Antioxidative Molecules in Human Milk and Environmental Contaminants
Abstract
:1. Introduction
2. Human Milk Composition
2.1. Milk Fractions
2.2. Milk Fat Globules
2.3. The Fat Core
3. Digestion of Milk Globules
4. Human Milk Antioxidants
4.1. Signaling Pathways in the Redox Balance
4.2. Enzymatic Antioxidant Systems
4.3. Trace Elements
4.4. Lactoferrin
4.5. Melatonin
5. Environmental and Dietary Contaminants
5.1. Critical Windows of Development—Developmental Origins of Health and Disease Concept
5.2. Mechanisms by Which Environmental and Dietary Contaminants Are Entering Milk
5.3. Human Health Concerns of Environmental and Dietary Contaminants from Human Milk
5.4. Fat-Soluble Contaminants: Persistent Organic Pollutants
5.5. Plant Protection Products
5.6. Polycyclic Aromatic Hydrocarbons
5.7. Per- and Polyfluoroalkyl Substances
5.8. Plasticizers
5.9. Water-Soluble Contaminants: Mycotoxins
5.10. Water-Soluble Contaminants: Toxic Trace Elements
6. Food Safety and Monitoring Aspects
7. What Is Known of Benefits vs. Risk of Breastfeeding under Consideration of Environmental and Dietary Contaminants
7.1. Breastfeeding Benefits
7.2. Breastfeeding Discontinuation
7.3. How to Reduce Individual Exposure
8. Perspectives
8.1. A Role for Epigenetics
8.2. A Role for Microvesicles and miRNAs
8.3. A Role for the Microbiota
8.4. A Role for Human Milk Research
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
•OH | hydroxyl radical |
AAP | American Academy of Pediatrics |
ABCG2 | ATP-binding cassette sub-family G member 2 |
ADHD | attention-deficit/hyperactivity disorder |
AFB1 | aflatoxin B1 |
AFM1 | aflatoxin M1 |
AhR | aryl hydrocarbon receptor |
AKT1 | stock A strain k thymoma/transforming protein kinase 1 |
AR | androgen receptor |
ATP | adenosine triphosphate |
BaP | benzo(a)pyrene |
BBP | benzyl butyl phthalate |
BPA | bisphenol A |
BzBP | monobenzyl phthalate |
CAS no. | Chemical Abstracts Services registry number |
CAT | catalase |
CCAAT | cytosine-cytosine-adenosine-adenosine-thymidine box motif |
CDC | Center of Disease Control and Prevention |
CLA | conjugated linoleic acid |
CPF | chlorpyrifos |
CpG | 5′-C-phosphate-G-3′ |
Dacthal | dimethyl tetrachloroterephthalate |
DBP | di-n-butylphthalate |
DCPA | dimethyl tetrachloroterephthalate |
DDE | dichlorodiphenyldichloroethylene |
DDT | dichlorodiphenyltrichloroethane |
DEHP | di-(2-ethylhexyl) phthalate |
DEP | diethylphthalate |
DHA | docosahexaenoic acid |
DOHaD | Developmental Origins of Health and Disease |
DON | deoxynivalenol |
ECHA | European CHemicals Agency |
ED | endocrine disruptor(s) |
EFSA | European Food Safety Authority |
ER | estrogen receptor |
ERR | estrogen-related receptor |
ESPGHAN | European Society for Paediatric Gastroenterology, Hepatology and Nutrition |
FB2 | fumonisin B2 |
Fe2+ | ferrous iron |
Fe3+ | ferric iron |
GR | glutathione reductase |
GSH | glutathione |
GSHPx | glutathione peroxidases |
GST | glutathione S-transferase |
H2O2 | hydrogen peroxide |
HCB | hexachlorobenzene |
HIF | hypoxia-inducible factor |
HOO• | hydroperoxyl radical |
IGF2 | insulin-like growth factor 2 |
IR | interquartile range |
LCPUFA | long-chain polyunsaturated fatty acid(s) |
LogP | octanol-water partition coefficient |
MEHHP | mono(2-ethyl-5-hydroxyhexyl) phthalate |
MEHP | mono-2-ethylhexylphthalate |
MEOHP | mono-(2-ethyl-5-oxohexyl) phthalate |
MEP | monoethylphthalate |
MFG | milk fat globule |
MFGM | milk fat globule membrane |
miBP | mono-iso-butyl phthalate |
MAPK | mitogen-activated protein kinase |
MnBP | mono-n-butyl phthalate |
NFκB | Nuclear factor kappa B |
NICU | Neonatal Intensive Care Unit |
non-POP | non-persistent organic pollutants |
NOS | nitric oxide synthase |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
O2•− | superoxide anion radical |
OTA | ochratoxin A |
PAH | polycyclic aromatic hydrocarbons |
PBDE | polybrominated diphenyl ethers congeners |
PCB | polychlorinated biphenyls |
PERM | permethrin |
PFAS | per- and polyfluoroalkyl substance |
PFHxS | perfluoroalchilhexane sulfonic acid |
PFNA | perfluorononanoic acid |
PFOA | perfluorooctanoid acid |
PFOS | perfluorooctane sulfonate |
Pg | pictogram |
PI3K | Phosphoinositide 3-kinase |
pKa | acid dissociation constant |
POP | persistent organic pollutant |
PPAR α,γ | peroxisome proliferator-activated receptor alpha, gamma |
