Antioxidant Contributors in Seed, Seed Coat, and Cotyledon of γ-ray-Induced Soybean Mutant Lines with Different Seed Coat Colors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Extraction for Measurement of Antioxidant Activity and Total Phenolic, Total Flavonoid, and Isoflavone Contents
2.4. Extraction for Determination of Anthocyanins and Flavan-3-ols
2.5. Antioxidant Activities
2.6. Total Phenolic and Flavonoid Contents
2.7. Determination of Isoflavones Using Reversed-Phase HPLC
2.8. Determination of Anthocyanins and Flavan-3-ols Using Reversed-Phase HPLC
2.9. Statistical Analysis
3. Results
3.1. Radical-Scavenging Activities and Reducing Power
3.2. Total Phenolics and Total Flavonoids
3.3. Anthocyanins
3.4. Flavan-3-ols
3.5. Isoflavones
3.6. Correlation Analysis and PCA
3.7. Antioxidant Activities of Pure Standard Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malenčić, D.; Cvejić, J.; Miladinović, J. Polyphenol content and antioxidant properties of colored soybean seeds from Central Europe. J. Med. Food 2012, 15, 89–95. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J. Agric. Food. Chem. 2008, 56, 8365–8373. [Google Scholar] [CrossRef]
- Lee, J.; Renita, M.; Fioritto, R.J.; St. Martin, S.K.; Schwartz, S.J.; Vodovotz, Y. Isoflavone characterization and antioxidant activity of Ohio soybeans. J. Agric. Food. Chem. 2004, 52, 2647–2651. [Google Scholar] [CrossRef]
- Qin, W.; Zhu, W.; Shi, H.; Hewett, J.E.; Ruhlen, R.L.; MacDonald, R.S.; Rottinghaus, G.E.; Chen, Y.-C.; Sauter, E.R. Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr. Cancer 2009, 61, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Coward, L.; Barnes, N.C.; Setchell, K.D.; Barnes, S. Genistein, daidzein, and their β-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food. Chem. 1993, 41, 1961–1967. [Google Scholar] [CrossRef]
- Anthony, M.S.; Clarkson, T.B.; Hughes, C.L., Jr.; Morgan, T.M.; Burke, G.L. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J. Nutr. 1996, 126, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Juurlink, B.H.; Azouz, H.J.; Aldalati, A.M.; AlTinawi, B.M.; Ganguly, P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr. J. 2014, 13, 63. [Google Scholar] [CrossRef]
- Mangiapane, H.; Thomson, J.; Salter, A.; Brown, S.; Bell, G.D.; White, D.A. The inhibition of the oxidation of low density lipoprotein by (+)-catechin, a naturally occurring flavonoid. Biochem. Pharmacol. 1992, 43, 445–450. [Google Scholar] [CrossRef]
- Ribeiro, M.L.L.; Mandarino, J.M.G.; Carrao-Panizzi, M.C.; De Oliveira, M.C.N.; Campo, C.B.H.; Nepomuceno, A.L.; Ida, E.I. Isoflavone content and β-glucosidase activity in soybean cultivars of different maturity groups. J. Food Compost. Anal. 2007, 20, 19–24. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, Y.S.; Kim, S.T.; Yoon, W.B.; Han, W.Y.; Kang, I.K.; Choung, M.G. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds. Food Chem. 2017, 214, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Slavin, M.; Kenworthy, W.; Yu, L. Antioxidant properties, phytochemical composition, and antiproliferative activity of Maryland-grown soybeans with colored seed coats. J. Agric. Food Chem. 2009, 57, 11174–11185. [Google Scholar] [CrossRef]
