Regulation of Heme Oxygenase and Its Cross-Talks with Apoptosis and Autophagy under Different Conditions in Drosophila
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Groups
2.2.1. Curcumin Treatment
2.2.2. Paraquat Treatment
2.3. RNA Isolation, cDNA Synthesis and Quantitative PCR
2.4. Statistical Analysis
3. Results
3.1. Expression of ho in the Brain under LD12:12 and DD
3.2. Effects of Aging on ho and Autophagy Gene Expression in the Brain
3.3. Effects of Overexpressing and Silencing of ho on Apoptosis, Autophagy, and DNA Repair
3.4. Effects of Chronic Curcumin Supplementation on ho, Apoptosis, and Authophagy Gene Expression in the Brain
3.5. Effects of Acute Paraquat Exposure on per, atg5, Hid and ho mRNA Level in the Brain
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Araque, A.; Navarrete, M. Glial cells in neuronal network function. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2375–2381. [Google Scholar] [CrossRef] [PubMed]
- Mink, J.W.; Blumenschine, R.J.; Adams, D.B. Ratio of central nervous system to body metabolism in vertebrates: Its constancy and functional basis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1981, 10, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron 2012, 75, 762–777. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, P.A. Prooxidant states and tumor promotion. Science 1985, 227, 375–381. [Google Scholar] [CrossRef]
- Cross, C.E. Oxygen Radicals and Human Disease. Ann. Int. Med. 1987, 107, 526. [Google Scholar] [CrossRef]
- Pero, R.W.; Anderson, M.W.; Doyle, G.A.; Anna, C.H.; Romagna, F.; Markowitz, M.; Bryngelson, C. Oxidative stress induces DNA Damage and inhibits the repair of DNA lesions induced by N-Acetoxy-2-acetylaminofluorene in human peripheral mononuclear leukocytes. Cancer Res. 1990, 50, 4619–4625. [Google Scholar]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, N.J.; Getz, G.S.; Rabinowitz, M. Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J. Biol. Chem. 1969, 244, 1552–1562. [Google Scholar] [CrossRef]
- Chomyn, A.; Attardi, G. MtDNA mutations in aging and apoptosis. Biochem. Biophys. Res. Commun. 2003, 304, 519–529. [Google Scholar] [CrossRef]
- Kraytsberg, Y.; Nekhaeva, E.; Bodyak, N.B.; Khrapko, K. Mutation and intracellular clonal expansion of mitochondrial genomes: Two synergistic components of the aging process? Mech. Ageing Dev. 2003, 124, 49–53. [Google Scholar] [CrossRef]
- Trifunovic, A.; Wredenberg, A.; Falkenberg, M.; Spelbrink, J.N.; Rovio, A.T.; Bruder, C.E.; Bohloolu-Y, M.; Gildof, S.; Oldfors, A.; Wibom, R.; et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004, 429, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 2017, 39, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Angelova, P.R.; Abramov, A.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett. 2018, 592, 692–702. [Google Scholar] [CrossRef]
- Kohen, R.; Beit-Yannai, E.; Berry, E.M.; Tirosh, O. Overall low molecular weight antioxidant activity of biological fluids and tissues by cyclic voltammetry. Methods Enzymol. 1999, 300, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Griendling, K.K.; Sorescu, D.; Lassègue, B.; Ushio-Fukai, M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2175–2183. [Google Scholar] [CrossRef] [Green Version]
- Kohen, R.; Vellaichamy, E.; Hrbac, J.; Gati, I.; Tirosh, O. Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic. Biol. Med. 2000, 28, 871–879. [Google Scholar] [CrossRef]
