The Influence of Plant Extracts and Phytoconstituents on Antioxidant Enzymes Activity and Gene Expression in the Prevention and Treatment of Impaired Glucose Homeostasis and Diabetes Complications
Abstract
:1. Introduction
2. Diabetes and Oxidative Stress
3. Plants with Antidiabetic and Antioxidant Properties Modulate Redox-Related Gene Expression
3.1. Plants with Protective Effects on Pancreas in Diabetic Condition
Plant Extract | Model | Mechanism of Action | Reference |
---|---|---|---|
Centaurium erythraea Rafn Aqueous extract | STZ-induced diabetic rats | Reduces blood glucose level; reduces MDA level; induces GSH level and SOD, CAT, GPx activities; reduces degenerative changes of pancreatic islets. | [24] |
Methanolic extract | STZ-induced diabetic rats | Improves islet cell content and insulin, GLUT-2, p-Akt levels. | [26] |
Methanolic extract | STZ-treated Rin-5F cells | Increases cell viability, insulin secretion and mRNA level; reduces DNA damage, TBARS, GSSP, CAT and SOD activities; reduces mRNA of CAT, GPx, Mn/CuZnSOD; reduces NFκB-p65 and Nrf-2; induces Akt, ERK, p38, Pdx-1, MafA. | [26] |
Methanolic extract | H2O2/SNP-treated Rin-5F cells | Reduces TBARS, GSSP; increases GSH; modulates activities of CAT, GPx, GR, Mn/CuZnSOD; down-regulates mRNA levels of Mn/CuZnSOD, GPx, CAT. | [27] |
Eysenhardtia platycarpa, Eysenhardtia punctate, Eysenhardtia subcoriacea Methanolic extracts | Rat pancreas homogenate | Protection against (AAPH)-induced pancreas damage. | [28] |
Castanea sativa Mill. Ethanolic extract | STZ-treated Rin-5F cells | Increases cell viability and insulin protein level; preserves GSH; reduces TBARS, GSSP, DNA damage. | [29,30] |
Solanum torvum Swartz Methanolic extract | STZ-induced diabetic rats | Cytoprotection. | [31] |
3.2. Plants in the Service of Alleviation of Diabetic Complications
Plant Extract | Target | Model | Mechanism of Action | Reference |
---|---|---|---|---|
Castanea sativa Mill. Ethanolic extract | Liver/Kidney | STZ- diabetic rats | Improves hyperglycemia and hyperlipidemia; reduces DNA damage and GSSP; improves Mn/CuZnSOD activities; inhibits RAGE/NF-κB pathway. | [32] |
Ethanolic extract | Liver | STZ- diabetic rats | Induces mRNA levels and the activities of Mn/CuZnSOD and CAT; reduces SOD, CAT and NF-kB glycosilation; increases p-Akt level. | [33] |
Solanum torvum Swartz Methanolic extract | Liver | STZ- diabetic rats | Improves activities of SOD, CAT, GPx; cytoprotection. | [31] |
Gongronema latifolium Benth. Aqueous extract | Kidney | Alloxan-induced diabetic rats | Restores the alterations in FBG and activities of CAT, SOD, GPx. | [37] |
Pueraria tuberosa Aqueous extract | Kidney | STZ-induced diabetic rats | Increases activity of SOD, CAT, GPx; suppresses total ROS generation and lipid peroxides. | [36] |
Vitellaria paradoxa Aqueous extract | Liver | Alloxan-induced diabetic rats | Increases GSH and activities of CAT and SOD. | [38] |
Terminalia chebula Ethyl acetate extract | Liver | H2O2-treated HepG2 cells | Increases GST activity. | [39] |
Annona crassiflora Mart. Ethanolic extract | Liver | STZ-diabetic rats | Stimulates GPx, SOD, CAT activity and expression. | [40] |
Scoparia dulcis Aqueous extract | Liver | STZ-diabetic rats | Reduces blood glucose, glycosylated hemoglobin, TBARS, hydroperoxides and sorbitol dehydrogenase; increases insulin in plasma and activities of GPx, GST and GSH in the liver. | [41] |
Alhagi maurorum Aqueous/ethanolic extracts | Liver | STZ- diabetic rats | Increases GSH; decreases MDA; induces GPx and GST activities. | [42] |
Trigonella foenum graecum Aqueous extract | Liver | Alloxan- diabetic rats | Hypoglycemic effect; increases activities and mRNA levels of SOD, GPx and CAT. | [46] |
Aqueous extract | Circulation | STZ-diabetic rats | Loweres blood glucose levels, total cholesterol, triglycerides and increases HDL. | [47] |
Ixeris gracilis DC. Stebbins Methanolic extract | Liver/Kidney | Alloxan-diabetic rats | Improves glucose tolerance and glycemic control and the activities of GPx and SOD. | [43] |
β-glucan-enriched extract (1,3/1,4 β-glucan and a small amount of 1,6-linked glucose residues) | Liver/ Kidney Liver | STZ- diabetic rats STZ- diabetic rats | Improves hyperglycemia and hyperlipidemia; reduces DNA damage and TBARS; induces MnSOD, CuZnSOD and CAT activities; reduces glycation of serum proteins and reduces glycosylation of MnSOD, CuZnSOD, CAT. Attenuates inflammatory response by normalizing acute-phase proteins (α2-M and albumin) in serum; induces mRNA of anti-inflammatory cytokines (IL-10 and IL-4) and inhibites RAGE/NF-kB signaling in liver. | [48] [49] [10] |
Lannea coromandelica Houtt. Methanolic extract | Mon./ Macro.-like cells | APPH-treated RAW 264.7 cells | Induces mRNA and protein levels of SOD1, CAT, GPx1 and HO-1; enhances Nrf-2 pathway. | [35] |
Centaurium erythraea Rafn Methanolic extract | Red blood cells | STZ- diabetic rats | Induces CuZnSOD, CAT, GR activities; reduces TBARS and GSSP levels; increases GSH; reduces protein glycation and glycosylation; reduces blood glucose and HbA1C. | [25] |
3.3. Plant Extracts Used in Human Clinical Trials
Plant Extract | Target | Model | Mechanism of Action | Reference |
---|---|---|---|---|