- Kovinich, N.; Saleem, A.; Arnason, J.T.; Miki, B. Identification of two anthocyanidin reductase genes and three red-brown soybean accessions with reduced anthocyanidin reductase 1 mRNA, activity, and seed coat proanthocyanidin amounts. J. Agric. Food Chem. 2012, 60, 574–584. [Google Scholar] [CrossRef]
- Beyaz, R.; Yildiz, M. The use of gamma irradiation in plant mutation breeding. In Plant Engineering; Jurić, S., Ed.; InTech: Rijeka, Croatia, 2017; pp. 33–46. [Google Scholar]
- Zhang, H.; Shao, Y.; Bao, J.; Beta, T. Phenolic compounds and antioxidant properties of breeding lines between the white and black rice. Food Chem. 2015, 172, 630–639. [Google Scholar] [CrossRef]
- Akbari, M.; Farajpour, M.; Aalifar, M.; Sadat Hosseini, M. Gamma irradiation affects the total phenol, anthocyanin and antioxidant properties in three different persian pistachio nuts. Nat. Prod. Res. 2018, 32, 322–326. [Google Scholar] [CrossRef]
- Hong, M.J.; Kim, J.B.; Yoon, Y.H.; Kim, S.H.; Ahn, J.W.; Jeong, I.Y.; Kang, S.Y.; Seo, Y.W.; Kim, D.S. The effects of chronic gamma irradiation on oxidative stress response and the expression of anthocyanin biosynthesis-related genes in wheat (Triticum aestivum). Int. J. Radiat. Biol. 2014, 90, 1218–1228. [Google Scholar] [CrossRef]
- Štajner, D.; Popović, B.; Taški, K. Effects of γ-irradiation on antioxidant activity in soybean seeds. Open Life Sci. 2009, 4, 381–386. [Google Scholar] [CrossRef]
- Dixit, A.K.; Bhatnagar, D.; Kumar, V.; Rani, A.; Manjaya, J.G.; Bhatnagar, D. Gamma irradiation induced enhancement in isoflavones, total phenol, anthocyanin and antioxidant properties of varying seed coat colored soybean. J. Agric. Food Chem. 2010, 58, 4298–4302. [Google Scholar] [CrossRef]
- Farkhad, S.A.; Hosseini, A. Effect of gamma irradiation on antioxidant potential, isoflavone aglycone and phytochemical content of soybean (Glycine max L. Merrill) cultivar Williams. J. Radioanal. Nucl. Chem. 2020, 324, 497–505. [Google Scholar] [CrossRef]
- Kim, S.D.; Hong, E.H.; Kim, Y.H.; Lee, S.H.; Park, K.Y.; Kim, H.S.; Ryu, Y.H.; Park, R.K.; Kim, Y.S.; Seong, Y.K.; et al. A new high protein and good seed quality soybean variety “Danbaegkong”. J. Agric. Sci. 1996, 38, 228–232. [Google Scholar]