- Hill, V.M.; O’Connor, R.M.; Sissoko, G.B.; Irobunda, I.S.; Leong, S.; Canman, J.C.; Stavropoulos, N.; Shirasu-Hiza, M. A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol. 2018, 16, e2005206. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Moreno, N.; Lane, J.D. Autophagy and redox homeostasis in Parkinson’s: A crucial balancing act. Oxidative Med. Cell. Longev. 2020, 2020, 8865611. [Google Scholar] [CrossRef]
- Ceriani, M.F.; Hogenesch, J.B.; Yanovsky, M.; Panda, S.; Straume, M.; Kay, S.A. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J. Neurosci. 2002, 22, 9305–9319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peschel, N.; Helfrich-förster, C. Setting the clock–by nature: Circadian rhythm in the fruitfly Drosophila melanogaster. FEBS Lett. 2011, 585, 1435–1442. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Bae, K.; Edery, I. PER and TIM Inhibit the DNA binding activity of aDrosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: A basis for circadian transcription. Mol. Cell. Biol. 1999, 19, 5316–5325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceriani, M.F.; Darlington, T.K.; Staknis, D.; Mas, P.; Petti, A.A.; Weitz, C.J. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 1999, 285, 553–556. [Google Scholar] [CrossRef]
- Naidoo, N.; Song, W.; Hunter-Ensor, M.; Sehgal, A. A role for the proteasome in the light response of the timeless clock protein. Science 1999, 285, 1737–1741. [Google Scholar] [CrossRef] [PubMed]
- Klichko, V.I.; Chow, E.S.; Kotwica-Rolinska, J.; Orr, W.C.; Giebultowicz, J.M.; Radyuk, S.N. Aging alters circadian regulation of redox in Drosophila. Front. Genet. 2015, 5, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakshit, K.; Krishnan, N.; Guzik, E.M.; Pyza, E.; Giebultowicz, J.M. Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol. Int. 2012, 29, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Damulewicz, M.; Loboda, A.; Jozkowicz, A.; Dulak, J.; Pyza, E. Interactions between the circadian clock and heme oxygenase in the retina of Drosophila melanogaster. Mol. Neurobiol. 2017, 54, 4953–4962. [Google Scholar] [CrossRef] [Green Version]
- Rubio, M.F.; Agostino, P.V.; Ferreyra, G.A.; Golombek, D.A. Circadian heme oxygenase actitivy in the hamster suprachiasmatic nuclei. Neurosci. Lett. 2003, 353, 9–12. [Google Scholar] [CrossRef]
- Loboda, A.; Jazwa, A.; Grochot-Przeczek, A.; Rutkowski, A.J.; Cisowski, J.; Agarwal, A.; Jozkowicz, A.; Dulak, J. Heme oxygenase-1 and the vascular bed: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2008, 10, 1767–1812. [Google Scholar] [CrossRef]
- Zhang, X.; Sato, M.; Sasahara, M.; Migita, C.T.; Yoshida, T. Unique features of recombinant heme oxygenase of Drosophila melanogaster compared with those of other heme oxygenases studied. Eur. J. Biochem. 2004, 271, 1713–1724. [Google Scholar] [CrossRef]
- Cui, L.; Yoshioka, Y.; Suyari, O.; Kohno, Y.; Zhang, X.; Adachi, Y.; Ikehara, S.; Yoshida, T.; Yamaguchi, M.; Taketani, S. Relevant expression of Drosophila heme oxygenase is necessary for the normal development of insect tissues. Biochem. Biophys. Res. Commun. 2008, 377, 1156–1161. [Google Scholar] [CrossRef]