Nigella sativa (capsules/500 mg of powder) | Circulation Pancreas | T2D patients (oral hypoglycemic therapy) | Reduces FBG, HbA1c and TBARS; elevates TAC, SOD and GSH; improves cell response to insulin and the activity of β-cells. | [52] |
Matricaria chamomilla Chamomile tea (3 g/150 mL hot water) | Circulation | T2D patients (non-insulin treatment) | Loweres HbA1c and MDA in serum and increases insulin sensitivity; increases SOD, GPx and CAT activities and TAC. | [53] |
Salvia miltiorrhiza Hydrophilic extract | Circulation | Diabetic patients with chronic heart disease (oral hypoglycemic therapy) | Increases serum GSH level and activities of SOD, GR and PONase. | [54] |
Protandim (nutritional supplement consisting of extracts of Bacopa monniera, Silybum marianum, Withania somnifera, Camellia sinensis and Curcuma longa) | Circulation | Healthy human subjects | Reduces oxidative stress and induces SOD and CAT expression in plasma. | [56] |
4. Protective Effects of Phytoconstituents in Diabetes Pathogenesis: Interaction with Antioxidant Gene Expression
4.1. Improvement of Insulin Secretion/Sensitivity and Glucose Homeostasis
Phytoconstituents and Their Sources | Effects | Type of Study | Mechanism of Action | Reference |
---|---|---|---|---|
Oleanolic acid (Olea europaea L.) | Increases insulin synthesis/secretion and improves glucose tolerance; promotes β-cell survival and proliferation. | INS-1 cells; STZ/Alloxan- diabetic mice/rats. | Induces Nrf-2-mediated gene expression of GPx, SOD and phase II enzymes and bocks Nf-κB; stimulates PKB/Akt pathway; represses polyol pathway, AGEs production and hyperlipidemia. | [58] |
Daphnetin (Cinnamomum trees, green tea, carrots) | Improves β-cell viability and insulin secretion. | STZ-treated INS-1 cells | Reduces lipid peroxidation and improves SOD, CAT, GPx and GST activities. | [59] |
Quercetin (Plant spices, onions, grapes, citrus, berries, leafy vegetables, legumes, cocoa) | Improves plasma insulin level; induces proliferation, survival and regeneration of islet and liver cells. | STZ-diabetic mice | Suppresses expression of Cdkn1a and INOS2. | [60] |
Curcumin (Curcuma longa) | Improves insulin sensitivity; antilipolytic effects in plasma. | HFD diabetic rats | Attenuates TNF-α and free fatty acids levels in plasma. | [62] |
Phloridzin (Apples and apple-derived products) | Antihyperglycemic, antihyperlipidemic effects. | STZ-diabetic rats | Reduces post prandial hyperglycemia and improves dyslipidemia. | [64] |
Berberine (Berberis aristata L., Berberis vulgaris L., Coptis chinensis Franch.) | Regulates hyperglycemia and dyslipidemia. | T2D patients | Decreases fasting and postload plasma glucose, HbA1c, triglyceride, TC and LDL. | [65] |
4.2. Cardioprotective Effects of Phytoconstituents
4.3. Kidney and Liver Protection by Phytoconstituents
Phytoconstituents and Their Sources | Effects | Type of Study | Mechanism of Action | Reference |
---|---|---|---|---|
Quercetin (Plant spices, onions, grapes, citrus, berries, leafy vegetables, legumes, cocoa) | Reduces TC and increases HDL; liver antioxidant protection. Attenuates liver complications. | T2D db/db mice HFD- metabolic syndrome in rats | Lowers TBARS and improves liver SOD, CAT and GPx activities. Increases liver Nrf-2, HO-1 and decreases NF-kB expression. | [61] [71] |
Curcumin (Curcuma longa) | Normalizes blood glucose; improves antioxidant protection in liver. | STZ-diabetic rats | Induces hepatic GSH level, SOD, CAT, GPx, GST activities and SOD and GST expression. | [63] |
Berberine (Berberis aristata L., Berberis vulgaris L., Coptis chinensis Franch.) | Hypoglycemic effect; liver protection. | STZ-NA diabetic mice | Induces hepatic expression of CuZnSOD. | [66] |
Baicalein (Scutellaria baicalensis, S. lateriflora) | Reduced diabetes-related oxidative stress in liver. | STZ-NA diabetic rats | Lowers blood glucose and HbA1c; increases activities and expression of SOD, CAT, GSH and GPx in the liver. | [84] |
Obacunone (citrus and plants of the Rutaceae family) | Renoprotective effect by preventing HG-induced oxidative damage of renal tubular epithelial cells. | HG-treated NRK-52E cells | Increases SOD, GSH, CAT levels; down-regulates activity of GSK-3β and up-regulates activity of Nrf-2; enhances mRNA of NQO-1 and HO-1 genes. | [90] |
Resveratrol (grapes, peanuts, strawberries, cherries) | Beneficial effect on kidney function. | STZ-diabetic rats | Normalizes CAT, SOD1 and SOD2 protein levels in kidneys toward control values. | [91] |
Saponins (Gynostemma pentaphyllum) | Ameliorates hyperglycemia, dyslipidemia and insulin levels. Renal- and hepato-protection. | STZ-diabetic rats | Promotes Nrf-2 expression and SOD and GPx activities in the liver; increases kidney SOD and GPx activities. | [92] |
Alpha-lipoic acid (spinach, broccoli, tomato, carrots) | Decreases glycosylation of antioxidant and redox signaling proteins in diabetic liver, kidney and circulation. | STZ- diabetic rats | Improves glucose, triglycerides, HbA1c, AST and ALT in serum; elevates GSH level; induces activities of SOD, CAT and reduces SOD, CAT, HSP70, HSP90 glycosylation in RBCs. | [93] |
STZ- diabetic rat kidney | Promotes activities of renal MnSOD, CuZnSOD and CAT by inducing their mRNA levels and by reducing their glycosylation. | [94] | ||
