Brain White Matter: A Substrate for Resilience and a Substance for Subcortical Small Vessel Disease
Abstract
:1. Introduction
2. White Matter Hyperintensities (WMHs) Are Associated with Vascular Risk Factors (VRFs)
3. WMHs Are Also Associated with Aging and They Are Not Innocuous
4. WMHs and Cognition
5. WMH and Gait
6. WMHs Are Age and Vascular Risk Factor-Related and Associated with Cognitive and Mobility Impairment, Yet the Effect Size Is Variable and Not Everyone Is Affected
7. White Matter Microstructure, Vascular Risk Factors, Cognition, and Mobility
8. Brain White Matter: Developmental Aspects and Components
9. Concluding Thoughts: The Role for Developmental and Adaptive Myelination in Brain Health
Author Contributions
Funding
Conflicts of Interest
References
- Hachinski, V.C.; Potter, P.; Merskey, H. Leuko-araiosis. Arch. Neurol. 1987, 44, 21–23. [Google Scholar] [CrossRef]
- Schmidt, R.; Schmidt, H.; Haybaeck, J.; Loitfelder, M.; Weis, S.; Cavalieri, M.; Seiler, S.; Enzinger, C.; Ropele, S.; Erkinjuntti, T.; et al. Heterogeneity in age-related white matter changes. Acta. Neuropathol. 2011, 122, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010, 9, 689–701. [Google Scholar] [CrossRef]
- Basile, A.M.; Pantoni, L.; Pracucci, G.; Asplund, K.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; Hennerici, M.; O’Brien, J.; et al. Age, hypertension, and lacunar stroke are the major determinants of the severity of age-related white matter changes. The LADIS (Leukoaraiosis and Disability in the Elderly) Study. Cerebrovasc. Dis. 2006, 21, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Moody, D.M.; Thore, C.R.; Anstrom, J.A.; Challa, V.R.; Langefeld, C.D.; Brown, W.R. Quantification of afferent vessels shows reduced brain vascular density in subjects with leukoaraiosis. Radiology 2004, 233, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Habes, M.; Erus, G.; Toledo, J.B.; Zhang, T.; Bryan, N.; Launer, L.J.; Rosseel, Y.; Janowitz, D.; Doshi, J.; Van der Auwera, S.; et al. White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain 2016, 139, 1164–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Leeuw, F.E.; de Groot, J.C.; Achten, E.; Oudkerk, M.; Ramos, L.M.; Heijboer, R.; Hofman, A.; Jolles, J.; van Gijn, J.; Breteler, M.M. Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 2001, 70, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, F.A.; Muraskin, J.; Tosto, G.; Narkhede, A.; Wasserman, B.T.; Griffith, E.Y.; Guzman, V.A.; Meier, I.B.; Zimmerman, M.E.; Brickman, A.M.; et al. White matter hyperintensities and cerebral amyloidosis: Necessary and sufficient for clinical expression of Alzheimer disease? JAMA Neurol. 2013, 70, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Gurol, M.E.; Viswanathan, A.; Gidicsin, C.; Hedden, T.; Martinez-Ramirez, S.; Dumas, A.; Vashkevich, A.; Ayres, A.M.; Auriel, E.; van Etten, E.; et al. Cerebral amyloid angiopathy burden associated with leukoaraiosis: A positron emission tomography/magnetic resonance imaging study. Ann. Neurol. 2013, 73, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Debette, S.; Markus, H.S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 2010, 341, c3666. [Google Scholar] [CrossRef] [PubMed]
