Active Antioxidant Phenolics from Brazilian Red Propolis: An Optimization Study for Their Recovery and Identification by LC-ESI-QTOF-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Propolis Collection and Extraction
2.3. Experimental Deisgn and Optimization
2.4. Total Phenolic Content
2.5. Antioxidant Activity
2.5.1. Ferric Reducing Antioxidant Power (FRAP) Assay
2.5.2. Peroxyl Radical (ROO●)
2.5.3. Trolox Equivalent Antioxidant Capacity (TEAC) Assay
2.6. High-Resolution Mass Spectrometry Analysis (LC-ESI-QTOF-MS/MS)
2.7. Data Analysis
3. Results and Discussion
3.1. Fitting the Models to Data
3.2. Response Surface Analysis
3.2.1. The Effect of Solvent Concentration on TEAC and TPC
3.2.2. The Effect of Temperature on TEAC and TPC
3.2.3. The Effect of Extraction Time on TEAC and TPC
3.2.4. Optimization and Validation of RSM Models
3.3. Antioxidant Activity of the Optimized BRP Extract
3.4. Characterization of Phenolic Compounds in the Optimized BRPExtract by LC-ESI-QTOF-MS/MSAnalysis
3.4.1. Flavonoids
3.4.2. Flavones
3.4.3. Flavanones
3.4.4. Chalcones
3.4.5. Isoflavonoids
3.4.6. Flavonols, Neoflavonoids, Coumarins, and Polyprenylated Benzophenone Derivates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghisalberti, E.L. Propolis: A Review. Bee World 1979, 60, 59–84. [Google Scholar] [CrossRef]
- Silva, B.B.; Rosalen, P.L.; Cury, J.A.; Ikegaki, M.; Souza, V.C.; Esteves, A.; Alencar, S.M. Chemical composition and botanical origin of red propolis, a new type of Brazilian propolis. Evid. BasedComplement. Altern. Med. 2008, 5, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Freires, I.A.; De Alencar, S.M.; Rosalen, P.L. A pharmacological perspective on the use of Brazilian Red Propolis and its isolated compounds against human diseases. Eur. J. Med. Chem. 2016, 110, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Franchin, M.; Freires, I.A.; Lazarini, J.G.; Nani, B.D.; da Cunha, M.G.; Colón, D.F.; de Alencar, S.M.; Rosalen, P.L. The use of Brazilian propolis for discovery and development of novel anti-inflammatory drugs. Eur. J. Med. Chem. 2018, 153, 49–55. [Google Scholar] [CrossRef]
- Franchin, M.; Colón, D.F.; Da Cunha, M.G.; Castanheira, F.V.S.; Saraiva, A.L.L.; Bueno-Silva, B.; Alencar, S.M.; Cunha, T.M.; Rosalen, P.L. Neovestitol, an isoflavonoid isolated from Brazilian red propolis, reduces acute and chronic inflammation: Involvement of nitric oxide and IL-6. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Alencar, S.M.; Cadorin, T.L.; Castro, M.L.; Ribeiro, I.S.; Costa Neto, C.M.; Cury, J.A.; Rosalen, P.L.; Ikegaki, M. Chemical composition and biological activity of a new type of Brazilian propolis: Red propolis. J. Ethnopharmacol. 2007, 113, 278–283. [Google Scholar] [CrossRef]