STZ- diabetic rat liver | Restores CAT and Mn/CuZnSOD activities; increases mRNA and protein levels of CuZnSOD and CAT; decreases glycosylation of SOD, CAT, ERK, p38 NFkB-p65, CEBPβ in liver. | [16] |
4.4. Impact of Phytoconstituents on Epigenetic Regulation
Phytoconstituents and Their Sources | Effects | Type of Study | Mechanism of Action | Reference |
---|---|---|---|---|
Quercetin (Plant spices, onions, grapes, citrus, berries, leafy vegetables, legumes, cocoa) | Attenuated cardiovascular complications. | HFD-induced metabolic syndrome in rats | Increases Nrf-2, HO-1 and decreases NF-kB expression in heart. | [71] |
Curcumin (Curcuma longa) | Cardioprotection. | HFD-mice model | Activates Nrf-2, HO-1, NQO-1 and inactivates NF-kB. | [85] |
Catechin (main component of tea) | Inversed relation with ischemic heart disease mortality. | Zutphen Elderly Study of men aged 65–84 years | Reduces the risk of ischemic heart disease. | [69] |
Ellagic acid (Strawberries, raspberries, blackberries, cherries, walnuts) | Improved oxidant-induced endothelial dysfunction and atherosclerosis. | HFD- ApoE (−/−) C57BL/6 mice | Induces NO synthase activity and antioxidant capacity in plasma; increases Nrf-2 and HO-1 expression in aortas; prevents HOCl-induced cellular damage. | [70] |
Maslinic acid (Medicinal plants) | Protection of VSMCs from oxidative stress. | VSMCs from Sprague-Dawley rats | Activates Akt/Nrf-2 signaling pathway and up-regulates expression of HO-1. | [72] |
Epigallo Catechin-3-O-Gallate (Green tea) | Atherosclerosis protection. | HUVEC cells | Loweres mRNA and protein expression of VCAM1 and ICAM1 genes. | [73] |
Azafrin (Centranthera grandiflora Benth.) | Cardioprotection. | MI/MIR injured rats; HEK293 and H9c2 cell lines | Lowers MDA and elevates SOD activity in serum; increases protein levels of HO-1, NQO1, Nrf-2; up-regulates Nrf-2, HO-1, NQO1, GCLC, GCLM, Trx1 and GST gene expression. | [74] |
α-Linolenic acid (canola, soybean, wild berries) | Cardioprotection. | DOX-induced cardiotoxicity in rats | Elevates mRNA level of myocardial Nrf-2 and SOD. | [76] |
7-HMR (Picea abies) | Inhibition of endothelial inflammation. | Rat aortic endothelial cells | Induces Nrf-2, SOD and HO-1 gene expression. | [82] |
Baicalein (Scutellaria baicalensis, S. lateriflora) | Reduced myocardial oxidative stress. | DOX-treated BALB/c mice | Increases Nrf-2 and HO-1 myocardial expression. | [83] |
Triptolide (Tripterygium wilfordii Hook F) | Cardioprotection. | Ischemic (I/R) rats | Suppresses TNF-α, IL-1β, IL-6 production and induces Nrf-2, GSH, SOD, GPx, HO-1 activity in ischemic myocardium tissue. | [75] |
Sulforaphane (broccoli sprouts) | Prevents diabetic cardiac oxidative damage and dysfunction. | STZ-induced diabetic mice | Activates cardiac Nrf-2 signaling and mRNA/protein levels of HO-1, NQO1, MT, CAT, SOD1, SOD2. | [87] |
Resveratrol (grapes, peanuts, strawberries, cherries) | Attenuates cardiac oxidative stress and complications. Attenuates cardiac oxidative insult through epigenetic regulation. Improves coronary artery disease through epigenetic regulation. | HFD/STZ-T2D rats HFD/STZ- diabetic rats T2D patients | Reduces MDA and induces MnSOD activity in heart; Sirt1 activation. Lowers IL-1β and TNF-α expression by mediating activity of miRNAs. | [78] [78] [98] |
Dioscin (Dioscorea nipponica Makino) | Protection against myocardial oxidative insult through epigenetic regulation. | H9c2 cell line | Activates Nrf-2 and Sirt2 signaling; induces expression of HO-1, NQO1, GST, GCLM, Keap1 and FOXO3a; decreases expression of miR-140-5p in cardiomyocytes. | [96] |
5. Long Journey from Phytochemical Composition to Biological Activity and Human Consumption
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Berná, G.; Oliveras-López, M.J.; Jurado-Ruíz, E.; Tejedo, J.; Bedoya, F.; Soria, B.; Martín, F. Nutrigenetics and Nutrigenomics Insights into Diabetes Etiopathogenesis. Nutrition 2014, 6, 5338–5369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karuranga, S.; Fernandes, J.; Huang, Y.; Malanda, B. IDF Diabetes Atlas 2017, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017; pp. 40–65. [Google Scholar]
- Ren, B.; O’Brien, B.A.; Swan, M.A.; Koina, M.E.; Nassif, N.; Wei, M.Q.; Simpson, A.M. Long-term correction of diabetes in rats after lentiviral hepatic insulin gene therapy. Diabetologia 2007, 50, 1910–1920. [Google Scholar] [CrossRef] [Green Version]
- Nasri, H.; Rafieian-Kopaei, M. Metformin: Current knowledge. J. Res. Med. Sci. 2014, 19, 658–664. [Google Scholar] [PubMed]
- Liu, Z.; Zhao, X.; Sun, W.; Wang, Y.; Liu, S.; Kang, L. Metformin combined with acarbose vs. single medicine in the treatment of type 2 diabetes: A meta-analysis. Exp. Ther. Med. 2017, 13, 3137–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbulakshmi, G.; Naik, M. Indigenous foods in the treatment of diabetes mellitus. Bombay Hosp. J. 2001, 43, 548–561. [Google Scholar]
- Jarald, E.; Joshi, S.B.; Jain, D.C. Diabetes vs. Herbal Medicines. Iranian J. Pharmacol. Therap. 2008, 7, 97. [Google Scholar]
- Sharma, B.; Mittal, A.; Dabur, R. Mechanistic approach of anti-diabetic compounds identified from natural sources. Chem. Biol. Lett. 2018, 5, 63–99. [Google Scholar]