- Kim, D.G.; Lyu, J.I.; Lee, M.K.; Kim, J.M.; Hung, N.N.; Hong, M.J.; Kim, J.-B.; Bae, C.-H.; Kwon, S.-J. Construction of soybean mutant diversity pool (MDP) lines and an analysis of their genetic relationships and associations using TRAP markers. Agronomy 2020, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yamashita, Y.; Saito, A.; Ashida, H. An analysis method for flavan-3-ols using high performance liquid chromatography coupled with a fluorescence detector. J. Food. Drug. Anal. 2017, 25, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.J.; Oh, C.S.; Park, Y.D.; Kim, D.O.; Kim, U.J.; Cho, Y.S.; Eom, S.H. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 2014, 23, 943–949. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, Y.J.; Eom, S.H. Kiwifruit cultivar ‘Halla gold’ functional component changes during preharvest fruit maturation and postharvest storage. Sci. Hortic. 2018, 234, 134–139. [Google Scholar] [CrossRef]
- Lim, Y.J.; Jeong, H.Y.; Gil, C.S.; Kwon, S.J.; Na, J.K.; Lee, C.; Eom, S.H. Isoflavone accumulation and the metabolic gene expression in response to persistent UV-B irradiation in soybean sprouts. Food Chem. 2020, 303, 125376. [Google Scholar] [CrossRef] [PubMed]
- Choung, M.G.; Baek, I.Y.; Kang, S.T.; Han, W.Y.; Shin, D.C.; Moon, H.P.; Kang, K.H. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J. Agric. Food Chem. 2001, 49, 5848–5851. [Google Scholar] [CrossRef]
- Cho, K.M.; Ha, T.J.; Lee, Y.B.; Seo, W.D.; Kim, J.Y.; Ryu, H.W.; Jeong, S.H.; Kang, Y.M.; Lee, J.H. Soluble phenolics and antioxidant properties of soybean (Glycine max L.) cultivars with varying seed coat colours. J. Funct. Foods 2013, 5, 1065–1076. [Google Scholar] [CrossRef]
- Rios, L.Y.; Bennett, R.N.; Lazarus, S.A.; Rémésy, C.; Scalbert, A.; Williamson, G. Cocoa procyanidins are stable during gastric transit in humans. Am. J. Clin. Nutr. 2002, 76, 1106–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.F.; Zhang, F.X.; Zhang, M.W.; Wei, Z.C.; Yang, C.Y.; Zhang, Y.; Tang, X.J.; Deng, Y.Y.; Chi, J.W. Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean (Glycine max L. Merr.) varieties. J. Agric. Food Chem. 2011, 59, 5935–5944. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Rani, A.; Dixit, A.K.; Pratap, D.; Bhatnagar, D. A comparative assessment of total phenolic content, ferric reducing-anti-oxidative power, free radical-scavenging activity, vitamin C and isoflavones content in soybean with varying seed coat colour. Food Res. Int. 2010, 43, 323–328. [Google Scholar] [CrossRef]
- Choi, Y.M.; Yoon, H.; Lee, S.; Ko, H.C.; Shin, M.J.; Lee, M.C.; Hur, O.S.; Ro, N.Y.; Desta, K.T. Isoflavones, anthocyanins, phenolic content, and antioxidant activities of black soybeans (Glycine max (L.) Merrill) as affected by seed weight. Sci. Rep. 2020, 10, 19960. [Google Scholar] [CrossRef] [PubMed]
- Kwik-Uribe, C.; Bektash, R.M. Cocoa flavanols: Measurement, bioavailability and bioactivity. Asia Pac. J. Clin. Nutr. 2008, 17, 280–283. [Google Scholar]