- Piccinelli, A.L.; Lotti, C.; Campone, L.; Cuesta-Rubio, O.; Campo Fernandez, M.; Rastrelli, L. Cuban and Brazilian red propolis: Botanical origin and comparative analysis by high-performance liquid chromatography-photodiode array detection/electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2011, 59, 6484–6491. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Silva, B.; Marsola, A.; Ikegaki, M.; Alencar, S.M.; Rosalen, P.L. The effect of seasons on Brazilian red propolis and its botanical source: Chemical composition and antibacterial activity. Nat. Prod. Res. 2017, 31, 1318–1324. [Google Scholar] [CrossRef]
- Ccana-Ccapatinta, G.V.; Mejía, J.A.A.; Tanimoto, M.H.; Groppo, M.; de Carvalho, J.C.A.S.; Bastos, J.K. Dalbergia ecastaphyllum (L.) Taub. and Symphonia globulifera L.f.: The botanical sources of isoflavonoids and benzophenones in Brazilian red propolis. Molecules 2020, 25, 2060. [Google Scholar] [CrossRef] [PubMed]
- Franchin, M.; Cólon, D.F.; Castanheira, F.V.S.; da Cunha, M.G.; Bueno-Silva, B.; Alencar, S.M.; Cunha, T.M.; Rosalen, P.L. Vestitol isolated from Brazilian red propolis inhibits neutrophils migration in the inflammatory process: Elucidation of the mechanism of action. J. Nat. Prod. 2016, 79, 954–960. [Google Scholar] [CrossRef]
- Oldoni, T.L.C.; Cabral, I.S.R.; d’Arce, M.A.B.R.; Rosalen, P.L.; Ikegaki, M.; Nascimento, A.M.; Alencar, S.M. Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis. Sep. Purif. Technol. 2011, 77, 208–213. [Google Scholar] [CrossRef]
- Novak, E.M.; Silva, M.S.E.C.; Marcucci, M.C.; Sawaya, A.C.H.F.; Giménez-Cassina López, B.; Fortes, M.A.H.Z.; Giorgi, R.R.; Marumo, K.T.; Rodrigues, R.F.; Maria, D.A. Antitumoural activity of Brazilian red propolis fraction enriched with xanthochymol and formononetin: An in vitro and in vivo study. J. Funct. Foods 2014, 11, 91–102. [Google Scholar] [CrossRef]
- Abd El-Salam, E.A.; Morsy, N.F.S. Optimization of the extraction of polyphenols and antioxidant activity from Malva parviflora L. leaves using Box–Behnken design. Prep. Biochem. Biotechnol. 2019, 49, 876–883. [Google Scholar] [CrossRef]
- Riswanto, F.D.O.; Rohman, A.; Pramono, S.; Martono, S. Application of response surface methodology as mathematical and statistical tools in natural product research. J. Appl. Pharm. Sci. 2019, 9, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Al-Duais, M.; Müller, L.; Böhm, V.; Jetschke, G. Antioxidant capacity and total phenolics of Cyphostemmadigitatum before and after processing: Use of different assays. Eur. Food Res. Technol. 2009, 228, 813–821. [Google Scholar] [CrossRef]
- Melo, P.S.; Massarioli, A.P.; Denny, C.; Dos Santos, L.F.; Franchin, M.; Pereira, G.E.; Vieira, T.M.F.D.S.; Rosalen, P.L.; De Alencar, S.M. Winery by-products: Extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species. Food Chem. 2015, 181, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Prakash Maran, J.; Manikandan, S.; Vigna Nivetha, C.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem. 2017, 10, S1145–S1157. [Google Scholar] [CrossRef] [Green Version]
- Martín-García, B.; Pimentel-Moral, S.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. A Box-Behnken design for optimal green extraction of compounds from olive leaves that potentially activate the AMPK pathway. Appl. Sci. 2020, 10, 4620. [Google Scholar] [CrossRef]