- Schofield, C.J.; Sutherland, C. Disordered insulin secretion in the development of insulin resistance and Type 2 diabetes. Diabet. Med. 2012, 29, 972–979. [Google Scholar] [CrossRef]
- Uskoković, A.; Mihailović, M.; Dinić, S.; Arambašić-Jovanović, J.; Grdović, N.; Marković, J.; Poznanović, G.; Vidaković, M. Administration of a beta-glucan-enriched extract activates beneficial hepatic antioxidant and anti-inflammatory mechanisms in streptozotocin-induced diabetic rats. J. Funct. Foods 2013, 5, 1966–1974. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matés, J.M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 2000, 153, 83–104. [Google Scholar] [CrossRef]
- Keum, Y.S.; Han, Y.H.; Liew, C.; Kim, J.H.; Xu, C.; Yuan, X.; Shakarjian, M.P.; Chong, S.; Kong, A.N. Induction of heme oxy-genase-1 (HO-1) and NAD[P]H: Quinone oxidoreductase 1 (NQO1) by a phenolic antioxidant, butylated hydroxyanisole (BHA) and its metabolite, tert-butylhydroquinone (tBHQ) in primary-cultured human and rat hepatocytes. Pharm. Res. 2006, 23, 2586–2594. [Google Scholar] [CrossRef]
- Khor, T.O.; Huang, Y.; Wu, T.-Y.; Shu, L.; Lee, J.; Kong, A.-N.T. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem. Pharmacol. 2011, 82, 1073–1078. [Google Scholar] [CrossRef]
- Dinić, S.; Arambašić, J.; Mihailović, M.; Uskoković, A.; Grdović, N.; Marković, J.; Karadžić, B.; Poznanović, G.; Vidaković, M. Decreased O-GlcNAcylation of the key proteins in kinase and redox signalling pathways is a novel mechanism of the bene-ficial effect of alpha-lipoic acid in diabetic liver. Br. J. Nutr. 2013, 110, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlidis, C.; Patrinos, G.P.; Katsila, T. Nutrigenomics: A controversy. Appl. Transl. Genom. 2015, 4, 50–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatti, F.; Mankhey, R.W.; Asico, L.; Quinn, M.T.; Welch, W.J.; Maric, C. Mechanisms of antioxidant and pro-oxidant effects of alphalipoic acid in the diabetic and non-diabetic kidney. Kidney Int. 2005, 67, 1371–1380. [Google Scholar] [CrossRef] [Green Version]
- Lapolla, A.; Traldi, P.; Fedele, D. Importance of measuring products of non-enzymatic glycation of proteins. Clin. Biochem. 2005, 38, 103–115. [Google Scholar] [CrossRef]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nat. Cell Biol. 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.S.; Ho, E.C.; Lam, K.S.; Chung, S.K. Contribution of Polyol Pathway to Diabetes-Induced Oxidative Stress. J. Am. Soc. Nephrol. 2003, 14 (Suppl. 3), S233–S236. [Google Scholar] [CrossRef] [Green Version]
- Unuofin, J.O.; Lebelo, S.L. Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. Oxid. Med. Cell. Longev. 2020, 2020, 1356893. [Google Scholar] [CrossRef] [Green Version]
- Bharti, S.K.; Krishnan, S.; Kumar, A.; Kumar, A. Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Ther. Adv. Endocrinol. Metab. 2018, 9, 81–100. [Google Scholar] [CrossRef]
- Sefi, M.; Fetoui, H.; Lachkar, N.; Tahraoui, A.; Lyoussi, B.; Boudawara, T.; Zeghal, N. Centaurium erythrea (Gentianaceae) leaf extract alleviates streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. J. Ethnopharmacol. 2011, 135, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Đorđević, M.; Mihailović, M.; Jovanović, J.A.; Grdović, N.; Uskoković, A.; Tolić, A.; Sinadinović, M.; Rajić, J.; Mišić, D.; Šiler, B.; et al. Centaurium erythraea methanol extract protects red blood cells from oxidative damage in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2017, 202, 172–183. [Google Scholar] [CrossRef]
- Đorđević, M.; Grdović, N.; Mihailović, M.; Jovanović, J.A.; Uskoković, A.; Rajić, J.; Sinadinović, M.; Tolić, A.; Mišić, D.; Šiler, B.; et al. Centaurium erythraea extract improves survival and functionality of pancreatic beta-cells in diabetes through multiple routes of action. J. Ethnopharmacol. 2019, 242, 112043. [Google Scholar] [CrossRef] [PubMed]
- Đorđević, M.; Grdović, N.; Mihailović, M.; Jovanović, J.A.; Uskoković, A.; Rajić, J.; Đorđević, M.; Tolić, A.; Mišić, D.; Šiler, B.; et al. Centaurium erythraea extract reduces redox imbalance and improves insulin expression and secretion in pancreatic β-cells exposed to oxidative and nitrosative stress. Arch. Biol. Sci. 2020, 72, 117–128. [Google Scholar]
- Narváez-Mastache, J.M.; Soto, C.; Delgado, G. Antioxidant evaluation of Eysenhardtia species (Fabaceae): Relay synthesis of 3-O-Acetyl-11alpha,12alpha-epoxy-oleanan-28,13beta-olide isolated from E. platycarpa and its protective effect in experimental diabetes. Biol. Pharm. Bull. 2007, 30, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Mujić, A.; Grdović, N.; Mujić, I.; Mihailović, M.; Živković, J.; Poznanović, G.; Vidaković, M. Antioxidative effects of phenolic extracts from chestnut leaves, catkins and spiny burs in streptozotocin-treated rat pancreatic β-cells. Food Chem. 2011, 125, 841–849. [Google Scholar] [CrossRef]
- Grdović, N.; Dinić, S.; Arambašić, J.; Mihailović, M.; Uskoković, A.; Marković, J.; Poznanović, G.; Vidović, S.; Zeković, Z.; Mujić, A.; et al. Protective effect of Lactarius deterrimus and Castanea sativa extract mix (MIX Ld/Cs) on STZ-induced oxidative stress and pancreatic beta-cell death. Br. J. Nutr. 2012, 108, 1163–1176. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, G.R.; Ignacimuthu, S.; Paulraj, M.G. Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food Chem. Toxicol. 2011, 49, 2725–2733. [Google Scholar] [CrossRef]