PPP | plant protection products |
PVC | polyvinyl chloride |
rER | rough Endoplasmic reticulum |
RNS | reactive nitrogen species |
ROO• | peroxyl radical |
RON | reactive nitrogen species |
RONS | reactive oxygen and nitrogen species |
ROS | reactive oxygen species |
SD | standard deviation |
SEM | standard error of the mean |
SOD | superoxide dismutase |
T2 | T-2 toxin |
TBBPA | tetra bromo bisphenol A |
TDS | testicular disgenesis syndrome |
TR | thyroid receptor |
VDR | vitamin D receptor |
VLDL | very low density lipoprotein. |
WAT | white adipose tissue |
WHO | World Health Organization |
XDH | xanthine oxidase/hydrogenase |
ZEA | zearalenone |
β-HCH | β-hexachlorocyclohexane |
Appendix A
Appendix B
References
- WHO. Infant and Young Child Feeding Model Chapter for Textbooks for Medical Students and Allied Health Professionals; World Health Organization (WHO) Press: Geneva, Switzerland, 2009; ISBN 9789241597494. [Google Scholar]
- Johnston, M.; Landers, S.; Noble, L.; Szucs, K.; Viehmann, L.; on behalf of American Academy of Pediatrics (AAP). Breastfeeding and the use of human milk: Section on breastfeeding. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Michaelsen, K.F.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; Shamir, R.; et al. Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 112–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Erick, M. Breast milk is conditionally perfect. Med. Hypotheses 2018, 111, 82–89. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. North. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA. Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014, 12, 1–106. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, S.A. Effects of gestational stage at delivery on human milk components: Chapter 03—E: Determinants of Milk Volume and Composition. In Handbook of Milk Composition, 1st ed.; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 222–237. ISBN 0-12-384430-4. [Google Scholar]
- Canfield, L.M.; Giuliano, A.R.; Graver, E.J. Carotenoids, retinoids, and vitamin K in human milk: Chapter 08—C: Vitamins in milk. In Handbook of Milk Composition, 1st ed.; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 693–705. ISBN 0-12-384430-4. [Google Scholar]
- Song, B.J.; Jouni, Z.E.; Ferruzzi, M.G. Assessment of phytochemical content in human milk during different stages of lactation. Nutrition 2013, 29, 195–202. [Google Scholar] [CrossRef]
- Canfield, L.M.; Giuliano, A.R.; Neilson, E.M.; Yap, H.H.; Graver, E.J.; Cui, H.A.; Blashill, B.M. beta-Carotene in breast milk and serum is increased after a single beta-carotene dose. Am. J. Clin. Nutr. 1997, 66, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, M.A.; Wesołowska, A.; Pawlus, B.; Hamułka, J. Health Effects of Carotenoids during Pregnancy and Lactation. Nutrients 2017, 9, 838. [Google Scholar] [CrossRef] [Green Version]
- Wesolowska, A.; Brys, J.; Barbarska, O.; Strom, K.; Szymanska-Majchrzak, J.; Karzel, K.; Pawlikowska, E.; Zielinska, M.A.; Hamulka, J.; Oledzka, G. Lipid Profile, Lipase Bioactivity, and Lipophilic Antioxidant Content in High Pressure Processed Donor Human Milk. Nutrients 2019, 11, 1972. [Google Scholar] [CrossRef] [Green Version]
- Klein, C.J. Nutrient Requirements for Preterm Infant Formulas. J. Nutr. 2002, 132, 1395S–1577S. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Szlagatys-Sidorkiewicz, A.; Zagierski, M. Concentrations of alpha- and gamma-tocopherols in human breast milk during the first months of lactation and in infant formulas. Matern. Child. Nutr. 2013, 9, 473–482. [Google Scholar] [CrossRef]
- Lima, M.S.R.; Dimenstein, R.; Ribeiro, K.D.S. Vitamin E concentration in human milk and associated factors: A literature review. J. Pediatr. (Rio J.) 2014, 90, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Wiedeman, A.M.; Whitfield, K.C.; March, K.M.; Chen, N.N.; Kroeun, H.; Sokhoing, L.; Sophonneary, P.; Dyer, R.A.; Xu, Z.; Kitts, D.D.; et al. Concentrations of water-soluble forms of choline in human milk from lactating women in Canada and Cambodia. Nutrients 2018, 10, 381. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.H.; Miles, M.V.; Steele, P.; Davidson, B.S.; Geraghty, S.R.; Morrow, A.L. Determination of coenzyme Q10 in human breast milk by high-performance liquid chromatography. Biomed. Chromatogr. Bmc 2006, 20, 1336–1343. [Google Scholar] [CrossRef]