- Gaur, P.K.; Shanmugam, S.K. Box-Behnken design–directed optimization of Wickerhamomycesanomalus–mediated biotransformation process to enhance the flavonoid profile of polyherbal extract. J. Pharm. Innov. 2020, 1–12. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Martí-Quijal, F.J.; Cilla, A.; Munekata, P.E.S.; Lorenzo, J.M.; Remize, F.; Barba, F.J. Influence of temperature, solvent and pH on the selective extraction of phenolic compounds from tiger nuts by-products: Triple-TOF-LC-MS-MS characterization. Molecules 2019, 24, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldoni, T.L.C.; Oliveira, S.C.; Andolfatto, S.; Karling, M.; Calegari, M.A.; Sado, R.Y.; Maia, F.M.C.; Alencar, S.M.; Lima, V.A. Chemical characterization and optimization of the extraction process of bioactive compounds from propolis produced by selected bees Apis mellifera. J. Braz. Chem. Soc. 2015, 26, 2054–2062. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, J.G.; Li, W.F.; Chen, J.; Wang, D.Y.; Zhu, L. Optimum extraction process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology. J. Sep. Sci. 2009, 32, 1437–1444. [Google Scholar] [CrossRef]
- Andrade, J.K.S.; Denadai, M.; de Oliveira, C.S.; Nunes, M.L.; Narain, N. Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Res. Int. 2017, 101, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.V.; Golding, J.B.; Stathopoulos, C.E.; Nguyen, M.H.; Roach, P.D. Optimizing conditions for the extraction of catechins from green tea using hot water. J. Sep. Sci. 2011, 34, 3099–3106. [Google Scholar] [CrossRef] [PubMed]
- Yusof, N.; Munaim, M.S.A.; VelooKutty, R. Optimization of total phenolic compounds extracted from propolis by ultrasound-assisted extraction. Chem. Eng. Commun. 2020, 1–9. [Google Scholar] [CrossRef]
- Calegari, M.A.; Ayres, B.B.; dos Santos Tonial, L.M.; de Alencar, S.M.; Oldoni, T.L.C. Fourier transform near infrared spectroscopy as a tool for predicting antioxidant activity of propolis. J. King Saud Univ. Sci. 2020, 32, 784–790. [Google Scholar] [CrossRef]
- Svečnjak, L.; Marijanović, Z.; Okińczyc, P.; Kuś, P.M.; Jerković, I. Mediterranean propolis from the adriatic sea islands as a source of natural antioxidants: Comprehensive chemical biodiversity determined by GC-MS, ftiratr, UHPLC-DAD-QQTOF-MS, DPPH and FRAP assay. Antioxidants 2020, 9, 337. [Google Scholar] [CrossRef] [Green Version]
- Lewoyehu, M.; Amare, M. Comparative evaluation of analytical methods for determining the antioxidant activities of honey: A review. Cogent Food Agric. 2019, 5, 5. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Aazza, S.; Lyoussi, B.; Bankova, V.; Popova, M.; Neto, L.; Faleiro, M.L.; Da Graça Miguel, M. Moroccan Propolis: A Natural Antioxidant, Antibacterial, and Antibiofilm against Staphylococcus aureus with no induction of resistance after continuous exposure. Evid. Based Complement. Altern. Med. 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Wu, Z.; Wang, Z.; Zhang, H. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid. Based Complement. Altern. Med. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.A.E.; Amarante, M.K.; Conti, B.J.; Sforcin, J.M. Cytotoxic constituents of propolis inducing anticancer effects: A review. J. Pharm. Pharmacol. 2011, 63, 1378–1386. [Google Scholar] [CrossRef]