- Kloppenborg, R.P.; Nederkoorn, P.J.; Geerlings, M.I.; van den Berg, E. Presence and progression of white matter hyperintensities and cognition: A meta-analysis. Neurology 2014, 82, 2127–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Berg, E.; Geerlings, M.I.; Biessels, G.J.; Nederkoorn, P.J.; Kloppenborg, R.P. White Matter Hyperintensities and Cognition in Mild Cognitive Impairment and Alzheimer’s Disease: A Domain-Specific Meta-Analysis. J. Alzheimer’s Dis. 2018, 63, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Brickman, A.M.; Zahodne, L.B.; Guzman, V.A.; Narkhede, A.; Meier, I.B.; Griffith, E.Y.; Provenzano, F.A.; Schupf, N.; Manly, J.J.; Stern, Y.; et al. Reconsidering harbingers of dementia: Progression of parietal lobe white matter hyperintensities predicts Alzheimer’s disease incidence. Neurobiol. Aging 2015, 36, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Toledo, J.B.; Arnold, S.E.; Raible, K.; Brettschneider, J.; Xie, S.X.; Grossman, M.; Monsell, S.E.; Kukull, W.A.; Trojanowski, J.Q. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 2013, 136, 2697–2706. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.S.; Youn, Y.C.; Na, D.L.; Kim, S.Y.; Cheong, H.K.; Moon, S.Y.; Park, K.W.; Ku, B.D.; Lee, J.Y.; Jeong, J.H.; et al. Effects of medial temporal atrophy and white matter hyperintensities on the cognitive functions in patients with Alzheimer’s disease. Eur. Neurol. 2011, 66, 75–82. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, J.C. Alzheimer disease as a vascular disorder: Nosological evidence. Stroke 2002, 33, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Mortamais, M.; Artero, S.; Ritchie, K. White matter hyperintensities as early and independent predictors of Alzheimer’s disease risk. J. Alzheimer’s Dis. 2014, 42 (Suppl. 4), S393–S400. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.; Rocca, W.A.; Tzourio, C. Vascular risk factors and dementia: How to move forward? Neurology 2009, 72, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Viqar, F.; Zimmerman, M.E.; Narkhede, A.; Tosto, G.; Benzinger, T.L.; Marcus, D.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; et al. White matter hyperintensities are a core feature of Alzheimer’s disease: Evidence from the dominantly inherited Alzheimer network. Ann. Neurol. 2016, 79, 929–939. [Google Scholar] [CrossRef]
- Alosco, M.L.; Sugarman, M.A.; Besser, L.M.; Tripodis, Y.; Martin, B.; Palmisano, J.N.; Kowall, N.W.; Au, R.; Mez, J.; DeCarli, C.; et al. A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer’s Disease Neuropathology. J. Alzheimer’s Dis. 2018, 63, 1347–1360. [Google Scholar] [CrossRef]
- Hong, Y.J.; Yoon, B.; Shim, Y.S.; Han, I.W.; Han, S.H.; Park, K.H.; Choi, S.H.; Ku, B.D.; Yang, D.W. Do Alzheimer’s disease (AD) and subcortical ischemic vascular dementia (SIVD) progress differently? Arch. Gerontol. Geriatr. 2014, 58, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Braidy, N.; Poljak, A.; Chan, D.K.Y.; Sachdev, P. Cerebral small vessel disease and the risk of Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2018, 47, 41–48. [Google Scholar] [CrossRef] [PubMed]
- The, L.S.G.; Poggesi, A.; Pantoni, L.; Inzitari, D.; Fazekas, F.; Ferro, J.; O’Brien, J.; Hennerici, M.; Scheltens, P.; Erkinjuntti, T.; et al. 2001–2011: A Decade of the LADIS (Leukoaraiosis And DISability) Study: What Have We Learned about White Matter Changes and Small-Vessel Disease? Cerebrovasc. Dis. 2011, 32, 577–588. [Google Scholar] [CrossRef]
- Pantoni, L.; Fierini, F.; Poggesi, A.; Group, L.S. Impact of cerebral white matter changes on functionality in older adults: An overview of the LADIS Study results and future directions. Geriatr. Gerontol. Int. 2015, 15 (Suppl. 1), 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baezner, H.; Blahak, C.; Poggesi, A.; Pantoni, L.; Inzitari, D.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; Langhorne, P.; et al. Association of gait and balance disorders with age-related white matter changes: The LADIS study. Neurology 2008, 70, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Blahak, C.; Baezner, H.; Pantoni, L.; Poggesi, A.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; Langhorne, P.; O’Brien, J.; et al. Deep frontal and periventricular age related white matter changes but not basal ganglia and infratentorial hyperintensities are associated with falls: Cross sectional results from the LADIS study. J. Neurol. Neurosurg. Psychiatry 2009, 80, 608–613. [Google Scholar] [CrossRef]