- Quiles, J.L.; Ochoa, J.J.; Ramirez-Tortosa, M.C.; Linde, J.; Bompadre, S.; Battino, M.; Narbona, E.; Maldonado, J.; Mataix, J. Coenzyme Q concentration and total antioxidant capacity of human milk at different stages of lactation in mothers of preterm and full-term infants. Free Radic. Res. 2006, 40, 199–206. [Google Scholar] [CrossRef]
- Casey, C.E.; Smith, A.; Zhang, P. C—Microminerals in human and animal milks: Chapter 07: Minerals, Ions, and Trace Elements in Milk. In Handbook of Milk Composition, 1st ed.; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 622–674. ISBN 0-12-384430-4. [Google Scholar]
- Castillo-Castañeda, P.C.; Gaxiola-Robles, R.; Labrada-Martagón, V.; Acosta Vargas, B.; Méndez-Rodríguez, L.C.; Zenteno-Savín, T. Oxidative damage to proteins related to metals and antioxidant defenses in breastmilk. Nutr. Hosp. 2017, 34, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Castañeda, P.C.; García-González, A.; Bencomo-Alvarez, A.E.; Barros-Nuñez, P.; Gaxiola-Robles, R.; Méndez-Rodríguez, L.C.; Zenteno-Savín, T. Micronutrient content and antioxidant enzyme activities in human breast milk. J. Trace Elem. Med. Biol. Organ. Soc. Miner. Trace Elem. (Gms) 2019, 51, 36–41. [Google Scholar] [CrossRef]
- Prentice, A. D—Regional variations in the composition of human milk: Chapter 03: Determinants of Milk Volume and Composition. In Handbook of Milk Composition, 1st ed.; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 115–221. ISBN 0-12-384430-4. [Google Scholar]
- Todoroki, Y.; Tsukahara, H.; Ohshima, Y.; Shukunami, K.-I.; Nishijima, K.; Kotsuji, F.; Hata, A.; Kasuga, K.; Sekine, K.; Nakamura, H.; et al. Concentrations of thioredoxin, a redox-regulating protein, in umbilical cord blood and breast milk. Free Radic. Res. 2005, 39, 291–297. [Google Scholar] [CrossRef]
- Donovan, S.M. Human Milk Proteins: Composition and Physiological Significance. Nestle Nutr. Inst. Workshop Ser. 2019, 90, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Puchkova, L.V.; Babich, P.S.; Zatulovskaia, Y.A.; Ilyechova, E.Y.; Di Sole, F. Copper Metabolism of Newborns Is Adapted to Milk Ceruloplasmin as a Nutritive Source of Copper: Overview of the Current Data. Nutrients 2018, 10, 1591. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Shan, Q.; Wei, J.; Ma, F.; Sun, P. Lactoferrin: Major Physiological Functions and Applications. Curr. Protein Pept. Sci. 2019, 20, 139–144. [Google Scholar] [CrossRef]
- Goldman, A.S.; Goldblum, R.M. A—Defense agents in human milk: Chapter 09: Defense agents in milk. In Handbook of Milk Composition, 1st ed.; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 727–745. ISBN 0-12-384430-4. [Google Scholar]
- Lönnerdal, B.; Atkinson, S.A. A—Human Milk Proteins: Chapter 05: Nitrogenous Components of Milk. In Handbook of Milk Composition, 1st ed.; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 351–368. ISBN 0-12-384430-4. [Google Scholar]
- Demmelmair, H.; Prell, C.; Timby, N.; Lönnerdal, B. Benefits of Lactoferrin, Osteopontin and Milk Fat Globule Membranes for Infants. Nutrients 2017, 9, 817. [Google Scholar] [CrossRef] [Green Version]
- Lonnerdal, B. Infant formula and infant nutrition: Bioactive proteins of human milk and implications for composition of infant formulas. Am. J. Clin. Nutr. 2014, 99, 712S–717S. [Google Scholar] [CrossRef] [Green Version]
- Arsenault, J.E.; Webb, A.L.; Koulinska, I.N.; Aboud, S.; Fawzi, W.W.; Villamor, E. Association between breast milk erythropoietin and reduced risk of mother-to-child transmission of HIV. J. Infect. Dis. 2010, 202, 370–373. [Google Scholar] [CrossRef]
- Kling, P.J.; Sullivan, T.M.; Roberts, R.A.; Philipps, A.F.; Koldovský, O. Human milk as a potential enteral source of erythropoietin. Pediatr. Res. 1998, 43, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Katzer, D.; Pauli, L.; Mueller, A.; Reutter, H.; Reinsberg, J.; Fimmers, R.; Bartmann, P.; Bagci, S. Melatonin Concentrations and Antioxidative Capacity of Human Breast Milk According to Gestational Age and the Time of Day. J. Hum. Lact. 2016, 32, NP105–NP110. [Google Scholar] [CrossRef]
- Qin, Y.; Shi, W.; Zhuang, J.; Liu, Y.; Tang, L.; Bu, J.; Sun, J.; Bei, F. Variations in melatonin levels in preterm and term human breast milk during the first month after delivery. Sci. Rep. 2019, 9, 17984. [Google Scholar] [CrossRef]