- Peng, Q.; Shang, X.; Zhu, C.; Qin, S.; Zhou, Y.; Liao, Q.; Zhang, R.; Zhao, Z.; Zhang, L. Qualitative and quantitative evaluation of Oroxylum indicum (L.) Kurz by HPLC and LC-qTOF-MS/MS. Biomed. Chromatogr. 2019, 33, e4657. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Liang, C.; Diao, X.; Cheng, X.; Liao, M.; Zhang, L. Metabolism studies on hydroxygenkwanin and genkwanin in human liver microsomes by UHPLC-Q-TOF-MS. Xenobiotica 2018, 48, 332–341. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, A.C. Characterization of phenolic composition in lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef]
- Chen, Q.; He, L.; Mo, C.; Zhang, Z.; Long, H.; Gu, X.; Wei, Y. Rapid evaluation of chemical consistency of artificially induced and natural resinadraconis using Ultra-Performance Liquid Chromatography Quadrupole-Time-Of-Flight mass spectrometry-based chemical profiling. Molecules 2018, 23, 1850. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, S.; Liu, D.; Yang, M.; Wei, J. Analysis of flavonoids in Dalbergia odorifera by ultra-performance liquid chromatography with tandem mass spectrometry. Molecules 2020, 25, 389. [Google Scholar] [CrossRef] [Green Version]
- Rini Vijayan, K.P.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
- Ghareeb, M.A.; Sobeh, M.; Rezq, S.; El-Shazly, A.M.; Mahmoud, M.F.; Wink, M. HPLC-ESI-MS/MS profiling of polyphenolics of a leaf extract from Alpinia zerumbet (Zingiberaceae) and its anti-inflammatory, anti-nociceptive, and antipyretic activities in vivo. Molecules 2018, 23, 3238. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wang, P.; Yang, H.; Sui, F. UPLC–Q-TOF–MS and UPLC–MS/MS methods for metabolism profiles and pharmacokinetics of major compounds in XuanmaiGanjie Granules. Biomed. Chromatogr. 2019, 33, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Agüero, M.B.; Gonzalez, M.; Lima, B.; Svetaz, L.; Sánchez, M.; Zacchino, S.; Feresin, G.E.; Schmeda-Hirschmann, G.; Palermo, J.; Daniel Wunderlin, A.N.D.; et al. Argentinean propolis from Zuccagnia punctata cav. (Caesalpinieae) exudates: Phytochemical characterization and antifungal activity. J. Agric. Food Chem. 2010, 58, 194–201. [Google Scholar] [CrossRef]
- Imdad, S.; Batool, N.; Pradhan, S.; Chaurasia, A.K.; Kim, K.K. Identification of 2,4-dihydroxychalcone as an antivirulence agent targeting hlyu, a master virulence regulator in vibrio vulnificus. Molecules 2018, 23, 1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Li, W.; Li, H.; Deng, Z.; Zhang, B. Extractable and non-extractable bound phenolic compositions and their antioxidant properties in seed coat and cotyledon of black soybean (Glycine max (L.) merr). J. Funct. Foods 2017, 32, 296–312. [Google Scholar] [CrossRef]