- Kreisel, S.H.; Blahak, C.; Bazner, H.; Inzitari, D.; Pantoni, L.; Poggesi, A.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; et al. Deterioration of gait and balance over time: The effects of age-related white matter change-the LADIS study. Cerebrovasc. Dis. 2013, 35, 544–553. [Google Scholar] [CrossRef]
- van der Holst, H.M.; van Uden, I.W.M.; de Laat, K.F.; van Leijsen, E.M.C.; van Norden, A.G.W.; Norris, D.G.; van Dijk, E.J.; Tuladhar, A.M.; de Leeuw, F.E. Baseline Cerebral Small Vessel Disease Is Not Associated with Gait Decline After Five Years. Mov. Disord. Clin. Pract. 2017, 4, 374–382. [Google Scholar] [CrossRef]
- Callisaya, M.L.; Beare, R.; Phan, T.G.; Blizzard, L.; Thrift, A.G.; Chen, J.; Srikanth, V.K. Brain structural change and gait decline: A longitudinal population-based study. J. Am. Geriatr. Soc. 2013, 61, 1074–1079. [Google Scholar] [CrossRef]
- Moscufo, N.; Wolfson, L.; Meier, D.; Liguori, M.; Hildenbrand, P.G.; Wakefield, D.; Schmidt, J.A.; Pearlson, G.D.; Guttmann, C.R. Mobility decline in the elderly relates to lesion accrual in the splenium of the corpus callosum. AGE 2012, 34, 405–414. [Google Scholar] [CrossRef]
- Silbert, L.C.; Nelson, C.; Howieson, D.B.; Moore, M.M.; Kaye, J.A. Impact of white matter hyperintensity volume progression on rate of cognitive and motor decline. Neurology 2008, 71, 108–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Schuff, N.; Camacho, M.; Chao, L.L.; Fletcher, T.P.; Yaffe, K.; Woolley, S.C.; Madison, C.; Rosen, H.J.; Miller, B.L.; et al. MRI markers for mild cognitive impairment: Comparisons between white matter integrity and gray matter volume measurements. PLoS ONE 2013, 8, e66367. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.N.; Mayda, A.B.; Roach, A.E.; Fletcher, E.; Carmichael, O.; Maillard, P.; Schwarz, C.G.; Yonelinas, A.P.; Ranganath, C.; Decarli, C. Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Front. Hum. Neurosci. 2012, 6, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermoye, L.; Saint-Martin, C.; Cosnard, G.; Lee, S.K.; Kim, J.; Nassogne, M.C.; Menten, R.; Clapuyt, P.; Donohue, P.K.; Hua, K.; et al. Pediatric diffusion tensor imaging: Normal database and observation of the white matter maturation in early childhood. Neuroimage 2006, 29, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Matsuzawa, H.; Kwee, I.L.; Nakada, T. Absolute eigenvalue diffusion tensor analysis for human brain maturation. NMR Biomed. 2003, 16, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Power, M.C.; Tingle, J.V.; Reid, R.I.; Huang, J.; Sharrett, A.R.; Coresh, J.; Griswold, M.; Kantarci, K.; Jack, C.R., Jr.; Knopman, D.; et al. Midlife and Late-Life Vascular Risk Factors and White Matter Microstructural Integrity: The Atherosclerosis Risk in Communities Neurocognitive Study. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.L.; Chen, Y.L.; Leu, J.G.; Jaw, F.S.; Lee, C.H.; Tsai, Y.F.; Hsu, C.Y.; Bai, C.H.; Leemans, A. Microstructural white matter abnormalities in type 2 diabetes mellitus: A diffusion tensor imaging study. Neuroimage 2012, 59, 1098–1105. [Google Scholar] [CrossRef]
- Yau, P.L.; Kluger, A.; Borod, J.C.; Convit, A. Neural substrates of verbal memory impairments in adults with type 2 diabetes mellitus. J. Clin. Exp. Neuropsychol. 2014, 36, 74–87. [Google Scholar] [CrossRef]
- Wang, R.; Fratiglioni, L.; Laukka, E.J.; Lovden, M.; Kalpouzos, G.; Keller, L.; Graff, C.; Salami, A.; Backman, L.; Qiu, C. Effects of vascular risk factors and APOE epsilon4 on white matter integrity and cognitive decline. Neurology 2015, 84, 1128–1135. [Google Scholar] [CrossRef]