- L’Abbe, M.R.; Friel, J.K. Superoxide dismutase and glutathione peroxidase content of human milk from mothers of premature and full-term infants during the first 3 months of lactation. J. Pediatr. Gastroenterol. Nutr. 2000, 31, 270–274. [Google Scholar] [CrossRef]
- Hamosh, M. C—Enzymes in human milk: Chapter 05: Nitrogenous Components of Milk. In Handbook of Milk Composition, 1st ed.; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 388–427. ISBN 0-12-384430-4. [Google Scholar]
- Lindmark-Månsson, H.; Akesson, B. Antioxidative factors in milk. Br. J. Nutr. 2000, 84 (Suppl. S1), S103–S110. [Google Scholar] [CrossRef] [Green Version]
- Gaxiola-Robles, R.; Labrada-Martagón, V.; de la Rosa, C.; de Jesús, A.; Acosta-Vargas, B.; Méndez-Rodríguez, L.C.; Zenteno-Savín, T. Interaction between mercury (Hg), arsenic (As) and selenium (Se) affects the activity of glutathione S-transferase in breast milk; possible relationship with fish and sellfish intake. Nutr. Hosp. 2014, 30, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Napierala, M.; Merritt, T.A.; Miechowicz, I.; Mielnik, K.; Mazela, J.; Florek, E. The effect of maternal tobacco smoking and second-hand tobacco smoke exposure on human milk oxidant-antioxidant status. Environ. Res. 2019, 170, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Friel, J.K.; Martin, S.M.; Langdon, M.; Herzberg, G.R.; Buettner, G.R. Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr. Res. 2002, 51, 612–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankrah, N.A.; Appiah-Opong, R.; Dzokoto, C. Human breastmilk storage and the glutathione content. J. Trop. Pediatr. 2000, 46, 111–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowska-Zimny, M.; Kaminska-El-Hassan, E. Cells of human breast milk. Cell. Mol. Biol. Lett. 2017, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Ninkina, N.; Kukharsky, M.S.; Hewitt, M.V.; Lysikova, E.A.; Skuratovska, L.N.; Deykin, A.V.; Buchman, V.L. Stem cells in human breast milk. Hum. Cell 2019, 32, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Canul-Medina, G.; Fernandez-Mejia, C. Morphological, hormonal, and molecular changes in different maternal tissues during lactation and post-lactation. J. Physiol. Sci. Jps 2019, 69, 825–835. [Google Scholar] [CrossRef]
- Jensen, R.G.; Blanc, B.; Patton, S. B—Particulate constituents in human and bovine Milks: Chapter 02: The Structure of Milk: Implications for Sampling and Storage. In Handbook of Milk Composition, 1st ed.; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 50–62. ISBN 0-12-384430-4. [Google Scholar]
- Layman, D.K.; Lönnerdal, B.; Fernstrom, J.D. Applications for α-lactalbumin in human nutrition. Nutr. Rev. 2018, 76, 444–460. [Google Scholar] [CrossRef]
- Victora, C.G.; Bahl, R.; Barros, A.J.D.; França, G.V.A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Demmelmair, H.; Koletzko, B. Variation of Metabolite and Hormone Contents in Human Milk. Clin. Perinatol. 2017, 44, 151–164. [Google Scholar] [CrossRef]
- Gallier, S.; Vocking, K.; Post, J.A.; van de Heijning, B.; Acton, D.; van der Beek, E.M.; van Baalen, T. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids Surfaces. Bbiointerfaces 2015, 136, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Mather, I.H.; Masedunskas, A.; Chen, Y.; Weigert, R. Symposium review: Intravital imaging of the lactating mammary gland in live mice reveals novel aspects of milk-lipid secretion. J. Dairy Sci. 2019, 102, 2760–2782. [Google Scholar] [CrossRef]
- Koletzko, B. Human Milk Lipids. Ann. Nutr. Metab. 2016, 69 (Suppl. S2), 28–40. [Google Scholar] [CrossRef] [Green Version]
- Cristea, S.; Polyak, K. Dissecting the mammary gland one cell at a time. Nat. Commun 2018, 9, 2473. [Google Scholar] [CrossRef] [Green Version]
- Mather, I.H.; Keenan, T.W. Origin and secretion of milk lipids. J. Mammary Gland Biol. Neoplasia 1998, 3, 259–273. [Google Scholar] [CrossRef]
- Ailhaud, G.; Massiera, F.; Weill, P.; Legrand, P.; Alessandri, J.-M.; Guesnet, P. Temporal changes in dietary fats: Role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog. Lipid Res. 2006, 45, 203–236. [Google Scholar] [CrossRef]