- Arambašić Jovanović, J.; Mihailović, M.; Uskoković, A.; Grdović, N.; Dinić, S.; Poznanović, G.; Mujić, I.; Vidaković, M. Evalu-action of the antioxidant and antiglycation effects of Lactarius deterrimus and Castanea sativa extracts on hepatorenal injury in streptozotocin-induced diabetic rats. Front. Pharmacol. 2017, 8, 793. [Google Scholar] [CrossRef] [Green Version]
- Mihailović, M.; Uskoković, A.; Jovanović, J.A.; Grdović, N.; Dinić, S.; Poznanović, G.; Franić, A.; Đorđević, M.; Vidaković, M. Treatment of streptozotocin-induced diabetic rats with Castanea sativa and Lactarius deterrimus extracts decreases liver damage by initiating activation of the Akt prosurvival kinase. Arch. Biol. Sci. 2020, 72, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, P.; Zhou, M.; Wang, T.; Fang, S.; Shang, X.; Fu, X. Geographic variation in the chemical composition and anti-oxidant properties of phenolic compounds from Cyclocarya paliurus (Batal) Iljinskaja leaves. Molecules 2018, 23, 2440. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Kwon, K.; Lee, S.; Lee, S. Lannea coromandelica (Houtt.) Merr. induces heme oxygenase 1 (HO-1) expression and reduces oxidative stress via the p38/c-Jun N-terminal kinase-nuclear factor erythroid 2-related factor 2 (p38/JNK-NRF2)-mediated antioxidant pathway. Int. J. Mol. Sci. 2017, 18, 266. [Google Scholar] [CrossRef] [Green Version]
- Shukla, R.; Banerjee, S.; Tripathi, Y.B. Antioxidant and Antiapoptotic effect of aqueous extract of Pueraria tuberosa (Roxb. Ex Willd.) DC. On streptozotocin-induced diabetic nephropathy in rats. BMC Complement. Altern. Med. 2018, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ojo, O.A.; Okesola, M.A.; Ekakitie, L.I.; Ajiboye, B.O.; Oyinloye, B.E.; Agboinghale, P.E.; Onikanni, A.S.; Lisa, E. Gongronema latifolium Benth. leaf extract attenuates diabetes-induced neuropathy via inhibition of cognitive, oxidative stress and inflammatory response. J. Sci. Food Agric. 2020, 100, 4504–4511. [Google Scholar] [CrossRef] [PubMed]
- Miaffo, D.; Kamgue, O.; Guessom, T.; Temhoul, C.; Kamanyi, A. Antidiabetic and antioxidant potentials of Vitellaria para-doxa barks in alloxan-induced diabetic rats. Clin. Phytosci. 2019, 5, 1–8. [Google Scholar] [CrossRef]
- Sasidharan, I.; Sundaresan, A.; Nisha, V.M.; Kirishna, M.S.; Raghu, K.G.; Jayamurthy, P. Inhibitory effect of Terminalia chebula Retz. fruit extracts on digestive enzyme related to diabetes and oxidative stress. J. Enzym. Inhib. Med. Chem. 2012, 27, 578–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justino, A.B.; Pereira, M.N.; Peixoto, L.G.; Vilela, D.D.; Caixeta, D.C.; De Souza, A.V.; Teixeira, R.R.; Silva, H.C.G.; De Moura, F.B.R.; Moraes, I.B.; et al. Hepatoprotective Properties of a Polyphenol-Enriched Fraction from Annona crassiflora Mart. Fruit Peel against Diabetes-Induced Oxidative and Nitrosative Stress. J. Agric. Food Chem. 2017, 65, 4428–4438. [Google Scholar] [CrossRef] [PubMed]
- Latha, M.; Pari, L. Effect of an aqueous extract of Scoparia dulcis on blood glucose, plasma insulin and some polyol pathway enzymes in experimental rat diabetes. Braz. J. Med. Biol. Res. 2004, 37, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Sheweita, S.A.; Mashaly, S.; Newairy, A.A.; Abdou, H.M.; Eweda, S.M. Changes in Oxidative Stress and Antioxidant Enzyme Activities in Streptozotocin-Induced Diabetes Mellitus in Rats: Role of Alhagi maurorum Extracts. Oxidative Med. Cell. Longev. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Syiem, D.; Warjri, P. Antidiabetic, antioxidant, and TNF-α lowering properties of extract of the traditionally used plant Ixeris gracilis in alloxan-induced diabetic mice. Pharm. Biol. 2015, 53, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.D.; Raghuram, T.C.; Rao, N.S. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur. J. Clin. Nutr. 1990, 44, 301–306. [Google Scholar] [PubMed]
- Gupta, A.; Gupta, R.; Lal, B. Effect of Trigonella foenum-graecum (fenugreek) seed on glycemic control and insulin re-sistance in type 2 diabetes mellitus: A double blind placebo controlled study. J. Assoc. Physicians. India 2001, 49, 1057–1061. [Google Scholar]
- Sharma, S.; Mishra, V.; Jayant, S.K.; Srivastava, N. Effect of Trigonella foenum graecum L on the Activities of Antioxidant Enzyme and Their Expression in Tissues of Alloxan-Induced Diabetic Rats. J. Evid.-Based Integr. Med. 2015, 20, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.L.; Li, X.S.; Zhang, J.; Liu, Y.H.; Wang, Z.L.; Zhang, R.J. Effect of Trigonella foenum-graecium (fenugreek) extract on blood glucose, blood lipid and haemorhheological properties in streptozotocin induced diabetic rats. Asia. Pac. J. Clin. Nutr. 2007, 16, 422–426. [Google Scholar]
- Mihailović, M.; Arambašić, J.; Uskoković, A.; Dinić, S.; Grdović, N.; Marković, J.; Mujić, I.; Šijački, A.; Poznanović, G.; Vidaković, M. β-Glucan administration to diabetic rats reestablishes redox balance and stimulates cellular prosurvival mechanisms. J. Funct. Foods 2013, 5, 267–278. [Google Scholar]