- Haight, T.; Nick Bryan, R.; Erus, G.; Hsieh, M.K.; Davatzikos, C.; Nasrallah, I.; D’Esposito, M.; Jacobs, D.R., Jr.; Lewis, C.; Schreiner, P.; et al. White matter microstructure, white matter lesions, and hypertension: An examination of early surrogate markers of vascular-related brain change in midlife. Neuroimage Clin. 2018, 18, 753–761. [Google Scholar] [CrossRef]
- Della Nave, R.; Foresti, S.; Pratesi, A.; Ginestroni, A.; Inzitari, M.; Salvadori, E.; Giannelli, M.; Diciotti, S.; Inzitari, D.; Mascalchi, M. Whole-brain histogram and voxel-based analyses of diffusion tensor imaging in patients with leukoaraiosis: Correlation with motor and cognitive impairment. AJNR Am. J. Neuroradiol. 2007, 28, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Feng, L.; Hu, W.; Zhang, Y. Use of Multimodal Magnetic Resonance Imaging Techniques to Explore Cognitive Impairment in Leukoaraiosis. Med. Sci. Monit. 2018, 24, 8910–8915. [Google Scholar] [CrossRef] [PubMed]
- Heiss, W.D.; Rosenberg, G.A.; Thiel, A.; Berlot, R.; de Reuck, J. Neuroimaging in vascular cognitive impairment: A state-of-the-art review. BMC Med. 2016, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Jokinen, H.; Schmidt, R.; Ropele, S.; Fazekas, F.; Gouw, A.A.; Barkhof, F.; Scheltens, P.; Madureira, S.; Verdelho, A.; Ferro, J.M.; et al. Diffusion changes predict cognitive and functional outcome: The LADIS study. Ann. Neurol. 2013, 73, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Ropele, S.; Ferro, J.; Madureira, S.; Verdelho, A.; Petrovic, K.; Gouw, A.; van der Flier, W.M.; Enzinger, C.; Pantoni, L.; et al. Diffusion-weighted imaging and cognition in the leukoariosis and disability in the elderly study. Stroke 2010, 41, e402–e408. [Google Scholar] [CrossRef] [PubMed]
- Vernooij, M.W.; Ikram, M.A.; Vrooman, H.A.; Wielopolski, P.A.; Krestin, G.P.; Hofman, A.; Niessen, W.J.; Van der Lugt, A.; Breteler, M.M. White matter microstructural integrity and cognitive function in a general elderly population. Arch. Gen. Psychiatry 2009, 66, 545–553. [Google Scholar] [CrossRef]
- Rosario, B.L.; Rosso, A.L.; Aizenstein, H.J.; Harris, T.; Newman, A.B.; Satterfield, S.; Studenski, S.A.; Yaffe, K.; Rosano, C.; Health, A.B.C.S. Cerebral White Matter and Slow Gait: Contribution of Hyperintensities and Normal-appearing Parenchyma. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 968–973. [Google Scholar] [CrossRef] [Green Version]
- Moscufo, N.; Wakefield, D.B.; Meier, D.S.; Cavallari, M.; Guttmann, C.R.G.; White, W.B.; Wolfson, L. Longitudinal microstructural changes of cerebral white matter and their association with mobility performance in older persons. PLoS ONE 2018, 13, e0194051. [Google Scholar] [CrossRef]
- Tian, Q.; Ferrucci, L.; Resnick, S.M.; Simonsick, E.M.; Shardell, M.D.; Landman, B.A.; Venkatraman, V.K.; Gonzalez, C.E.; Studenski, S.A. The effect of age and microstructural white matter integrity on lap time variation and fast-paced walking speed. Brain Imaging Behav. 2016, 10, 697–706. [Google Scholar] [CrossRef]
- van der Holst, H.M.; Tuladhar, A.M.; Zerbi, V.; van Uden, I.W.M.; de Laat, K.F.; van Leijsen, E.M.C.; Ghafoorian, M.; Platel, B.; Bergkamp, M.I.; van Norden, A.G.W.; et al. White matter changes and gait decline in cerebral small vessel disease. Neuroimage Clin. 2018, 17, 731–738. [Google Scholar] [CrossRef]
- Maniega, S.M.; Valdes Hernandez, M.C.; Clayden, J.D.; Royle, N.A.; Murray, C.; Morris, Z.; Aribisala, B.S.; Gow, A.J.; Starr, J.M.; Bastin, M.E.; et al. White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiol. Aging 2015, 36, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Munoz Maniega, S.; Chappell, F.M.; Valdes Hernandez, M.C.; Armitage, P.A.; Makin, S.D.; Heye, A.K.; Thrippleton, M.J.; Sakka, E.; Shuler, K.; Dennis, M.S.; et al. Integrity of normal-appearing white matter: Influence of age, visible lesion burden and hypertension in patients with small-vessel disease. J. Cereb. Blood Flow Metab. 2017, 37, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Bekesi, J.G.; Holland, J.F. Impact of specific immunotherapy in acute myelocytic leukemia. Haematol. Blood Transfus. 1979, 23, 79–87. [Google Scholar] [PubMed]