- Floris, L.M.; Stahl, B.; Abrahamse-Berkeveld, M.; Teller, I.C. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot. Essent. Fat. Acids 2019, 156, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zielinska, M.A.; Hamulka, J. Protective Effect of Breastfeeding on the Adverse Health Effects Induced by Air Pollution: Current Evidence and Possible Mechanisms. Int. J. Environ. Res. Public Health 2019, 16, 4181. [Google Scholar] [CrossRef] [Green Version]
- De Sousa Rebouças, A.; da Silva, A.G.C.L.; de Oliveira, A.F.; da Silva, L.T.P.; de Freitas Felgueiras, V.; Cruz, M.S.; Silbiger, V.N.; da Silva Ribeiro, K.D.; Dimenstein, R. Factors Associated with Increased Alpha-Tocopherol Content in Milk in Response to Maternal Supplementation with 800 IU of Vitamin E. Nutrients 2019, 11, 900. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.G.C.L.; de Sousa Rebouças, A.; Mendonça, B.M.A.; Silva, D.C.N.E.; Dimenstein, R.; Ribeiro, K.D.d.S. Relationship between the dietary intake, serum, and breast milk concentrations of vitamin A and vitamin E in a cohort of women over the course of lactation. Matern. Child. Nutr. 2019, 15, e12772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grilo, E.C.; Medeiros, W.F.; Silva, A.G.A.; Gurgel, C.S.S.; Ramalho, H.M.M.; Dimenstein, R. Maternal supplementation with a megadose of vitamin A reduces colostrum level of α-tocopherol: A randomised controlled trial. J. Hum. Nutr. Diet. 2016, 29, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Schelling, G.T.; Roeder, R.A.; Garber, M.J.; Pumfrey, W.M. Bioavailability and interaction of vitamin A and vitamin E in ruminants. J. Nutr 1995, 125, 1799S–1803S. [Google Scholar] [CrossRef] [PubMed]
- He, X.; McClorry, S.; Hernell, O.; Lönnerdal, B.; Slupsky, C.M. Digestion of human milk fat in healthy infants. Nutr. Res. 2020, 83, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Hunyadi, A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med. Res. Rev. 2019, 39, 2505–2533. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef] [Green Version]
- Păduraru, L.; Dimitriu, D.C.; Avasiloaiei, A.L.; Moscalu, M.; Zonda, G.I.; Stamatin, M. Total antioxidant status in fresh and stored human milk from mothers of term and preterm neonates. Pediatr. Neonatol. 2018, 59, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Shoji, H.; Shimizu, T. Effect of human breast milk on biological metabolism in infants. Pediatr. Int. 2019, 61, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Jensen, R.G. Handbook of Milk Composition, 1st ed.; Academic Press: San Diego, CA, USA, 1995; pp. 1–919. ISBN 0-12-384430-4. [Google Scholar]
- Reiter, R.J.; Mayo, J.C.; Tan, D.-X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016, 61, 253–278. [Google Scholar] [CrossRef]
- Gould, R.L.; Pazdro, R. Impact of Supplementary Amino Acids, Micronutrients, and Overall Diet on Glutathione Homeostasis. Nutrients 2019, 11, 1056. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, T.; Burdeos, G.C.; Itaya, M.; Nakagawa, K.; Miyazawa, T. Vitamin E: Regulatory Redox Interactions. Iubmb Life 2019, 71, 430–441. [Google Scholar] [CrossRef]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Feldman, N.B.; Lutsenko, S.V. ROS and RNS signalling: Adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic. Res. 2018, 52, 507–543. [Google Scholar] [CrossRef]
- Khadangi, F.; Azzi, A. Vitamin E—The Next 100 Years. Iubmb Life 2019, 71, 411–415. [Google Scholar] [CrossRef]
- Yang, C.S.; Luo, P.; Zeng, Z.; Wang, H.; Malafa, M.; Suh, N. Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Mol. Carcinog. 2020, 59, 365–389. [Google Scholar] [CrossRef]
- Pawlowska, E.; Szczepanska, J.; Blasiak, J. Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations. Oxid. Med. Cell. Longev. 2019, 7286737. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Weiskirchen, R. What Does the “AKT” Stand for in the Name “AKT Kinase”? Some Historical Comments. Front. Oncol. 2020, 10, 1329. [Google Scholar] [CrossRef]
- Azzi, A. Tocopherols, tocotrienols and tocomonoenols: Many similar molecules but only one vitamin E. Redox Biol. 2019, 26, 1–4. [Google Scholar] [CrossRef]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef] [Green Version]
- Conrad, M.; Kagan, V.E.; Bayir, H.; Pagnussat, G.C.; Head, B.; Traber, M.G.; Stockwell, B.R. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 2018, 32, 602–619. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.M.; Basak, A. Human catalase: Looking for complete identity. Protein Cell 2010, 1, 888–897. [Google Scholar] [CrossRef] [Green Version]