- Aree, T.; Jongrungruangchok, S. Crystallographic evidence for β-cyclodextrin inclusion complexation facilitating the improvement of antioxidant activity of tea (+)-catechin and (−)-epicatechin. Carbohydr. Polym. 2016, 140, 362–373. [Google Scholar] [CrossRef]
- Takahata, Y.; Ohnishi-Kameyama, M.; Furuta, S.; Takahashi, M.; Suda, I. Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J. Agric. Food Chem. 2001, 49, 5843–5847. [Google Scholar] [CrossRef]
- Kitamura, S.; Shikazono, N.; Tanaka, A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 2004, 37, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Xu, W.; Li, W.; Ye, N.; Liu, R.; Shi, L.; Rahman, R.B.; Fan, M.; Zhang, J. Class III peroxidases are activated in proanthocyanidin-deficient Arabidopsis thaliana seeds. Ann. Bot. 2013, 111, 839–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabala, G.; Vodkin, L.O. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLoS ONE 2014, 9, e111959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicchillo, R.M.; Beeson, W.T.; McCaskill, D.G.; Shan, G.; Herman, R.A.; Walsh, T.A. Identification of iron-chelating phenolics contributing to seed coat coloration in soybeans (Glycine max (L.) Merr.) expressing aryloxyalkanoate dioxygenase-12. Phytochemistry 2020, 172, 112279. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Seguin, P.; Kim, J.J.; Moon, H.I.; Ro, H.M.; Kim, E.H.; Seo, S.H.; Kang, E.Y.; Ahn, J.K.; Chung, I.M. Isoflavones in Korean soybeans differing in seed coat and cotyledon color. J. Food Compost. Anal. 2010, 23, 160–165. [Google Scholar] [CrossRef]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. Evid. Based Complementary Alternat. Med. 2015, 2015, 165457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferri, M.; Gianotti, A.; Tassoni, A. Optimisation of assay conditions for the determination of antioxidant capacity and polyphenols in cereal food components. J. Food Compost. Anal. 2013, 30, 94–101. [Google Scholar] [CrossRef]
- Muselík, J.; García-Alonso, M.; Martín-López, M.P.; Žemlička, M.; Rivas-Gonzalo, J.C. Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins and pyranoanthocyanins. Int. J. Mol. Sci. 2007, 8, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Li, W.; Li, H.; Deng, Z.; Zhang, B. Extractable and non-extractable bound phenolic compositions and their antioxidant properties in seed coat and cotyledon of black soybean (Glycine max (L.) merr.). J. Funct. Foods 2017, 32, 296–312. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; Pinela, J.; Barros, L.; Ćirić, A.; Soković, M.; Calhelha, R.C.; Torija-Isasa, E.; Sánchez-Mata, M.C.; Ferreira, I.C. Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus lupulus L.) Seeds. Ind. Crops Prod. 2019, 134, 154–159. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, H.; Deng, Z.; Tsao, R. Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. J. Food Bioact. 2018, 1, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Kim, M.C.; Um, J.Y.; Hong, S.H. The beneficial effect of vanillic acid on ulcerative colitis. Molecules 2010, 15, 7208–7217. [Google Scholar] [CrossRef]