- Ida, H.; Suyari, O.; Shimamura, M.; Tien Tai, T.; Yamaguchi, M.; Taketani, S. Genetic link between heme oxygenase and the signaling pathway of DNA damage in Drosophila melanogaster. Tohoku J. Exp. Med. 2013, 231, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Damulewicz, M.; Loboda, A.; Jozkowicz, A.; Dulak, J.; Pyza, E. Haeme oxygenase protects against UV light DNA damages in the retina in clock-dependent manner. Sci. Rep. 2017, 7, 5197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damulewicz, M.; Swiatek, M.; Loboda, A.; Dulak, J.; Bilska, B.; Przewlocki, R.; Pyza, E. Daily regulation of phototransduction, circadian clock, DNA repair, and immune gene expression by heme oxygenase in the retina of Drosophila. Genes 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Akinyemi, A.J.; Oboh, G.; Ogunsuyi, O.; Abolaji, A.O.; Udofia, A. Curcumin-supplemented diets improve antioxidant enzymes and alter acetylcholinesterase genes expression level in Drosophila melanogaster model. Metab. Brain Dis. 2018, 33, 369–375. [Google Scholar] [CrossRef]
- Rzezniczak, T.Z.; Douglas, L.A.; Watterson, J.H.; Merritt, T.J.S. Paraquat administration in Drosophila for use in metabolic studies of oxidative stress. Anal. Biochem. 2011, 419, 345–347. [Google Scholar] [CrossRef]
- Damulewicz, M.; Rosato, E.; Pyza, E. Circadian regulation of the Na+/K+-Atpase alpha subunit in the visual system is mediated by the pacemaker and by retina photoreceptors in Drosophila melanogaster. PLoS ONE 2013, 8, e73690. [Google Scholar] [CrossRef] [Green Version]
- Damulewicz, M.; Loboda, A.; Bukowska-Strakova, K.; Jozkowicz, A.; Dulak, J.; Pyza, E. Clock and clock-controlled genes are differently expressed in the retina, lamina and in selected cells of the visual system of drosophila melanogaster. Front. Cell. Neurosci. 2015, 9, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kijak, E.; Pyza, E. TOR signaling pathway and autophagy are involved in the regulation of circadian rhythms in behavior and plasticity of L2 interneurons in the brain of Drosophila melanogaster. PLoS ONE 2017, 12, e0171848. [Google Scholar] [CrossRef]
- Trakshel, G.M.; Kutty, R.K.; Maines, M.D. Resolution of the rat brain heme oxygenase activity: Absence of a detectable amount of the inducible form (HO-1). Arch. Biochem. Biophys. 1988, 260, 732–739. [Google Scholar] [CrossRef]
- Trakshel, G.M.; Maines, M.D. Multiplicity of heme oxygenase isozymes: HO-1 and HO-2 are different molecular species in rat and rabbit. J. Biol. Chem. 1989, 264, 1323–1328. [Google Scholar] [CrossRef]
- Sun, Y.; Rotenberg, M.O.; Maines, M.D. Developmental expression of heme oxygenase isozymes in rat brain: Two HO-2 mRNAs are detected. J. Biol. Chem. 1990, 265, 8212–8217. [Google Scholar] [CrossRef]
- Kutty, R.K.; Kutty, G.; Wiggert, B.; Chader, G.J.; Darrow, R.M.; Organisciak, D.T. Induction of heme oxygenase 1 in the retina by intense visible light: Suppression by the antioxidant dimethylthiourea. Proc. Natl. Acad. Sci. USA 1995, 92, 1177–1181. [Google Scholar] [CrossRef] [Green Version]
- Barth, M.; Hirsch, H.V.B.; Meinertzhagen, I.A.; Heisenberg, M. Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. J. Neurosci. 1997, 17, 1493–1504. [Google Scholar] [CrossRef] [Green Version]
- Davie, K.; Janssens, J.; Koldere, D.; De Waegeneer, M.; Pech, U.; Kreft, L.; Aibar, S.; Makhzami, S.; Christiaens, V.; Gonzalez-Blas, C.B.; et al. A Single-cell transcriptome atlas of the aging Drosophila brain. Cell 2018, 174, 982–998.e20. [Google Scholar] [CrossRef] [Green Version]
- Ewing, J.F.Ã.; Maines, M.D. Regulation and expression of heme oxygenase enzymes in aged-rat brain: Age related depression in HO-1 and HO-2 expression and altered stress-response. J. Neural Transm. 2006, 113, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.; Chiang, C.; Mayne, J.; Ning, Z.; Zhang, X. Aging disrupts the circadian patterns of protein expression in the murine hippocampus. Front. Aging Neurosci. 2020, 11, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill-Kapturczak, N.; Thamilselvan, V.; Liu, F.; Nick, H.S.; Agarwal, A. Mechanism of heme oxygenase-1 gene induction by curcumin in human renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 2001, 281, F851–F859. [Google Scholar] [CrossRef] [PubMed]
