Quality Visualization of Microarray Datasets Using Circos
Abstract
:1. Introduction
1.1. Microarray Raw Data and Quality Control
- (i) a lack of information about the analysis protocol.
- (ii) choosing different normalization methods.
- (iii) the use of defective analytical methods.
1.2. Aim of the Present Study
2. Experimental Section
2.1. Publicly Available Microarray Studies in GEO
2.2. Data Processing, Normalization and Principal Component Analysis
2.3. Data Visualization Using Circos
3. Results and Discussion
3.1. Quality Assessment and Normalization of Diverse Studies Available in GEO
3.2. Visualization by Use of Circos
4. Discussion
5. Conclusion
Appendix
Acknowledgments
References
- Bachtiary, B.; Boutros, P.C.; Pintilie, M.; Shi, W.; Bastianutto, C.; Li, J.-H.; Schwock, J.; Zhang, W.; Penn, L.Z.; Jurisica, I.; et al. Gene expression profiling in cervical cancer: An exploration of intratumor heterogeneity. Clin. Cancer Res. 2006, 12, 5632–5640. [Google Scholar]
- Shi, L.; Reid, L.H.; Jones, W.D.; Shippy, R.; Warrington, J.A.; Baker, S.C.; Collins, P.J.; de Longueville, F.; Kawasaki, E.S.; Lee, K.Y.; et al. The Microarray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 2006, 24, 1151–1161. [Google Scholar] [CrossRef]
- Shi, L.; Campbell, G.; Jones, W.D.; Campagne, F.; Wen, Z.; Walker, S.J.; Su, Z.; Chu, T.M.; Goodsaid, F.M.; Pusztai, L.; et al. The Microarray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol. 2010, 28, 827–838. [Google Scholar] [CrossRef]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004. [Google Scholar] [CrossRef] [Green Version]
- McClure, J.; Wit, E. Post-normalization quality assessment visualization of microarray data. Comp. Funct. Genomics 2003, 4, 460–467. [Google Scholar] [CrossRef]
- Yang, Y.H.; Dudoit, S.; Luu, P.; Lin, D.M.; Peng, V.; Ngai, J.; Speed, T.P. Normalization for cdna microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002. [Google Scholar] [CrossRef]
- Edwards, D. Non-linear normalization and background correction in one-channel cdna microarray studies. Bioinformatics 2003, 19, 825–833. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, D.; Martyniuk, C.J.; Trudeau, V.L.; Xia, X. Using generalized procrustes analysis (gpa) for normalization of cdna microarray data. BMC Bioinformatics 2008. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, L.; Liu, H.; Sun, H.; Xie, H. A new outlier removal approach for cdna microarray normalization. BioTechniques 2009, 47. [Google Scholar]
- Wu, Z.; Aryee, M.J. Subset quantile normalization using negative control features. J. Comput. Biol. 2010, 17, 1385–1395. [Google Scholar] [CrossRef]
- Geller, S.C.; Gregg, J.P.; Hagerman, P.; Rocke, D.M. Transformation and normalization of oligonucleotide microarray data. Bioinformatics 2003, 19, 1817–1823. [Google Scholar] [CrossRef]
- Calza, S.; Valentini, D.; Pawitan, Y. Normalization of oligonucleotide arrays based on the least-variant set of genes. BMC Bioinforma. 2008. [Google Scholar] [CrossRef]
- Carvalho, B.; Bengtsson, H.; Speed, T.P.; Irizarry, R.A. Exploration, normalization, and genotype calls of high-density oligonucleotide snp array data. Biostatistics 2007, 8, 485–499. [Google Scholar]
- Rigaill, G.; Hupé, P.; Almeida, A.; Rosa, P.L.; Meyniel, J.-P.; Decraene, C.; Barillot, E. Italics: An algorithm for normalization and DNA copy number calling for affymetrix snp arrays. Bioinformatics 2008, 24, 768–774. [Google Scholar] [CrossRef]
- Zeller, G.; Henz, S.R.; Laubinger, S.; Weigel, D.; Rätsch, G. Transcript normalization and segmentation of tiling array data. Pac. Symp. Biocomput. 2008, 538, 527–538. [Google Scholar]