- Mihailović, M.; Arambašić, J.; Uskoković, A.; Dinić, S.; Grdović, N.; Marković, J.; Bauder, J.; Poznanović, G.; Vidaković, M. beta-Glucan administration to diabetic rats alleviates oxidative stress by lowering hyperglycaemia, decreasing non-enzymatic glycation and protein O-GlcNAcylation. J. Funct. Foods 2013, 5, 1226–1234. [Google Scholar] [CrossRef]
- Jangale, N.M.; Devarshi, P.P.; Dubal, A.A.; Ghule, A.E.; Koppikar, S.J.; Bodhankar, S.L.; Chougale, A.D.; Kulkarni, M.J.; Harsulkar, A.M. Dietary flaxseed oil and fish oil modulates expression of antioxidant and inflammatory genes with alleviation of protein glycation status and inflammation in liver of streptozotocin-nicotinamide induced diabetic rats. Food Chem. 2013, 141, 187–195. [Google Scholar] [CrossRef]
- Kassaian, N.; Azadbakht, L.; Forghani, B.; Amini, M. Effect of Fenugreek Seeds on Blood Glucose and Lipid Profiles in Type 2 Diabetic Patients. Int. J. Vitam. Nutr. Res. 2009, 79, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Kaatabi, H.; Bamosa, A.O.; Badar, A.; Al-Elq, A.; Abou-Hozaifa, B.; Lebda, F.; Al-Khadra, A.; Al-Almaie, S. Nigella sativa im-proves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: Placebo controlled participant blinded clinical trial. PLoS ONE 2015, 10, e0113486. [Google Scholar] [CrossRef] [PubMed]
- Zemestani, M.; Rafraf, M.; Asghari-Jafarabadi, M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition 2016, 32, 66–72. [Google Scholar] [CrossRef]
- Qian, Q.; Qian, S.; Fan, P.; Huo, D.; Wang, S. Effect of Salvia miltiorrhiza Hydrophilic Extract on Antioxidant Enzymes in Diabetic Patients with Chronic Heart Disease: A Randomized Controlled Trial. Phytotherapy Res. 2011, 26, 60–66. [Google Scholar] [CrossRef]
- Crouse, J.R.; Morgan, T.; Terry, J.G.; Ellis, J.; Vitolins, M.; Burke, G.L. A Randomized Trial Comparing the Effect of Casein with That of Soy Protein Containing Varying Amounts of Isoflavones on Plasma Concentrations of Lipids and Lipoproteins. Arch. Intern. Med. 1999, 159, 2070–2076. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.K.; Bose, S.K.; Grunwald, G.K.; Myhill, P.; McCord, J.M. The induction of human superoxide dismutase and catalase in vivo: A fundamentally new approach to antioxidant therapy. Free Radic. Biol. Med. 2006, 40, 341–347. [Google Scholar] [CrossRef]
- De Oliveira, B.F.; Costa, D.C.; Nogueira-Machado, J.A.; Chaves, M.M. β-Carotene, α-tocopherol and ascorbic acid: Differential profile of antioxidant, inflammatory status and regulation of gene expression in human mononuclear cells of diabetic donors. Diabetes Metab. Rev. Res. 2013, 29, 636–645. [Google Scholar] [CrossRef]
- Castellano, J.M.; Guinda, A.; Delgado, T.; Rada, M.; Cayuela, J.A. Biochemical Basis of the Antidiabetic Activity of Oleanolic Acid and Related Pentacyclic Triterpenes. Diabetes 2013, 62, 1791–1799. [Google Scholar] [CrossRef] [Green Version]
- Vinayagam, R.; Xu, B. 7, 8-Dihydroxycoumarin (daphnetin) protects INS-1 pancreatic β-cells against streptozotocin-induced apoptosis. Phytomedicine 2017, 24, 119–126. [Google Scholar] [CrossRef]
- Kobori, M.; Matsumoto, S.; Akimoto, Y.; Takahashi, Y. Dietary Quercetin alleviates diabetic symptoms and reduces streptozocin induced disturbance of hepatic gene expression in mice. Mol. Nutr. Food. Res. 2009, 53, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Kang, M.J.; Choi, H.N.; Kim, J.H.; Kim, J.I. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type2 diabetic db/db mice. Nutr. Res. Pract. 2012, 6, 201–207. [Google Scholar] [CrossRef] [Green Version]
- El-Moselhy, M.A.; Taye, A.; Shaekawi, S.S.; El-Sisi, S.F.; Ahmad, A.F. The antihyperglycaemic effects of curcumin on high fat diet fed rats. Role of TNFα and free fatty acids. Food. Chem. Toxicol. 2011, 49, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- El-Bahr, S.M. Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats. BMC Complement. Altern. Med. 2013, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Najafian, M.; Jahromi, M.Z.; Nowroznejihad, M.J.; Khajeaian, P.; Kargar, M.M.; Sadeghi, M.; Arasteh, A. Phlordizin reduces blood glucose levels and improves lipid metabolism in streptozotocin –induced diabetic rats. Mol. Biol. Rep. 2012, 39, 5299–5306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P.; et al. Treatment of Type 2 Diabetes and Dyslipidemia with the Natural Plant Alkaloid Berberine. J. Clin. Endocrinol. Metab. 2008, 93, 2559–2565. [Google Scholar] [CrossRef] [Green Version]
- Chatuphonprasert, W.; Lao-Ong, T.; Jarukamjorn, K. Improvement of superoxide dismutase and catalase in streprozotocin-nicotinamide-induced type 2 diabetes in mice by berberine and glibenclamide. Pharm. Biol. 2013, 52, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.K.; Allahbadia, G.; Singh, M. Impact of Nutrigenomics on Various Metabolic Disorders in Relation to Life Style Alteration. Austin. J. Nutri. Food. Sci. 2018, 6, 1100. [Google Scholar]