Delphinidin 3-O-Glucoside | Cyanidin 3-O-Galactoside | Cyanidin 3-O-Glucoside | Petunidin 3-O-Glucoside | Peonidin 3-O-Glucoside z | Total Anthocyanin | ||
---|---|---|---|---|---|---|---|
DB-009 | Seed | n.d.y | n.d. | 17.06 ± 2.02 | n.d. | n.d. | 17.06 ± 2.02 |
Seed coat | 2.13 ± 0.15 | 0.18 ± 0.03 | 28.39 ± 0.58 | 2.41 ± 0.16 | 1.41 ± 0.09 | 33.71 ± 0.80 | |
Cotyledon | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
DB-024 | Seed | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Seed coat | n.d. | n.d. | 0.39 ± 0.06 | n.d. | n.d. | 0.39 ± 0.06 | |
Cotyledon | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Parts | Lines | (+)-Catechin | (-)-Epicatechin | Total Flavan-3-ols |
---|---|---|---|---|
Seed | DB | 4.37 ± 0.15 ab | 0.56 ± 0.10 cd | 4.93 ± 0.09 c |
DB-009 | 4.94 ± 0.10 a | 5.72 ± 0.08 b | 10.66 ± 0.03 b | |
DB-024 | 3.16 ± 0.38 c | 0.21 ± 0.03 d | 3.37 ± 0.41 d | |
DB-031 | 2.90 ± 0.21 c | 15.30 ± 0.16 a | 18.19 ± 0.16 a | |
DB-049 | 3.67 ± 0.10 bc | 0.70 ± 0.01 c | 4.36 ± 0.06 c | |
DB-083 | 3.02 ± 0.14 c | 0.21 ± 0.14 d | 3.24 ± 0.01 d | |
DB-086 | 4.53 ± 0.06 ab | 0.63 ± 0.09 c | 5.16 ± 0.09 c | |
Seed coat | DB | 0.00 d | 0.00 c | 0 ± 0 c |
DB-009 | 8.26 ± 0.42 b | 68.70 ± 6.16 b | 76.96 ± 6.01 b | |
DB-024 | 5.43 ± 0.21 bc | 9.65 ± 0.66 c | 15.08 ± 0.47 c | |
DB-031 | 13.23 ± 2.23 a | 193.29 ± 6.86 a | 206.52 ± 7.94 a | |
DB-049 | 2.72 ± 0.32 cd | 1.64 ± 0.85 c | 4.37 ± 1.02 c | |
DB-083 | 2.33 ± 0.59 cd | 0.00 c | 2.33 ± 0.59 c | |
DB-086 | 2.64 ± 0.62 cd | 0.00 c | 2.64 ± 0.62 c | |
Cotyledon | DB | 5.03 ± 0.16 b | 0.64 ± 0.19 a | 5.67 ± 0.35 ab |
DB-009 | 6.91 ± 0.55 a | 0.00 a | 6.91 ± 0.55 a | |
DB-024 | 3.49 ± 0.02 cd | 0.33 ± 0.27 a | 3.82 ± 0.18 cd | |
DB-031 | 2.37 ± 0.23 d | 0.39 ± 0.21 a | 2.76 ± 0.21 d | |
DB-049 | 4.38 ± 0.31 bc | 0.71 ± 0.11 a | 5.09 ± 0.29 bc | |
DB-083 | 2.30 ± 0.07 d | 0.27 ± 0.15 a | 2.56 ± 0.11 d | |
DB-086 | 4.95 ± 0.27 b | 0.37 ± 0.16 a | 5.31 ± 0.24 b |
Total Aglycones | Total β-Glucosides | Total Acetyl Glucosides | Total Malonyl Glucosides | Total Isoflavones | ||
---|---|---|---|---|---|---|
Seed | DB | 1.99 ± 0.10 b | 31.24 ± 1.35 d | 0.94 ± 0.18 a | 56.66 ± 1.73 f | 90.84 ± 2.97 f |
DB-009 | 9.13 ± 2.38 b | 36.68 ± 2.56 d | 1.90 ± 0.72 a | 121.06 ± 2.17 e | 168.76 ± 1.88 e | |
DB-024 | 6.74 ± 1.40 b | 65.41 ± 9.25 cd | 4.84 ± 2.18 a | 186.93 ± 12.39 d | 263.93 ± 6.61 d | |
DB-031 | 7.75 ± 2.11 b | 100.41 ± 12.82 ab | 7.18 ± 3.30 a | 280.35 ± 26.93 c | 395.69 ± 18.94 c | |
DB-049 | 8.69 ± 1.11 b | 94.03 ± 0.50 bc | 8.65 ± 4.33 a | 352.83 ± 16.75 b | 464.19 ± 22.32 b | |
DB-083 | 8.37 ± 1.22 b | 98.45 ± 9.59 abc | 5.50 ± 2.78 a | 301.12 ± 5.87 bc | 413.44 ± 11.17 bc | |