- Autio, R.; Kilpinen, S.; Saarela, M.; Kallioniemi, O.; Hautaniemi, S.; Astola, J. Comparison of affymetrix data normalization methods using 6,926 experiments across five array generations. BMC Bioinforma. 2009. [Google Scholar] [CrossRef]
- Barbacioru, C.C.; Wang, Y.; Canales, R.D.; Sun, Y.A.; Keys, D.N.; Chan, F.; Poulter, K.A.; Samaha, R.R. Effect of various normalization methods on applied biosystems expression array system data. BMC Bioinforma. 2006. [Google Scholar] [CrossRef]
- Irizarry, R.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4, 249–264. [Google Scholar] [CrossRef]
- Wu, W.; Dave, N.; Tseng, G.C.; Richards, T.; Xing, E.P.; Kaminski, N. Comparison of normalization methods for codelink bioarray data. BMC Bioinforma. 2005. [Google Scholar] [CrossRef]
- Du, P.; Kibbe, W.A.; Lin, S.M. Lumi: A pipeline for processing illumina microarray. Bioinformatics 2008, 24, 1547–1548. [Google Scholar] [CrossRef]
- Zahurak, M.; Parmigiani, G.; Yu, W.; Scharpf, R.B.; Berman, D.; Schaeffer, E.; Shabbeer, S.; Cope, L. Pre-processing agilent microarray data. BMC Bioinforma. 2007. [Google Scholar] [CrossRef]
- Kerr, K.F. Extended analysis of benchmark datasets for agilent two-color microarrays. BMC Bioinforma. 2007. [Google Scholar] [CrossRef]
- Barrett, T.; Suzek, T.O.; Troup, D.B.; Wilhite, S.E.; Ngau, W.C.; Ledoux, P.; Rudnev, D.; Lash, A.E.; Fujibuchi, W.; Edgar, R. NCBI GEO: Mining millions of expression profiles—Database and tools. Nucleic Acids Res. 2005, 33, D562–D566. [Google Scholar]
- Chang, E.C.; Charn, T.H.; Park, S.H.; Helferich, W.G.; Komm, B.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Estrogen receptors alpha and beta as determinants of gene expression: Influence of ligand, dose, and chromatin binding. Mol. Endocrinol. 2008, 22, 1032–1043. [Google Scholar] [CrossRef]
- Lutter, D.; Ugocsai, P.; Grandl, M.; Orso, E.; Theis, F.; Lang, E.W.; Schmitz, G. Analyzing m-csf dependent monocyte/macrophage differentiation: Expression modes and meta-modes derived from an independent component analysis. BMC Bioinformatics 2008. [Google Scholar] [CrossRef]
- Aoyagi, K.; Minashi, K.; Igaki, H.; Tachimori, Y.; Nishimura, T.; Hokamura, N.; Ashida, A.; Daiko, H.; Ochiai, A.; Muto, M.; et al. Artificially induced epithelial-mesenchymal transition in surgical subjects: Its implications in clinical and basic cancer research. PLoS One 2011, 6, e18196. [Google Scholar]
- Sean, D.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and bioconductor. Bioinformatics 2007, 23, 1846–1847. [Google Scholar] [CrossRef]
- Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. Affy—Analysis of affymetrix genechip data at the probe level. Bioinformatics 2004, 20, 307–315. [Google Scholar] [CrossRef]
- Stacklies, W.; Redestig, H.; Scholz, M.; Walther, D.; Selbig, J. Pcamethods—A bioconductor package providing pca methods for incomplete data. Bioinformatics 2007, 23, 1164–1167. [Google Scholar]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Dunning, M.J.; Smith, M.L.; Shi, W.; Lynch, A.G. BeadArray expression analysis using bioconductor. PLoS Comput. Biol. 2011, 7, e1002276. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Koch, M.; Wiese, M. Quality Visualization of Microarray Datasets Using Circos. Microarrays 2012, 1, 84-94. https://doi.org/10.3390/microarrays1020084
Koch M, Wiese M. Quality Visualization of Microarray Datasets Using Circos. Microarrays. 2012; 1(2):84-94. https://doi.org/10.3390/microarrays1020084
Chicago/Turabian StyleKoch, Martin, and Michael Wiese. 2012. "Quality Visualization of Microarray Datasets Using Circos" Microarrays 1, no. 2: 84-94. https://doi.org/10.3390/microarrays1020084
APA StyleKoch, M., & Wiese, M. (2012). Quality Visualization of Microarray Datasets Using Circos. Microarrays, 1(2), 84-94. https://doi.org/10.3390/microarrays1020084