- Hampel, D.; Dror, D.K.; Allen, L.H. Micronutrients in Human Milk: Analytical Methods. Adv. Nutr. 2018, 9, 313S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Ting, S.-M.; Sun, G.; Roy-O’Reilly, M.; Mobley, A.S.; Bautista Garrido, J.; Zheng, X.; Obertas, L.; Jung, J.E.; Kruzel, M.; et al. Beneficial Role of Neutrophils Through Function of Lactoferrin After Intracerebral Hemorrhage. Stroke 2018, 49, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
- Neville, M.C. Lactogenesis in Women: Cascade of Events Revealed by Milk Composition: Chapter 03—A: Determinants of Milk Volume and Composition. In Handbook of Milk Composition, 1st ed.; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 87–98. ISBN 0-12-384430-4. [Google Scholar]
- Safaeian, L.; Javanmard, S.H.; Mollanoori, Y.; Dana, N. Cytoprotective and antioxidant effects of human lactoferrin against H2O2-induced oxidative stress in human umbilical vein endothelial cells. Adv. Biomed. Res. 2015, 4, 188. [Google Scholar] [CrossRef] [PubMed]
- Maneva, A.; Taleva, B.; Maneva, L. Lactoferrin-protector against oxidative stress and regulator of glycolysis in human erythrocytes. Z. Naturforsch. C J. Biosci. 2003, 58, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Zhao, F.; Wang, J.; Zhu, W. Lactoferrin attenuates lipopolysaccharide-stimulated inflammatory responses and barrier impairment through the modulation of NF-κB/MAPK/Nrf2 pathways in IPEC-J2 cells. Food Funct. 2020, 11, 8516–8526. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, E.T.; Sokolov, A.V.; Pavlichenko, N.N.; Kostevich, V.A.; Abdurasulova, I.N.; Chechushkov, A.V.; Voynova, I.V.; Elizarova, A.Y.; Kolmakov, N.N.; Bass, M.G.; et al. Erythropoietin and Nrf2: Key factors in the neuroprotection provided by apo-lactoferrin. Biometals 2018, 31, 425–443. [Google Scholar] [CrossRef] [PubMed]
- Socaciu, A.I.; Ionuţ, R.; Socaciu, M.A.; Ungur, A.P.; Bârsan, M.; Chiorean, A.; Socaciu, C.; Râjnoveanu, A.G. Melatonin, an ubiquitous metabolic regulator: Functions, mechanisms and effects on circadian disruption and degenerative diseases. Rev. Endocr. Metab. Disord. 2020, 21, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, D. Pleiotropic Effects of Melatonin. Drug Res. (Stuttg) 2019, 69, 65–74. [Google Scholar] [CrossRef]
- Chitimus, D.M.; Popescu, M.R.; Voiculescu, S.E.; Panaitescu, A.M.; Pavel, B.; Zagrean, L.; Zagrean, A.-M. Melatonin’s Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020, 10, 1211. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin, noncoding RNAs, messenger RNA stability and epigenetics--evidence, hints, gaps and perspectives. Int. J. Mol. Sci. 2014, 15, 18221–18252. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Ashrafizadeh, M. Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol. 2020, 34, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Marcoccia, D.; Pellegrini, M.; Fiocchetti, M.; Lorenzetti, S.; Marino, M. Food components and contaminants as (anti)androgenic molecules. Genes Nutr. 2017, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to Hexachlorobenzene as undesirable substance in animal feed. EFSA J. 2006, 4, 1–49. [Google Scholar] [CrossRef]
- EFSA. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to DDT as an undesirable substance in animal feed. EFSA J. 2006, 4, 1–69. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 1–241. [Google Scholar] [CrossRef]
- EFSA. Update of the monitoring of levels of dioxins and PCBs in food and feed. EFSA J. 2012, 10, 1–82. [Google Scholar] [CrossRef]
- EFSA. Dietary exposure to inorganic arsenic in the European population. EFSA J. 2014, 12, 1–68. [Google Scholar] [CrossRef]
- EFSA. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 1–36. [Google Scholar] [CrossRef] [Green Version]
- EFSA. The 2013 European Union report on pesticide residues in food. EFSA J. 2015, 13, 1–169. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration—A review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Haug, L.S.; Sakhi, A.K.; Andrusaityte, S.; Basagaña, X.; Brantsaeter, A.L.; Casas, M.; Fernández-Barrés, S.; Grazuleviciene, R.; Knutsen, H.K.; et al. Diet as a Source of Exposure to Environmental Contaminants for Pregnant Women and Children from Six European Countries. Environ. Health Perspect. 2019, 127, 107005. [Google Scholar] [CrossRef]