- Qi, Y.; Li, S.; Pi, Z.; Song, F.; Lin, N.; Liu, S.; Liu, Z. Chemical profiling of Wu-tou decoction by UPLC-Q-TOF-MS. Talanta 2014, 118, 21–29. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Y.; Cong, D.; Zhang, H.; Yu, J.; Jiang, Y.; Cui, X.; Sun, J. Screening and determination for potential α-glucosidase inhibitory constituents from Dalbergia odorifera T. Chen using ultrafiltration-LC/ESI-MSn. Biomed. Chromatogr. 2013, 27, 1621–1629. [Google Scholar] [CrossRef]
- Zhong, B.; Robinson, N.A.; Warner, R.D.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS characterization of seaweed phenolics and their antioxidant potential. Mar. Drugs 2020, 18, 331. [Google Scholar] [CrossRef]
- Omar, R.M.K.; Igoli, J.; Gray, A.I.; Ebiloma, G.U.; Clements, C.; Fearnley, J.; EdradaEbel, R.A.; Zhang, T.; De Koning, H.P.; Watson, D.G. Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma brucei. Phytochem. Anal. 2016, 27, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Li, T.; Ji, R.; Xu, F.; Liu, G.X.; Li, Y.L.; Shang, M.Y.; Cai, S.Q. Metabolites of medicarpin and their distributions in rats. Molecules 2019, 24, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, E.C.A.; da Silva, E.J.G.; Cordeirob, H.K.C.; Filhob, N.M.L.; da Felipe Silvac, M.A.; dos Reisd, D.L.S.; Portod, Carla Pilaud, E.J.; da Costaa, L.A.M.A.; De, A.D.L.S.; Menezese, C.F.A. Chemical compositions and antioxidant and antimicrobial activities of propolis Produced by Frieseomelittalongipes and Apis mellifera bees. Quim. Nova 2018, 41, 485–491. [Google Scholar]
Run | Independent Variables | Dependent Variables | ||||||
---|---|---|---|---|---|---|---|---|
Coded Values | Real Values | TEAC (µmol TE/g) | TPC (mg GAE/g) | |||||
Time (min) | Temp. °C | EtOH (%) | Time (min) | Temp. °C | EtOH (%) | |||
1 | −1 | −1 | 0 | 30 | 30 | 75 | 2560.36 | 125.76 |
2 | 1 | −1 | 0 | 90 | 30 | 75 | 2386.42 | 132.80 |
3 | −1 | 1 | 0 | 30 | 80 | 75 | 2804.74 | 136.17 |
4 | 1 | 1 | 0 | 90 | 80 | 75 | 2918.30 | 118.82 |
5 | −1 | 0 | −1 | 30 | 55 | 60 | 2370.61 | 120.30 |
6 | 1 | 0 | −1 | 90 | 55 | 60 | 2719.93 | 116.09 |
7 | −1 | 0 | 1 | 30 | 55 | 90 | 3106.62 | 127.64 |
8 | 1 | 0 | 1 | 90 | 55 | 90 | 3156.93 | 123.38 |
9 | 0 | −1 | −1 | 60 | 30 | 60 | 3169.87 | 118.82 |
10 | 0 | 1 | −1 | 60 | 80 | 60 | 2827.74 | 116.53 |
11 | 0 | −1 | 1 | 60 | 30 | 90 | 3200.06 | 109.49 |
12 | 0 | 1 | 1 | 60 | 80 | 90 | 3471.75 | 126.25 |
13 | 0 | 0 | 0 | 60 | 55 | 75 | 2544.55 | 133.00 |
14 | 0 | 0 | 0 | 60 | 55 | 75 | 2635.12 | 137.06 |
15 | 0 | 0 | 0 | 60 | 55 | 75 | 2622.18 | 134.98 |
Term | SS | df | MS | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
TEAC | ||||||
Model | 1,247,423.00 | 9 | 138,602.55 | 603.14 | <0.0001 | significant |
8019.54 | 1 | 8019.54 | 34.89 | 0.0183 | ||
74,849.67 | 1 | 74,849.67 | 325.63 | 0.0020 | ||