- Schoenemann, P.T.; Sheehan, M.J.; Glotzer, L.D. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci. 2005, 8, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Semendeferi, K.; Lu, A.; Schenker, N.; Damasio, H. Humans and great apes share a large frontal cortex. Nat. Neurosci. 2002, 5, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Stiles, J.; Jernigan, T.L. The basics of brain development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef] [PubMed]
- Nickel, M.; Gu, C. Regulation of Central Nervous System Myelination in Higher Brain Functions. Neural Plast. 2018, 2018, 6436453. [Google Scholar] [CrossRef] [PubMed]
- Mount, C.W.; Monje, M. Wrapped to Adapt: Experience-Dependent Myelination. Neuron 2017, 95, 743–756. [Google Scholar] [CrossRef] [PubMed]
- Mosser, C.A.; Baptista, S.; Arnoux, I.; Audinat, E. Microglia in CNS development: Shaping the brain for the future. Prog. Neurobiol. 2017, 149, 1–20. [Google Scholar] [CrossRef]
- Dubois, J.; Dehaene-Lambertz, G.; Kulikova, S.; Poupon, C.; Huppi, P.S.; Hertz-Pannier, L. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 2014, 276, 48–71. [Google Scholar] [CrossRef] [Green Version]
- Hofman, M.A. On the evolution and geometry of the brain in mammals. Prog. Neurobiol. 1989, 32, 137–158. [Google Scholar] [CrossRef]
- Hofman, M.A. Design principles of the human brain: An evolutionary perspective. Prog. Brain Res. 2012, 195, 373–390. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.S.; Damasio, H.; Grabowski, T.J.; Bruss, J.; Zhang, W. Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage 2003, 18, 880–894. [Google Scholar] [CrossRef]
- Donahue, C.J.; Glasser, M.F.; Preuss, T.M.; Rilling, J.K.; Van Essen, D.C. Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proc. Natl. Acad. Sci. USA 2018, 115, E5183–E5192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smaers, J.B.; Schleicher, A.; Zilles, K.; Vinicius, L. Frontal white matter volume is associated with brain enlargement and higher structural connectivity in anthropoid primates. PLoS ONE 2010, 5, e9123. [Google Scholar] [CrossRef]
- Zhao, T.; Cao, M.; Niu, H.; Zuo, X.N.; Evans, A.; He, Y.; Dong, Q.; Shu, N. Age-related changes in the topological organization of the white matter structural connectome across the human lifespan. Hum. Brain Mapp. 2015, 36, 3777–3792. [Google Scholar] [CrossRef] [Green Version]
- Coupe, P.; Catheline, G.; Lanuza, E.; Manjon, J.V.; Alzheimer’s Disease Neuroimaging Initiative. Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis. Hum. Brain Mapp. 2017, 38, 5501–5518. [Google Scholar] [CrossRef] [Green Version]
- Narvacan, K.; Treit, S.; Camicioli, R.; Martin, W.; Beaulieu, C. Evolution of deep gray matter volume across the human lifespan. Hum. Brain Mapp. 2017, 38, 3771–3790. [Google Scholar] [CrossRef] [Green Version]
- Hedman, A.M.; van Haren, N.E.; Schnack, H.G.; Kahn, R.S.; Hulshoff Pol, H.E. Human brain changes across the life span: A review of 56 longitudinal magnetic resonance imaging studies. Hum. Brain Mapp. 2012, 33, 1987–2002. [Google Scholar] [CrossRef]
- Bartzokis, G.; Lu, P.H.; Heydari, P.; Couvrette, A.; Lee, G.J.; Kalashyan, G.; Freeman, F.; Grinstead, J.W.; Villablanca, P.; Finn, J.P.; et al. Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individuals. Biol. Psychiatry 2012, 72, 1026–1034. [Google Scholar] [CrossRef]