- Calatayud Arroyo, M.; García Barrera, T.; Callejón Leblic, B.; Arias Borrego, A.; Collado, M.C. A review of the impact of xenobiotics from dietary sources on infant health: Early life exposures and the role of the microbiota. Environ. Pollut. 2021, 269, 115994. [Google Scholar] [CrossRef]
- Ferramosca, A.; Lorenzetti, S.; Di Giacomo, M.; Murrieri, F.; Coppola, L.; Zara, V. Herbicides glyphosate and glufosinate ammonium negatively affect human sperm mitochondria respiration efficiency. Reprod. Toxicol. 2020, 99, 48–55. [Google Scholar] [CrossRef]
- State of the Science of Endocrine Disrupting Chemicals. An Assessment of the State of the Science of Endocrine Disruptors Prepared by a Group of Experts for the United Nations Environment Programme (UNEP) and WHO; Inter-Organization Programme for the Sound Management of Chemicals (IOMC); A Cooperative Agreement among FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD; Bergman, A., Heindel, J.H., Jobling, S., Kidd Karen, A., Zoeller, R.T., Eds.; World Health Organization (WHO) Press: Geneva, Switzerland, 2013; ISBN 9789241505031/9789280732740. [Google Scholar]
- El Hajj, N.; Schneider, E.; Lehnen, H.; Haaf, T. Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction 2014, 148, R111–R120. [Google Scholar] [CrossRef]
- Lehnen, H.; Zechner, U.; Haaf, T. Epigenetics of gestational diabetes mellitus and offspring health: The time for action is in early stages of life. Mol. Hum. Reprod. 2013, 19, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Anway, M.D.; Skinner, M.K. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 2006, 147, S43–S49. [Google Scholar] [CrossRef]
- Hashimoto, K.; Ogawa, Y. Epigenetic Switching and Neonatal Nutritional Environment. Adv. Exp. Med. Biol. 2018, 1012, 19–25. [Google Scholar] [CrossRef]
- Hanson, M.A.; Gluckman, P.D. Early developmental conditioning of later health and disease: Physiology or pathophysiology? Physiol. Rev. 2014, 94, 1027–1076. [Google Scholar] [CrossRef]
- Almeida, D.L.; Pavanello, A.; Saavedra, L.P.; Pereira, T.S.; de Castro-Prado, M.A.A.; de Freitas Mathias, P.C. Environmental monitoring and the developmental origins of health and disease. J. Dev. Orig. Health Dis. 2019, 10, 608–615. [Google Scholar] [CrossRef]
- Picó, C.; Reis, F.; Egas, C.; Mathias, P.; Matafome, P. Lactation as a programming window for metabolic syndrome. Eur. J. Clin. Invest. 2020, e13482. [Google Scholar] [CrossRef]
- Environmental Exposures and Toxicants. Available online: https://www.cdc.gov/breastfeeding/breastfeeding-special-circumstances/environmental-exposures/index.html (accessed on 17 January 2021).
- WHO. Children’s Health and Environment. Developing Action Plans; World Health Organization (WHO) Press: Geneva, Switzerland, 2005; ISBN 9289013745. [Google Scholar]
- Mead, M.N. Contaminants in human milk: Weighing the risks against the benefits of breastfeeding. Environ. Health Perspect. 2008, 116, A427–A434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Lee, A. Drug excretion into breast milk—Overview. Adv. Drug Deliv. Rev. 2003, 55, 617–627. [Google Scholar] [CrossRef]
- Rowe, H.; Baker, T.; Hale, T.W. Maternal medication, drug use, and breastfeeding. Child. Adolesc. Psychiatr. Clin. North. Am. 2015, 24, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Powe, C.E.; Knott, C.D.; Conklin-Brittain, N. Infant sex predicts breast milk energy content. Am. J. Hum. Biol. 2010, 22, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Lopes, B.R.; Barreiro, J.C.; Cass, Q.B. Bioanalytical challenge: A review of environmental and pharmaceuticals contaminants in human milk. J. Pharm. Biomed. Anal. 2016, 130, 318–325. [Google Scholar] [CrossRef]
- Hartle, J.C.; Cohen, R.S.; Sakamoto, P.; Barr, D.B.; Carmichael, S.L. Chemical Contaminants in Raw and Pasteurized Human Milk. J. Hum. Lact. 2018, 34, 340–349. [Google Scholar] [CrossRef]
- Weldon, R.H.; Barr, D.B.; Trujillo, C.; Bradman, A.; Holland, N.; Eskenazi, B. A pilot study of pesticides and PCBs in the breast milk of women residing in urban and agricultural communities of California. J. Environ. Monit. 2011, 13, 3136–3144. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; He, C.; Han, W.; Song, J.; Li, H.; Zhang, Y.; Jing, X.; Wu, W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. Environ. Res. 2020, 187, 109531. [Google Scholar] [CrossRef]