DB-086 | 18.25 ± 2.70 a | 129.10 ± 1.38 a | 14.40 ± 7.20 a | 462.00 ± 4.67 a | 623.75 ± 9.72 a | |
Seed coat | DB | 0.60 ± 0.20 b | 9.73 ± 0.68 de | 0.24 ± 0.16 b | 44.28 ± 3.12 de | 54.85 ± 3.71 cd |
DB-009 | 30.59 ± 5.18 a | 1.80 ± 0.58 f | 4.82 ± 2.34 a | 12.43 ± 2.51 e | 49.64 ± 5.29 cd | |
DB-024 | 1.61 ± 0.69 b | 29.37 ± 1.28 a | 0.50 ± 0.21 ab | 151.05 ± 12.04 a | 182.53 ± 12.92 a | |
DB-031 | 3.09 ± 1.03 b | 25.05 ± 0.82 b | 1.06 ± 0.75 ab | 132.22 ± 11.48 ab | 161.42 ± 12.27 a | |
DB-049 | 0.51 ± 0.05 b | 20.90 ± 0.42 c | 0.41 ± 0.06 ab | 99.65 ± 8.30 bc | 121.47 ± 8.69 b | |
DB-083 | 0.55 ± 0.19 b | 6.99 ± 0.46 e | 0.33 ± 0.05 ab | 33.74 ± 0.76 e | 41.61 ± 1.16 d | |
DB-086 | 0.58 ± 0.01 b | 11.78 ± 0.70 d | 0.27 ± 0.07 b | 69.29 ± 1.22 cd | 81.92 ± 0.63 c | |
Cotyledon | DB | 0.68 ± 0.17 bc | 26.39 ± 2.71 d | 1.33 ± 0.22 a | 89.14 ± 2.64 f | 117.54 ± 4.25 e |
DB-009 | 0.48 ± 0.02 c | 24.22 ± 0.92 d | 0.95 ± 0.03 a | 123.34 ± 7.72 e | 148.98 ± 7.19 e | |
DB-024 | 0.99 ± 0.12 bc | 40.13 ± 4.61 cd | 1.66 ± 0.20 a | 177.25 ± 7.31 d | 220.04 ± 11.86 d | |
DB-031 | 1.34 ± 0.16 ab | 53.94 ± 3.49 bc | 0.98 ± 0.09 a | 235.95 ± 2.05 c | 292.21 ± 5.47 c | |
DB-049 | 0.98 ± 0.17 bc | 68.53 ± 4.02 ab | 1.18 ± 0.17 a | 280.35 ± 2.87 b | 351.04 ± 5.25 b | |
DB-083 | 0.64 ± 0.05 c | 56.39 ± 3.86 bc | 1.09 ± 0.19 a | 240.74 ± 1.51 c | 298.86 ± 5.21 c | |
DB-086 | 1.93 ± 0.20 a | 80.69 ± 7.13 a | 1.73 ± 0.19 a | 318.69 ± 13.99 a | 403.04 ± 20.77 a |
DPPH | ABTS | FRAP | Total Phenolics | Total Flavonoids | Total Anthocyanins (A) | Total Flavan-3-ols (B) | Total Isoflavones (C) | A + B | A + B + C | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Seed | DPPH | 1 | |||||||||
ABTS | 0.907 *** | 1 | |||||||||
FRAP | 0.913 *** | 0.840 *** | 1 | ||||||||
Total phenolics | 0.739 *** | 0.881 *** | 0.849 *** | 1 | |||||||
Total flavonoids | 0.643 ** | 0.579 ** | 0.804 *** | 0.653 ** | 1 | ||||||
Total anthocyanins (A) | 0.765 *** | 0.670 ** | 0.929 *** | 0.758 *** | 0.889 *** | 1 | |||||
Total flavan-3-ols (B) | 0.740 *** | 0.655 ** | 0.553 * | 0.429 ns | 0.080 ns | 0.278 ns | 1 | ||||
Total isoflavones (C) | −0.176 ns | 0.154 ns | −0.301 ns | 0.139 ns | −0.470 * | −0.418 ns | −0.057 ns | 1 | |||
A + B | 0.940 *** | 0.827 *** | 0.945 *** | 0.759 *** | 0.649 ** | 0.837 *** | 0.758 *** | −0.316 ns | 1 | ||
A + B + C | −0.128 ns | 0.201 ns | −0.256 ns | 0.182 ns | −0.443 * | −0.380 ns | −0.018 ns | 0.998 *** | −0.268 ns | 1 | |
Seed coat | DPPH | 1 | |||||||||
ABTS | 0.946 *** | 1 | |||||||||
FRAP | 0.997 *** | 0.936 *** | 1 | ||||||||
Total phenolics | 0.987 *** | 0.982 *** | 0.983 *** | 1 | |||||||
Total flavonoids | 0.990 *** | 0.974 *** | 0.988 *** | 0.999 *** | 1 | ||||||
Total anthocyanins (A) | 0.738 *** | 0.911 *** | 0.714 *** | 0.829 *** | 0.807 *** | 1 | |||||
Total flavan-3-ols (B) | 0.790 *** | 0.556 ** | 0.810 *** | 0.700 *** | 0.724 *** | 0.189 ns | 1 | ||||