- Homae, F.; Watanabe, H.; Otobe, T.; Nakano, T.; Go, T.; Konishi, Y.; Taga, G. Development of global cortical networks in early infancy. J. Neurosci. 2010, 30, 4877–4882. [Google Scholar] [CrossRef] [PubMed]
- Huppi, P.S.; Maier, S.E.; Peled, S.; Zientara, G.P.; Barnes, P.D.; Jolesz, F.A.; Volpe, J.J. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr. Res. 1998, 44, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Huttenlocher, P.R.; Dabholkar, A.S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 1997, 387, 167–178. [Google Scholar] [CrossRef]
- Kinney, H.C.; Brody, B.A.; Kloman, A.S.; Gilles, F.H. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 1988, 47, 217–234. [Google Scholar] [CrossRef] [PubMed]
- Rakic, P.; Bourgeois, J.P.; Eckenhoff, M.F.; Zecevic, N.; Goldman-Rakic, P.S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 1986, 232, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Nomura, Y.; Sakuma, H.; Tagami, T.; Okuda, Y.; Nakagawa, T. MR assessment of normal brain development in neonates and infants: Comparative study of T1- and diffusion-weighted images. J. Comput. Assist. Tomogr. 1997, 21, 1–7. [Google Scholar] [CrossRef]
- Habes, M.; Erus, G.; Toledo, J.B.; Bryan, N.; Janowitz, D.; Doshi, J.; Volzke, H.; Schminke, U.; Hoffmann, W.; Grabe, H.J.; et al. Regional tract-specific white matter hyperintensities are associated with patterns to aging-related brain atrophy via vascular risk factors, but also independently. Alzheimer’s Dement. 2018, 10, 278–284. [Google Scholar] [CrossRef]
- Charidimou, A.; Boulouis, G.; Haley, K.; Auriel, E.; van Etten, E.S.; Fotiadis, P.; Reijmer, Y.; Ayres, A.; Vashkevich, A.; Dipucchio, Z.Y.; et al. White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2016, 86, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Stricker, N.H.; Schweinsburg, B.C.; Delano-Wood, L.; Wierenga, C.E.; Bangen, K.J.; Haaland, K.Y.; Frank, L.R.; Salmon, D.P.; Bondi, M.W. Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer’s disease supports retrogenesis. Neuroimage 2009, 45, 10–16. [Google Scholar] [CrossRef]
- Bartzokis, G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol. Aging 2011, 32, 1341–1371. [Google Scholar] [CrossRef]
- Bartzokis, G. Age-related myelin breakdown: A developmental model of cognitive decline and Alzheimer’s disease. Neurobiol. Aging 2004, 25, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.J.; Duka, T.; Stimpson, C.D.; Schapiro, S.J.; Baze, W.B.; McArthur, M.J.; Fobbs, A.J.; Sousa, A.M.; Sestan, N.; Wildman, D.E.; et al. Prolonged myelination in human neocortical evolution. Proc. Natl. Acad. Sci. USA 2012, 109, 16480–16485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haroutunian, V.; Katsel, P.; Roussos, P.; Davis, K.L.; Altshuler, L.L.; Bartzokis, G. Myelination, oligodendrocytes, and serious mental illness. Glia 2014, 62, 1856–1877. [Google Scholar] [CrossRef] [PubMed]
- Purger, D.; Gibson, E.M.; Monje, M. Myelin plasticity in the central nervous system. Neuropharmacology 2016, 110, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Snaidero, N.; Mobius, W.; Czopka, T.; Hekking, L.H.; Mathisen, C.; Verkleij, D.; Goebbels, S.; Edgar, J.; Merkler, D.; Lyons, D.A.; et al. Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 2014, 156, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Bechler, M.E.; Byrne, L.; Ffrench-Constant, C. CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes. Curr. Biol. 2015, 25, 2411–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, R.D. A new mechanism of nervous system plasticity: Activity-dependent myelination. Nat. Rev. Neurosci. 2015, 16, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Forbes, T.A.; Gallo, V. All Wrapped Up: Environmental Effects on Myelination. Trends Neurosci. 2017, 40, 572–587. [Google Scholar] [CrossRef]