- Scapagnini, G.; Foresti, R.; Calabrese, V.; Giuffrida Stella, A.M.; Green, C.J.; Motterlini, R. Caffeic acid phenethyl ester and curcumin: A novel class of heme oxygenase-1 inducers. Mol. Pharmacol. 2002, 61, 554–561. [Google Scholar] [CrossRef] [PubMed]
- McNally, S.J.; Harrison, E.M.; Ross, J.A.; Garden, O.J.; Wigmore, S.J. Curcumin induces heme oxygenase-1 in hepatocytes and is protective in simulated cold preservation and warm reperfusion injury. Transplantation 2006, 81, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.F.; Pereira-Wilson, C.; Rattan, S.I. Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: Relevance for anti-aging intervention. Mol. Nutr. Food Res. 2011, 55, 430–442. [Google Scholar] [CrossRef] [Green Version]
- Cremers, N.A.J.; Lundvig, D.M.S.; Van Dalen, S.C.M.; Schelbergen, R.F. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells. Int. J. Mol. Sci. 2014, 15, 17974–17999. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Jiang, H.; Shi, Y. Upregulation of heme oxygenase-1 expression by curcumin conferring protection from hydrogen peroxide-induced apoptosis in H9c2 cardiomyoblasts. Cell Biosci. 2017, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.I.; Feng, J.; Fan, Z.; Li, J. Curcumin increases cholesterol efflux via heme oxygenase-1-mediated ABCA1 and SR-BI expression in macrophages. Mol. Med. Rep. 2018, 17, 6138–6143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Dai, C.; Liu, Q.; Qui, J. Curcumin attenuates on carbon tetrachloride-induced acute liver injury in mice via modulation. Molecules 2018, 23, 215. [Google Scholar] [CrossRef] [Green Version]
- Tomita, M.; Okuyama, T.; Katsuyama, H.; Ishikawa, T. Paraquat-induced gene expression in rat kidney. Arch. Toxicol. 2006, 80, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Yonekawa, T.; Thorburn, A. Autophagy and cell death. Essays Biochem. 2013, 55, 105–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddadi, M.; Reiszadeh, S.; Sagar, B.K.C.; Patil, R.K.; Shivanandappa, T.; Ramesh, S.R. Brain aging, memory impairment and oxidative stress: A study in Drosophila melanogaster. Behav. Brain Res. 2014, 259, 60–69. [Google Scholar] [CrossRef]
- Moustapha, A.; Peretout, P.A.; Rainey, N.E.; Sureau, F.; Geze, M.; Petit, J.M.; Dewailly, E.; Slomianny, C.; Petit, P.X. Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events. Cell Death Discov. 2015, 1, 15017. [Google Scholar] [CrossRef]
- Masuelli, L.; Benvenuto, M.; Di Stefano, E.; Mattera, R.; Fantini, M.; De Feudis, G.; De Smaele, E.; Tresoldi, I.; Giganti, M.G.; Modesti, A.; et al. Curcumin blocks autophagy and activates apoptosis of malignant mesothelioma cell lines and increases the survival of mice intraperitoneally transplanted with a malignant mesothelioma cell line. Oncotarget 2017, 8, 34405–34422. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Yoon, S.S.; Moon, E. Curcumin-induced autophagy augments its antitumor effect against A172 human glioblastoma cells. Biomol. Ther. 2019, 27, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, F.; Read, M.; Barreto, G.E.; Sahebkar, A. Neuroprotective effects of curcumin through autophagy modulation. IUBMB Life 2020, 72, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Wang, J.J.; Cai, Z.N.; Xu, C.J. The effect of curcumin on the differentiation, apoptosis and cell cycle of neural stem cells is mediated through inhibiting autophagy by the modulation of Atg7 and p62. Int. J. Mol. Med. 2018, 42, 2481–2488. [Google Scholar] [CrossRef]