425,485 | 1 | 425,484.7 | 1851.06 | 0.0003 | ||
83.58 | 1 | 83.58 | 0.3636 | 0.5347 | ||
144,174 | 1 | 144,173.8 | 627.22 | 0.0010 | ||
530,460 | 1 | 530,460.1 | 2307.80 | 0.0002 | ||
1153.35 | 1 | 1153.35 | 5.02 | 0.1092 | ||
1.87 | 1 | 1.87 | 0.0081 | 0.9254 | ||
94,179.02 | 1 | 94,179.02 | 409.73 | 0.0016 | ||
Residual | 1149.29 | 5 | 229.86 | |||
Lack of Fit | 846.99 | 3 | 282.33 | 1.87 | 0.3673 | non-significant |
Pure error | 302.30 | 2 | 151.15 | |||
Total | 1,248,572 | 14 | ||||
R2 | 0.9991 | |||||
Adj-R2 | 0.9974 | |||||
TPC | ||||||
Model | 627.04 | 9 | 69.67 | 34.75 | 0.0006 | significant |
134.88 | 1 | 134.88 | 67.27 | 0.0004 | ||
10.38 | 1 | 10.38 | 5.18 | 0.0719 | ||
9.45 | 1 | 9.45 | 4.71 | 0.0820 | ||
39.29 | 1 | 39.29 | 19.60 | 0.0068 | ||
250.65 | 1 | 250.65 | 125.01 | <0.0001 | ||
81.65 | 1 | 81.65 | 40.72 | 0.0014 | ||
5.97 | 1 | 5.97 | 2.98 | 0.1449 | ||
1.10 | 1 | 1.10 | 0.5473 | 0.4927 | ||
132.72 | 1 | 132.72 | 66.20 | 0.0005 | ||
Residual | 10.02 | 5 | 2.00 | |||
Lack of Fit | 1.78 | 3 | 0.5938 | 0.1441 | 0.9251 | non-significant |
Pure error | 8.24 | 2 | 4.12 | |||
Total | 637.07 | 14 | ||||
R2 | 0.9843 | |||||
Adj-R2 | 0.9559 |
Compound | Putative Compound Name | RT (min) | ProposedFormula | [M–H]−(m/z) | MS/MS Fragments (m/z) |
---|---|---|---|---|---|
Flavones | |||||
1 | Chrysin | 28.6 | C15H10O4 | 253.0510 | 253.0507; 119.0483; 195.0438; 224.0481; 209.0614 |
2 | Tricin | 34.2 | C17H14O7 | 329.0677 | 329.0667; 299.0218; 271.0263; 243.0289 |
3 | Genkwanin | 36.2 | C16H12O5 | 283.0624 | 268.0360; 283.0583; 269.0397 |
4 | Hispidulin | 37.5 | C16H12O6 | 299.0565 | 284.0331; 227.0354; 255.0301; 212.0483 |
5 | 8-Hydroxy-5-methoxyflavanone | 44.2 | C16H14O4 | 269.0831 | 254.0589; 252.0437; 195.0451; 210.0685 |
6 | Acacetin | 54.2 | C16H12O5 | 283.0617 | 268.0382; 211.0408; 269.042 |
Flavanones | |||||
7 | Liquiritigenin | 25.1 | C15H12O4 | 255.0667 | 119.0495; 135.0083; 255.0656; 120.0526 |
8 | Naringenin * | 32.6 | C15H12O5 | 271.0619 | 119.0487; 151.0029; 254.0596; 271.0609; 165.0207 |
9 | Pinocembrin * | 48.6 | C15H12O4 | 255.0668 | 255.0678; 240.0426; 151.0034; 133.0285; 213.0540; |
10 | 5,6-Dihydroxy-3′,4′-dimethoxyflavanone | 48.7 | C17H16O6 | 315.0882 | 315.0881;151.0037; 235.0636; 255.1042; 121.0292; |
11 | 6-Hydroxyflavanone | 57.3 | C15H12O3 | 239.0722 | 239.0732; 135.0091; 197.0643 |
Chalcones | |||||
12 | Isoliquiritigenin * | 41.1 | C15H12O4 | 255.0676 | 119.0496; 135.0082; 120.0531; 151.0384; 255.0665 |
13 | 2′,4′-Dihydroxychalcone | 41.9 | C15H12O3 | 239.0723 | 239.0709; 197.0609; 135.0085; 198.0667 |
14 | 7-hydroxyflavanone | 42.2 | C15H12O3 | 239.0719 | 197.0610; 135.0085; 239.0732; 198.0643 |
15 | 2′,6′-dihydroxy-4′-methoxydihydrochalcone | 45.2 | C16H16O4 | 271.0990 | 254.0590; 135.0444; 109.0287; |
16 | 2′-Hydroxy-4′-methoxychalcone | 49.9 | C16H14O3 | 253.0879 | 237.0552; 255.0665; 253.0872; 136.0169; 161.0239 |
Isoflavonoids | |||||
17 | Daidzein * | 28.7 | C15H10O4 | 253.0511 | 253.0513; 208.0523; 119.0488; 135.0089 |