Total isoflavones (C) | 0.100 ns | −0.080 ns | 0.125 ns | −0.012 ns | −0.001 ns | −0.370 ns | 0.375 ns | 1 | |||
A + B | 0.876 *** | 0.680 *** | 0.891 *** | 0.804 *** | 0.824*** | 0.344 ns | 0.987 *** | 0.298 ns | 1 | ||
A + B + C | 0.679 *** | 0.445 * | 0.703 *** | 0.570 ** | 0.590 ** | 0.055 ns | 0.900 *** | 0.730 ** | 0.870 *** | 1 | |
Cotyledon | DPPH | 1 | |||||||||
ABTS | 0.083 ns | 1 | |||||||||
FRAP | 0.116 ns | 0.092 ns | 1 | ||||||||
Total phenolics | 0.023 ns | 0.747 *** | 0.405 ns | 1 | |||||||
Total flavonoids | 0.148 ns | 0.549 * | −0.560 ** | 0.333 ns | 1 | ||||||
Total anthocyanins (A) | - | - | - | - | - | - | |||||
Total flavan-3-ols (B) | 0.274 ns | 0.001 ns | 0.339 ns | 0.041 ns | −0.020 ns | - | 1 | ||||
Total isoflavones (C) | −0.024 ns | 0.753 *** | 0.046 ns | 0.850 *** | 0.532 * | - | −0.346 ns | 1 | |||
A + B | 0.274 ns | 0.001 ns | 0.339 ns | 0.041 ns | −0.020 ns | - | 1.000 *** | −0.346 ns | 1 | ||
A + B + C | −0.019 ns | 0.757 *** | 0.051 ns | 0.855 *** | 0.534 * | - | −0.332 ns | 0.999 *** | −0.332 ns | 1 |
Class of Compounds | Compounds | DPPH Scavenging Activity IC50 (µg mL−1) | ABTS Scavenging Activity IC50 (µg mL−1) | FRAP Activity EC50 (µg mL−1) |
---|---|---|---|---|
Anthocyanins | Delphinidin 3-O-glucoside | 165.56 | 73.16 | 49.87 |
Cyanidin 3-O-glucoside | 192.20 | 64.62 | 51.96 | |
Petunidin 3-O-glucoside | 213.95 | 79.07 | 57.94 | |
Flavan-3-ols | Catechin | 167.88 | 49.26 | 76.17 |
Epicatechin | 151.90 | 43.76 | 70.95 | |
Inhibition at 10 mg mL−1 | Effectiveness at 2.5 mg mL−1 | |||
Isoflavones | Genistein | <10% | 31.15 | 43.78% |
Genistin | <10% | 191.92 | 23.24% | |
Acetyl genistin | <10% | 192.27 | 20.68% | |
Malonyl genistin | <10% | 258.39 | 14.17% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, Y.J.; Kwon, S.-J.; Qu, S.; Kim, D.-G.; Eom, S.H. Antioxidant Contributors in Seed, Seed Coat, and Cotyledon of γ-ray-Induced Soybean Mutant Lines with Different Seed Coat Colors. Antioxidants 2021, 10, 353. https://doi.org/10.3390/antiox10030353
Lim YJ, Kwon S-J, Qu S, Kim D-G, Eom SH. Antioxidant Contributors in Seed, Seed Coat, and Cotyledon of γ-ray-Induced Soybean Mutant Lines with Different Seed Coat Colors. Antioxidants. 2021; 10(3):353. https://doi.org/10.3390/antiox10030353
Chicago/Turabian StyleLim, You Jin, Soon-Jae Kwon, Shanshan Qu, Dong-Gun Kim, and Seok Hyun Eom. 2021. "Antioxidant Contributors in Seed, Seed Coat, and Cotyledon of γ-ray-Induced Soybean Mutant Lines with Different Seed Coat Colors" Antioxidants 10, no. 3: 353. https://doi.org/10.3390/antiox10030353
APA StyleLim, Y. J., Kwon, S. -J., Qu, S., Kim, D. -G., & Eom, S. H. (2021). Antioxidant Contributors in Seed, Seed Coat, and Cotyledon of γ-ray-Induced Soybean Mutant Lines with Different Seed Coat Colors. Antioxidants, 10(3), 353. https://doi.org/10.3390/antiox10030353