- Izumi, Y.; Yamamoto, N.; Matsushima, S.; Yamamoto, T.; Takada-Takatori, Y.; Akaike, A.; Kume, T. Compensatory role of the Nrf2 e ARE pathway against paraquat toxicity : Relevance of 26S proteasome activity. J. Pharmacol. Sci. 2015, 129, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Phom, L.; Achumi, B.; Alone, D.P.; Muralidhara; Yenisetti, S.C. Curcumin’s neuroprotective efficacy in Drosophila model of idiopathic parkinson’s disease is phase specific: Implication of its therapeutic effectiveness. Rejuvenation Res. 2014, 17, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, N.; Davis, A.J.; Giebultowicz, J.M. Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 2008, 374, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Gonzales-Polo, R.A.; Niso-Santano, M.; Ortiz-Ortiz, M.A.; Gomez-Martin, A.; Moran, J.M.; Garcia-Rubio, L.; Francisco-Morcillo, J.; Zaragoza, C.; Soler, G.; Fuentes, J. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicol. Sci. 2007, 97, 448–458. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Garcia, A.; Anandhan, A.; Burns, M.; Chen, H.; Zhou, Y.; Franco, R. Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP+-induced apoptosis but not rotenone or 6-Hydroxydopamine toxicity. Toxicol. Sci. 2013, 136, 166–182. [Google Scholar] [CrossRef] [Green Version]
Gene | Sequence | Accession Number | |
---|---|---|---|
ho | F: | 5′-ACCATTTGCCCGCCGGGATG-3′ | CG14716 |
R: | 5′-AGTGCGACGGCCAGCTTCCT-3′ | ||
rpl32 | F: | 5′-TATGCTAAGCTGTCGCACAAATG-3′ | CG7939 |
R: | 5′-AGCACGTGTATAAAAAGTGCCA-3′ | ||
hid | F: | 5′-CATCCATGGCCACATCAGT-3′ | CG5123 |
R: | 5′-TTACACGTCTCCTGCGCTTT-3′ | ||
skl | F: | 5′-ACGACAACTCGCCAAGAGTTCAGA-3′ | CG13701 |
R: | 5′-TATCGACTTGATCGCCACTGGGTT-3′ | ||
atg5 | F: | 5′-GACATGCTCGTCAAGCTCAA-3′ | CG1643 |
R: | 5′-TCCATTAGCCTCCGATTGAC-3′ | ||
atg10 | F: | 5′-TCAGACCCTTTATGGCATTG-3′ | CG12821 |
R: | 5′-GGCTTTCCGAAACTGCTTTAG-3′ | ||
per | F: | 5′-AAGAGCACCTTCTGCGTGAT-3′ | CG2647 |
R: | 5′-AGAATCTCGTCGGGAACCTT-3′ | ||
eIF4a | F: | 5′-AGCACGTGTATAAAAAGTGCCA-3′ | CG9075 |
R: | 5′-TTGTCGTACACCTCGTGCC-3′ | ||
Xpc | F: | 5′-AACGTGAAGGGAATCAGCGT-3′ | CG8153 |
R: | 5′-TTTTCGCCTACCTGCCACTT-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al L. Abaquita, T.; Damulewicz, M.; Bhattacharya, D.; Pyza, E. Regulation of Heme Oxygenase and Its Cross-Talks with Apoptosis and Autophagy under Different Conditions in Drosophila. Antioxidants 2021, 10, 1716. https://doi.org/10.3390/antiox10111716
Al L. Abaquita T, Damulewicz M, Bhattacharya D, Pyza E. Regulation of Heme Oxygenase and Its Cross-Talks with Apoptosis and Autophagy under Different Conditions in Drosophila. Antioxidants. 2021; 10(11):1716. https://doi.org/10.3390/antiox10111716
Chicago/Turabian StyleAl L. Abaquita, Terence, Milena Damulewicz, Debarati Bhattacharya, and Elżbieta Pyza. 2021. "Regulation of Heme Oxygenase and Its Cross-Talks with Apoptosis and Autophagy under Different Conditions in Drosophila" Antioxidants 10, no. 11: 1716. https://doi.org/10.3390/antiox10111716
APA StyleAl L. Abaquita, T., Damulewicz, M., Bhattacharya, D., & Pyza, E. (2021). Regulation of Heme Oxygenase and Its Cross-Talks with Apoptosis and Autophagy under Different Conditions in Drosophila. Antioxidants, 10(11), 1716. https://doi.org/10.3390/antiox10111716