- Grosso, G.; Stepaniak, U.; Micek, A.; Stefler, D.; Bobak, M.; Pająk, A. Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur. J. Nutr. 2017, 56, 1409–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arts, I.C.; Hollman, P.C.; Feskens, E.J.; De Mesquita, H.B.B.; Kromhout, D. Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: The Zutphen Elderly Study. Am. J. Clin. Nutr. 2001, 74, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, B.; Zhou, K.; Chen, M.; Wang, M.; Jia, Y.; Song, Y.; Li, Y.; Wen, A. Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: Role of Nrf2 activation. Int. J. Cardiol. 2014, 175, 508–514. [Google Scholar] [CrossRef]
- Panchal, S.K.; Poudyal, H.; Brown, L. Quercetin Ameliorates Cardiovascular, Hepatic, and Metabolic Changes in Diet-Induced Metabolic Syndrome in Rats. J. Nutr. 2012, 142, 1026–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, X.; Qiu, C.; Zhao, L. Maslinic acid protects vascular smooth muscle cells from oxidative stress through Akt/Nrf2/HO-1 pathway. Mol. Cell. Biochem. 2014, 390, 61–67. [Google Scholar] [CrossRef]
- Chae, Y.J.; Kim, C.H.; Ha, T.S.; Hescheler, J.; Ahn, H.Y.; Sachinidis, A. Epigallocatechin-3-O-gallate inibits the angiotensinII induced adhesion molecule expression in human umbilical vein endothelial cell via inhibition of MAPK pathways. Cell. Physiol. Biochem. 2007, 20, 859–866. [Google Scholar]
- Yang, S.; Chou, G.; Li, Q. Cardioprotective role of azafrin in against myocardial injury in rats via activation of the Nrf2-ARE pathway. Phytomedicine 2018, 47, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shi, L.; Zhao, S.; Sun, Y.; Gao, Y.; Sun, Y.; Qi, G. Triptolide Attenuates Myocardial Ischemia/Reperfusion Injuries in Rats by Inducing the Activation of Nrf2/HO-1 Defense Pathway. Cardiovasc. Toxicol. 2015, 16, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Cui, L.; Zhang, Z.; Zhao, Q.; Li, S. -Linolenic acid attenuates doxorubicin-induced cardiotoxicity in rats through suppression of oxidative stress and apoptosis. Acta Biochim. Biophys. Sin. 2013, 45, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Szkudelska, K.; Szkudelski, T. Resveratrol, obesity and diabetes. Eur. J. Pharmacol. 2010, 635, 1–8. [Google Scholar] [CrossRef]
- Fang, W.-J.; Wang, C.-J.; He, Y.; Zhou, Y.-L.; Peng, X.-D.; Liu, S.-K. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol. Sin. 2017, 39, 59–73. [Google Scholar] [CrossRef]
- Mohammadshahi, M.; Haidari, F.; Soufi, F.G. Chronic resveratrol administration improves diabetic cardiomyopathy in part by reducing oxidative stress. Cardiol. J. 2014, 21, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Vella, R.K.; Pullen, C.; Coulson, F.; Fenning, A.S. Resveratrol prevents cardiovascular complications in the SHR/STZ rat by reductions in oxidative stress and inflammation. Biol. Med. Res. Int. 2015, 2015, 918123. [Google Scholar] [CrossRef]
- Li, H.; Xia, N.; Förstermann, U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 2012, 26, 102–110. [Google Scholar] [CrossRef]
- Yang, D.; Xiao, C.X.; Su, Z.H.; Huang, M.W.; Qin, M.; Wu, W.J.; Jia, W.; Zhu, Y.; Hu, J.; Liu, X. (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-a-mediated inflammation response in endothelial cells by blocking the MAPK/NF-kB and activating Nrf2/HO-1. Phytomedicine 2017, 32, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Sahu, B.D.; Kumar, J.M.; Kuncha, M.; Borkar, R.M.; Srinivas, R.; Sistla, R. Baicalein alleviates doxorubicin-induced cardiotoxicity via suppression of myocardial oxidative stress and apoptosis in mice. Life Sci. 2016, 144, 8–18. [Google Scholar] [CrossRef]
- Sarkar, P.; Nath, K.; Banu, S. Modulatory effect of baicalein on gene expression and activity of antioxidant enzymes in streptozotocin-nicotinamide induced diabetic rats. Braz. J. Pharm. Sci. 2019, 55, 1–11. [Google Scholar] [CrossRef]
- Zeng, C.; Zhong, P.; Zhao, Y.; Kanchana, K.; Zhang, Y.; Khan, Z.A.; Chakrabarti, S.; Wu, L.; Wang, J.; Liang, G. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-kB both in vitro and in vivo. J. Mol. Cell Cardiol. 2015, 79, 1–12. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Tohidi, M.; Nazeri, P.; Mehran, M.; Azizi, F.; Mirmiran, P. Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: A randomized double-blind clinical trial. Int. J. Food Sci. Nutr. 2012, 63, 767–771. [Google Scholar] [CrossRef]
- Bai, Y.; Cui, W.; Xin, Y.; Miao, X.; Barati, M.T.; Zhang, C.; Chen, Q.; Tan, Y.; Cui, T.; Zheng, Y.; et al. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation. J. Mol. Cell. Cardiol. 2013, 57, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Kong, L.; Cheng, Y.; Zhang, Z.; Yangwei, W.; Manyu, L.; Yi, T.; Xiangmei, C.; Lining, M.; Lu, C. Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2. Free Radic. Biol. Med. 2015, 89, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Cheng, Y.; Wu, H.; Kong, L.; Wang, S.; Xu, Z.; Zhang, Z.; Tan, Y.; Keller, B.B.; Zhou, H.; et al. Metallothionein Is Downstream of Nrf2 and Partially Mediates Sulforaphane Prevention of Diabetic Cardiomyopathy. Diabetes 2016, 66, 529–542. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wang, T.; Wang, H.; Jiang, Y.; Peng, S. Obacunone attenuates high glucose-induced oxidative damage in NRK-52E cells by inhibiting the activity of GSK-3β. Biochem. Biophys. Res. Commun. 2019, 513, 226–233. [Google Scholar] [CrossRef]
