55, e18–e21. [Google Scholar] [CrossRef] [PubMed]
- Valentin, A.; Ughratdar, I.; Cheserem, B.; Morris, R.; Selway, R.; Alarcon, G. Epilepsia partialis continua responsive to neocortical electrical stimulation. Epilepsia 2015, 56, e104–e109. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, B.N.; Van Gompel, J.; Britton, J.; Nickels, K.; Wetjen, N.; Worrell, G.; Stead, M. Chronic Subthreshold Cortical Stimulation to Treat Focal Epilepsy. JAMA Neurol. 2016, 73, 1370–1372. [Google Scholar] [CrossRef] [PubMed]
Randomized Controlled Trials of VNS | |||||||
---|---|---|---|---|---|---|---|
Study, Year | Country | Intervention | Study Setting | Population | Results | Follow Up | Complications |
Ben-Menachem et al. 1994 [78] | Sweden | High vs. low stimulation treatment | Multicenter, Children and adults |
|
|
|
|
Handforth et al. 1998 [79] | USA | High vs. low stimulation treatment | Multicenter, Children and adults |
|
|
|
|
Klinkenberg et al. 2012 [80] | Netherlands | High vs. low stimulation treatment for 20 weeks, then all received high for 19 weeks | Single center, Children |
|
|
|
|
Ryvlin et al. 2014 [81] | France | PuLsE (Open Prospective Randomized Long-Term Effectiveness): VNS + Best medical practice (BMP) vs. BMP | Multicenter, Adults–early termination of trial due to low enrollment |
|
|
|
|
Aihua et al. 2014 [82] | China | Transcutaneous: Ramsay Hunt zone stimulation (treatment group) vs. earlobe (control stimulation) | Single center, Children and adults |
|
|
|
|
Randomized controlled trials of DBS | |||||||
Van Buren et al. 1978 [21] | USA | Bilateral stimulation of the superior surface of the cerebellum. Treatment group: 10–14 V, 10 Hz vs. off stimulation | Single center, Adults |
|
|
|
|
Wright et al. 1984 [22] | United Kingdom | Stimulation of the upper surface of the cerebellum 2 cm from midline on each side Treatment group: 1–7 mA, 10 Hz in either continuous or contingent session vs. sham stimulation | Single center, Adults |
|
|
|
|
Velasco et al. 2005 [23] | Mexico | Cerebellar stimulation -bilateral modified four-contact plate electrodes adjusted to 2.0 μC/cm2/phase | Single center, Adults |
|
|
|
|
Fisher et al. 1992 [26] | USA | Bilateral stimulation of the centromedian thalamic nucleus (0.5 to 10 V, 65 Hz, 90 µs pulse width) vs. sham stimulation | Multicenter, Adults |
|
|
|
|
Velasco et al. 2000 [27] | Mexico | Alternate stimulation between the left and the right centromedian thalamic nucleus (4–6 V, 60 Hz, 450 µs pulse width) vs. sham stimulation | Single center, Adults and children |
|
|
|
|
Fisher et al. 2010 [6] | USA | Anterior nuclei of thalamus stimulation | Multicenter, Adults |
|
|
|
|
Tellez– Zenteno et al. 2006 [52] | Canada | Left hippocampal stimulation (1.8 V to 4.5 V, 190 Hz, 90 µs pulse width) vs. sham stimulation | Single center, Adults |
|
|
|
|
Velasco 2007 et al. [53] | Mexico | Bilateral or unilateral hippocampal stimulation Treatment group: 130 Hz, 450 μs pulse width vs. control group: No stimulation | Single center, Children and adults |
|
|
|
|
McLachlan et al. 2010 [54] | Canada | Bilateral hippocampal stimulation Treatment group: 185 Hz, 90 µs pulse width | Single center, Adults |
|
|
|
|
Wiebe et al. 2013 [55] | Canada | Hippocampal stimulation, unilateral or bilateral (Treatment group: 135 Hz continuous cathodal stimulation of all electrodes involved in seizure generation vs. control group: no stimulation) | Multicenter, Adult |
|
|
|
|
Cukiert et al. 2017 [56] | Brazil | Hippocampal stimulation, unilateral or bilateral (Treatment group: active stimulation at continuous 130 Hz, duration 300 μs, final intensity of 2 V (0.4 V increments) vs. control group: no stimulation) | Single center, Children and adults |
|
|
|
|
Kowski et al. 2015 [63] | Germany | Bilateral stimulation of nucleus accumbens and the anterior thalamic nuclei Treatment group: 5 V, 125 Hz, 90 µs pulse width | Single center, Adults |
|
|
|
|
San-Juan et al. 2017 [72] | Mexico | Transcranial direct current stimulation (tDCS)–(randomized into three treatment arms: 2 mA cathodal direct current stimulation for 30 min: (1) three days (2) five days vs. (3) placebo) | Multicenter, Adults |
|
|
|
|
Velasco et al. 2005 [23] | Mexico | Cerebellar stimulation-bilateral modified four-contact plate electrodes adjusted to 2.0 μC/cm2/phase | Single center, Adults |
|
|
|
|
Randomized controlled trial of TNS | |||||||
DeGiorgio et al. 2013 [87] | USA | External trigeminal nerve stimulation (eTNS)–treatment group: eTNS 120 Hz vs. control group: eTNS 2 Hz | Multicenter, Adults |
|
|
|
|
Randomized controlled trial of rTMS | |||||||
Fregni et al. 2006 [92] | USA | Repetitive transcranial magnetic stimulation (rTMS)–treatment group: 1 Hz, 1200 pulses vs. sham group | Single center, Adults |
|
|
|
|
Randomized controlled trial of RNS | |||||||
Morrell et al. 2011 [96] | USA | Responsive neuromodulation | Multicenter, Adults |
|
|
|
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, C.-S.; Ripa, V.; Al-Awar, O.; Panov, F.; Ghatan, S.; Jetté, N. Epilepsy and Neuromodulation—Randomized Controlled Trials. Brain Sci. 2018, 8, 69. https://doi.org/10.3390/brainsci8040069
Kwon C-S, Ripa V, Al-Awar O, Panov F, Ghatan S, Jetté N. Epilepsy and Neuromodulation—Randomized Controlled Trials. Brain Sciences. 2018; 8(4):69. https://doi.org/10.3390/brainsci8040069
Chicago/Turabian StyleKwon, Churl-Su, Valeria Ripa, Omar Al-Awar, Fedor Panov, Saadi Ghatan, and Nathalie Jetté. 2018. "Epilepsy and Neuromodulation—Randomized Controlled Trials" Brain Sciences 8, no. 4: 69. https://doi.org/10.3390/brainsci8040069
APA StyleKwon, C. -S., Ripa, V., Al-Awar, O., Panov, F., Ghatan, S., & Jetté, N. (2018). Epilepsy and Neuromodulation—Randomized Controlled Trials. Brain Sciences, 8(4), 69. https://doi.org/10.3390/brainsci8040069