- Makinodan, M.; Rosen, K.; Ito, S.; Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 2012, 337, 1357–1360. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, K.; DeLoyht, J.; Pedre, X.; Kelkar, D.; Kaur, J.; Vialou, V.; Lobo, M.; Dietz, D.; Nestler, E.; et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 2012, 15, 1621–1623. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, I.A.; Ohayon, D.; Li, H.; de Faria, J.P.; Emery, B.; Tohyama, K.; Richardson, W.D. Motor skill learning requires active central myelination. Science 2014, 346, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Sampaio-Baptista, C.; Khrapitchev, A.A.; Foxley, S.; Schlagheck, T.; Scholz, J.; Jbabdi, S.; DeLuca, G.C.; Miller, K.L.; Taylor, A.; Thomas, N.; et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 2013, 33, 19499–19503. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.M.; Purger, D.; Mount, C.W.; Goldstein, A.K.; Lin, G.L.; Wood, L.S.; Inema, I.; Miller, S.E.; Bieri, G.; Zuchero, J.B.; et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 2014, 344, 1252304. [Google Scholar] [CrossRef] [PubMed]
- Scholz, J.; Klein, M.C.; Behrens, T.E.; Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 2009, 12, 1370–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, C.J.; Bailey, J.A.; Zatorre, R.J.; Penhune, V.B. Early musical training and white-matter plasticity in the corpus callosum: Evidence for a sensitive period. J. Neurosci. 2013, 33, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.A.; Rudelson, J.J.; Tse, P.U. White matter structure changes as adults learn a second language. J. Cogn. Neurosci. 2012, 24, 1664–1670. [Google Scholar] [CrossRef]
- Bengtsson, S.L.; Nagy, Z.; Skare, S.; Forsman, L.; Forssberg, H.; Ullen, F. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 2005, 8, 1148–1150. [Google Scholar] [CrossRef]
- Reid, L.B.; Sale, M.V.; Cunnington, R.; Mattingley, J.B.; Rose, S.E. Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography. Hum. Brain Mapp. 2017, 38, 4302–4312. [Google Scholar] [CrossRef]
- Lakhani, B.; Borich, M.R.; Jackson, J.N.; Wadden, K.P.; Peters, S.; Villamayor, A.; MacKay, A.L.; Vavasour, I.M.; Rauscher, A.; Boyd, L.A. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity. Neural Plast. 2016, 2016, 7526135. [Google Scholar] [CrossRef]
- Sexton, C.E.; Betts, J.F.; Demnitz, N.; Dawes, H.; Ebmeier, K.P.; Johansen-Berg, H. A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. Neuroimage 2016, 131, 81–90. [Google Scholar] [CrossRef]
- de Lange, A.G.; Brathen, A.C.; Grydeland, H.; Sexton, C.; Johansen-Berg, H.; Andersson, J.L.; Rohani, D.A.; Nyberg, L.; Fjell, A.M.; Walhovd, K.B. White matter integrity as a marker for cognitive plasticity in aging. Neurobiol. Aging 2016, 47, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberlin, L.E.; Verstynen, T.D.; Burzynska, A.Z.; Voss, M.W.; Prakash, R.S.; Chaddock-Heyman, L.; Wong, C.; Fanning, J.; Awick, E.; Gothe, N.; et al. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults. Neuroimage 2016, 131, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Hamanaka, G.; Ohtomo, R.; Takase, H.; Lok, J.; Arai, K. White-matter repair: Interaction between oligodendrocytes and the neurovascular unit. Brain Circ. 2018, 4, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Egawa, N.; Lok, J.; Arai, K. Mechanisms of cellular plasticity in cerebral perivascular region. Prog. Brain Res. 2016, 225, 183–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zonouzi, M.; Scafidi, J.; Li, P.; McEllin, B.; Edwards, J.; Dupree, J.L.; Harvey, L.; Sun, D.; Hubner, C.A.; Cull-Candy, S.G.; et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat. Neurosci. 2015, 18, 674–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautier, H.O.; Evans, K.A.; Volbracht, K.; James, R.; Sitnikov, S.; Lundgaard, I.; James, F.; Lao-Peregrin, C.; Reynolds, R.; Franklin, R.J.; et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat. Commun. 2015, 6, 8518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, K.; Lo, E.H. An oligovascular niche: Cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells. J. Neurosci. 2009, 29, 4351–4355. [Google Scholar] [CrossRef] [PubMed]