- Sadi, G.; Şahin, G.; Bostanci, A. Modulation of Renal Insulin Signaling Pathway and Antioxidant Enzymes with Streptozotocin-Induced Diabetes: Effects of Resveratrol. Medicina 2019, 55, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, D.; Zhao, M.; Qi, X.; Liu, Y.; Li, N.; Liu, Z.; Bian, Y. Hypoglycemic effect of Gynostemma pentaphyllum saponins by enhancing the Nrf2 signaling pathway in STZ-inducing diabetic rats. Arch. Pharmacal Res. 2016, 39, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Mihailović, M.; Arambašić, J.; Uskoković, A.; Dinić, S.; Grdović, N.; Marković, J.; Poznanović, G.; Vidaković, M. Alpha-lipoic acid preserves the structural and functional integrity of red blood cells by adjusting the redox disturbance and decreasing O-GlcNAc modifications of antioxidant enzymes and heat shock proteins in diabetic rats. Eur. J. Nutr. 2012, 51, 975–986. [Google Scholar]
- Arambašić, J.; Mihailović, M.; Uskoković, A.; Dinić, S.; Grdović, N.; Marković, J.; Poznanović, G.; Bajec, D.; Vidaković, M. Alpha-lipoic acid upregulates antioxidant enzyme gene expression and enzymatic activity in diabetic rat kidneys through an O-GlcNAc-dependent mechanism. Eur. J. Nutr. 2013, 52, 1461–1473. [Google Scholar] [CrossRef]
- Ooi, B.K.; Chan, K.-G.; Goh, B.H.; Yap, W.H. The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches. Front. Pharmacol. 2018, 9, 1308. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Tao, X.; Qi, Y.; Xu, L.; Yin, L.; Peng, J. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol. 2018, 16, 189–198. [Google Scholar] [CrossRef]
- Mattagajasingh, I.; Kim, C.-S.; Naqvi, A.; Yamamori, T.; Hoffman, T.A.; Jung, S.-B.; DeRicco, J.; Kasuno, K.; Irani, K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 2007, 104, 14855–14860. [Google Scholar] [CrossRef] [Green Version]
- Tomé-Carneiro, J.; Larrosa, M.; Yáñez-Gascón, M.J.; Dávalos, A.; Gil-Zamorano, J.; Gonzálvez, M.; García-Almagro, F.J.; Ros, J.A.R.; Tomás-Barberán, F.A.; Espín, J.C.; et al. One-year supplementation with a grape extract containing resveratrol mod-ulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol. Res. 2013, 72, 69–82. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Epriliati, I.; Ginjom, R. Bioavailability of Phytochemicals, Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; InTechOpen: Rijeka, Croatia, 2012; Available online: https://www.intechopen.com/books/phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health/bioavailability-of-phytochemicals (accessed on 30 September 2020).
- Sun, S.; Wang, Y.; Wu, A.; Ding, Z.; Liu, X. Influence factors of the pharmacokinetics of herbal resourced compounds in clinical practice. Evid.-Based Complem. Alt. Med. 2019, 2019, 1983780. [Google Scholar] [CrossRef] [Green Version]
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 2015, 837042. [Google Scholar] [CrossRef] [Green Version]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; Da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Luan, X.; Zheng, M.; Tian, X.-H.; Zhao, J.; Zhang, W.-D.; Ma, B.-L. Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles. Pharmaceutics 2020, 12, 128. [Google Scholar] [CrossRef] [Green Version]
- Rotter, S.; Beronius, A.; Boobis, A.R.; Hanberg, A.; van Klaveren, J.; Luijten, M.; Machera, K.; Nikolopoulou, D.; van der Voet, H.; Zilliacus, J.; et al. Overview on legislation and scientific approaches for risk assessment of combined expo-sure to multiple chemicals: The potential EuroMix contribution. Crit. Rev. Toxicol. 2018, 48, 796–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ifeoma, O.; Oluwakanyinsola, S. Screening of herbal medicines for potential toxicities. In New Insight in Toxicity and Drug Testing; Gowder, S.J.T., Ed.; IntechOpen Limited: London, UK, 2013; pp. 63–88, Chapter 4. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihailović, M.; Dinić, S.; Arambašić Jovanović, J.; Uskoković, A.; Grdović, N.; Vidaković, M. The Influence of Plant Extracts and Phytoconstituents on Antioxidant Enzymes Activity and Gene Expression in the Prevention and Treatment of Impaired Glucose Homeostasis and Diabetes Complications. Antioxidants 2021, 10, 480. https://doi.org/10.3390/antiox10030480
Mihailović M, Dinić S, Arambašić Jovanović J, Uskoković A, Grdović N, Vidaković M. The Influence of Plant Extracts and Phytoconstituents on Antioxidant Enzymes Activity and Gene Expression in the Prevention and Treatment of Impaired Glucose Homeostasis and Diabetes Complications. Antioxidants. 2021; 10(3):480. https://doi.org/10.3390/antiox10030480
Chicago/Turabian StyleMihailović, Mirjana, Svetlana Dinić, Jelena Arambašić Jovanović, Aleksandra Uskoković, Nevena Grdović, and Melita Vidaković. 2021. "The Influence of Plant Extracts and Phytoconstituents on Antioxidant Enzymes Activity and Gene Expression in the Prevention and Treatment of Impaired Glucose Homeostasis and Diabetes Complications" Antioxidants 10, no. 3: 480. https://doi.org/10.3390/antiox10030480
APA StyleMihailović, M., Dinić, S., Arambašić Jovanović, J., Uskoković, A., Grdović, N., & Vidaković, M. (2021). The Influence of Plant Extracts and Phytoconstituents on Antioxidant Enzymes Activity and Gene Expression in the Prevention and Treatment of Impaired Glucose Homeostasis and Diabetes Complications. Antioxidants, 10(3), 480. https://doi.org/10.3390/antiox10030480