18 | Calycosin | 31.9 | C16H12O5 | 283.0617 | 268.0353; 211.0422; 224.0506; 239.0313; 267.0665 |
19 | Dihydrobiochanin A | 34.1 | C16H14O5 | 285.0776 | 270.0541; 109.0289; 161.0242; 285.0767 |
20 | Vestitone | 34.5 | C16H14O5 | 285.0776 | 270.0535; 161.0240; 109.0286; 271.0607 |
21 | Vestitol | 41.4 | C16H16O4 | 271.0987 | 135.0450; 109.0282; 149.0604; 147.0452; 271.0986; 256.0747 |
22 | Neovestitol | 41.8 | C16H16O4 | 271.0990 | 135.0360; 109.0217;256.0555; 197.0482; 212.0707 |
23 | Formononetin * | 43.9 | C16H12O4 | 267.0666 | 252.0431; 254.0594; 223.0404; 195.0456; 253.0483 |
24 | Demethyl medicarpin | 45.2 | C15H12O4 | 255.0673 | 255.0668; 105.0189; 151.0032; 107.0118; 213.0532 |
25 | Medicarpin | 48.6 | C16H14O4 | 269.0827 | 254.0594; 225.0540; 105.0191; 121.0300; 133.0287 |
26 | Biochanin A * | 52.0 | C16H12O5 | 283.0619 | 268.0389; 239.0354; 211.0393; 132.0202;195.4450 |
27 | 5,4′-Dihydroxy-7-methoxyisoflavone | 53.1 | C16H12O5 | 283.0619 | 268.0383; 211.0422; 223.0402; 224.0506; |
28 | 3,9-Dimethoxypterocarpan | 63.0 | C17H16O4 | 283.0988 | 253.0515; 225.0564; 268.0754; 183.0456; 254.0554 |
Flavonols | |||||
29 | 7-Hydroxy-6-methoxydihydroflavonol | 30.9 | C16H14O5 | 285.0743 | 270.0534; 268.0383; 78.9984; 123.0078 |
Neoflavonoids | |||||
30 | Dalbergin | 38.3 | C16H12O4 | 267.0667 | 252.0465; 224.0503; 195.0451; 267.0650; 204.9615 |
Polyprenylated benzophenones | |||||
31 | Guttiferone E/Xanthochymol | 92.2 | C38H50O6 | 601.3567 | 109.0291; 108.0214; 202.9997; 177.0198; 335.1285 |
32 | Oblongifolin B | 93.8 | C38H50O6 | 601.3569 | 109.0292; 108.0216; 176.0146; 307.1362 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira de Morais, D.; Rosalen, P.L.; Ikegaki, M.; de Souza Silva, A.P.; Massarioli, A.P.; de Alencar, S.M. Active Antioxidant Phenolics from Brazilian Red Propolis: An Optimization Study for Their Recovery and Identification by LC-ESI-QTOF-MS/MS. Antioxidants 2021, 10, 297. https://doi.org/10.3390/antiox10020297
Vieira de Morais D, Rosalen PL, Ikegaki M, de Souza Silva AP, Massarioli AP, de Alencar SM. Active Antioxidant Phenolics from Brazilian Red Propolis: An Optimization Study for Their Recovery and Identification by LC-ESI-QTOF-MS/MS. Antioxidants. 2021; 10(2):297. https://doi.org/10.3390/antiox10020297
Chicago/Turabian StyleVieira de Morais, Daniel, Pedro Luiz Rosalen, Masaharu Ikegaki, Anna Paula de Souza Silva, Adna Prado Massarioli, and Severino Matias de Alencar. 2021. "Active Antioxidant Phenolics from Brazilian Red Propolis: An Optimization Study for Their Recovery and Identification by LC-ESI-QTOF-MS/MS" Antioxidants 10, no. 2: 297. https://doi.org/10.3390/antiox10020297
APA StyleVieira de Morais, D., Rosalen, P. L., Ikegaki, M., de Souza Silva, A. P., Massarioli, A. P., & de Alencar, S. M. (2021). Active Antioxidant Phenolics from Brazilian Red Propolis: An Optimization Study for Their Recovery and Identification by LC-ESI-QTOF-MS/MS. Antioxidants, 10(2), 297. https://doi.org/10.3390/antiox10020297