- Arai, K.; Lo, E.H. Oligovascular signaling in white matter stroke. Biol. Pharm. Bull. 2009, 32, 1639–1644. [Google Scholar] [CrossRef]
- Pham, L.D.; Hayakawa, K.; Seo, J.H.; Nguyen, M.N.; Som, A.T.; Lee, B.J.; Guo, S.; Kim, K.W.; Lo, E.H.; Arai, K. Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. Glia 2012, 60, 875–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechler, M.E.; Swire, M.; Ffrench-Constant, C. Intrinsic and adaptive myelination-A sequential mechanism for smart wiring in the brain. Dev. Neurobiol. 2018, 78, 68–79. [Google Scholar] [CrossRef]
- Gorelick, P.B.; Furie, K.L.; Iadecola, C.; Smith, E.E.; Waddy, S.P.; Lloyd-Jones, D.M.; Bae, H.J.; Bauman, M.A.; Dichgans, M.; Duncan, P.W.; et al. Defining Optimal Brain Health in Adults: A Presidential Advisory From the American Heart Association/American Stroke Association. Stroke 2017, 48, e284–e303. [Google Scholar] [CrossRef] [Green Version]
InIntervention | Finding | Study |
---|---|---|
Experimental Models | ||
Social isolation: 4 weeks of isolation in juvenile mice | Deficits in social interaction task not rescued by social re-introduction mPFC: reduction in ramification of mature astrocytes, reduced internode per oligo, thinning of myelin sheath | [89,90] |
Complex wheel task in adult mice | Additional OPCs and mature oligodendrocytes in the corpus callosum. Generation of new oligodendrocytes required skill improvement | [91] |
Rats trained in single-pallet reaching task | Increase FA in Cingulum and external capsule | [92] |
Optical stimulation of the pre-motor cortex in mice | Proliferation of OPCs in the deep cortex and subcortical white matter within the stimulated circuit. Activity induced expansion of the oligodendrocyte lineage | [93] |
Human Studies | ||
Juggling training in adults | Increased FA | [94] |
Musical training | Increased FA | [95] |
Learning a second language | Increased FA | [96] |
Extensive piano practicing | Enhanced white matter development | [97] |
finger-thumb opposition sequence task (10 min daily, over 4 weeks) | Increased FA | [98] |
Visuomotor skill training | Increased myelination only in ROIs contralateral to trained limb, correlated with skill acquisition (Increased myelin water fraction [MWF]) | [99] |
Exercise (Physical fitness or Activity: PFA) | Increased PFA with improved WM structure, but effect size small | [100] |
Memory Training | Those with higher MD had the least improvement | [101] |
Cardiorespiratory fitness (exercise training) | Cardiorespiratory fitness (exercise training) | [102] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorond, F.A.; Gorelick, P.B. Brain White Matter: A Substrate for Resilience and a Substance for Subcortical Small Vessel Disease. Brain Sci. 2019, 9, 193. https://doi.org/10.3390/brainsci9080193
Sorond FA, Gorelick PB. Brain White Matter: A Substrate for Resilience and a Substance for Subcortical Small Vessel Disease. Brain Sciences. 2019; 9(8):193. https://doi.org/10.3390/brainsci9080193
Chicago/Turabian StyleSorond, Farzaneh A., and Philip B. Gorelick. 2019. "Brain White Matter: A Substrate for Resilience and a Substance for Subcortical Small Vessel Disease" Brain Sciences 9, no. 8: 193. https://doi.org/10.3390/brainsci9080193
APA StyleSorond, F. A., & Gorelick, P. B. (2019). Brain White Matter: A Substrate for Resilience and a Substance for Subcortical Small Vessel Disease. Brain Sciences, 9(8), 193. https://doi.org/10.3390/brainsci9080193