- Sanghi, R.; Pillai, M.K.K.; Jayalekshmi, T.R.; Nair, A. Organochlorine and organophosphorus pesticide residues in breast milk from Bhopal, Madhya Pradesh, India. Hum. Exp. Toxicol. 2003, 22, 73–76. [Google Scholar] [CrossRef]
- Souza, R.C.; Portella, R.B.; Almeida, P.V.N.B.; Pinto, C.O.; Gubert, P.; Santos da Silva, J.D.; Nakamura, T.C.; do Rego, E.L. Human milk contamination by nine organochlorine pesticide residues (OCPs). J. Environ. Sci. Health B 2020, 55, 530–538. [Google Scholar] [CrossRef]
- Santonicola, S.; de Felice, A.; Cobellis, L.; Passariello, N.; Peluso, A.; Murru, N.; Ferrante, M.C.; Mercogliano, R. Comparative study on the occurrence of polycyclic aromatic hydrocarbons in breast milk and infant formula and risk assessment. Chemosphere 2017, 175, 383–390. [Google Scholar] [CrossRef]
- Černá, M.; Grafnetterová, A.P.; Dvořáková, D.; Pulkrabová, J.; Malý, M.; Janoš, T.; Vodrážková, N.; Tupá, Z.; Puklová, V. Biomonitoring of PFOA, PFOS and PFNA in human milk from Czech Republic, time trends and estimation of infant’s daily intake. Environ. Res. 2020, 188. [Google Scholar] [CrossRef]
- Jin, H.; Mao, L.; Xie, J.; Zhao, M.; Bai, X.; Wen, J.; Shen, T.; Wu, P. Poly- and perfluoroalkyl substance concentrations in human breast milk and their associations with postnatal infant growth. Sci. Total Environ. 2020, 713. [Google Scholar] [CrossRef]
- Abdallah, M.A.-E.; Wemken, N.; Drage, D.S.; Tlustos, C.; Cellarius, C.; Cleere, K.; Morrison, J.J.; Daly, S.; Coggins, M.A.; Harrad, S. Concentrations of perfluoroalkyl substances in human milk from Ireland: Implications for adult and nursing infant exposure. Chemosphere 2020, 246, 125724. [Google Scholar] [CrossRef]
- Helou, K.; Harmouche-Karaki, M.; Karake, S.; Narbonne, J.-F. A review of organochlorine pesticides and polychlorinated biphenyls in Lebanon: Environmental and human contaminants. Chemosphere 2019, 231, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Lederman, S.A. Environmental contaminants in breast milk from the central asian republics. Reprod. Toxicol. 1996, 10, 93–104. [Google Scholar] [CrossRef]
- Inthavong, C.; Hommet, F.; Bordet, F.; Rigourd, V.; Guérin, T.; Dragacci, S. Simultaneous liquid chromatography-tandem mass spectrometry analysis of brominated flame retardants (tetrabromobisphenol A and hexabromocyclododecane diastereoisomers) in French breast milk. Chemosphere 2017, 186, 762–769. [Google Scholar] [CrossRef]
- Valitutti, F.; de Santis, B.; Trovato, C.M.; Montuori, M.; Gatti, S.; Oliva, S.; Brera, C.; Catassi, C. Assessment of Mycotoxin Exposure in Breastfeeding Mothers with Celiac Disease. Nutrients 2018, 10, 336. [Google Scholar] [CrossRef] [Green Version]
- Ul Hassan, Z.; Al Thani, R.; A Atia, F.; Al Meer, S.; Migheli, Q.; Jaoua, S. Co-occurrence of mycotoxins in commercial formula milk and cereal-based baby food on the Qatar market. Food Addit. Contaminants. Part. Bsurveillance 2018, 11, 191–197. [Google Scholar] [CrossRef]
- Mehta, R.V.; Wenndt, A.J.; Girard, A.W.; Taneja, S.; Ranjan, S.; Ramakrishnan, U.; Martorell, R.; Ryan, P.B.; Rangiah, K.; Young, M.F. Risk of dietary and breastmilk exposure to mycotoxins among lactating women and infants 2-4 months in northern India. Matern. Child. Nutr. 2020, e13100. [Google Scholar] [CrossRef]
- Memiş, E.Y.; Yalçın, S.S.; Yalçın, S. Mycotoxin carry-over in breast milk and weight of infant in exclusively-breastfed infants. Arch. Environ. Occup. Health 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Minichilli, F.; Bianchi, F.; Ronchi, A.M.; Gorini, F.; Bustaffa, E. Urinary Arsenic in Human Samples from Areas Characterized by Natural or Anthropogenic Pollution in Italy. Int. J. Environ. Res. Public Health 2018, 15, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fängström, B.; Moore, S.; Nermell, B.; Kuenstl, L.; Goessler, W.; Grandér, M.; Kabir, I.; Palm, B.; Arifeen, S.E.; Vahter, M. Breast-feeding protects against arsenic exposure in Bangladeshi infants. Environ. Health Perspect. 2008, 116, 963–969. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, F.M.; Caldas, E.D. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants. Environ. Res. 2016, 151, 671–688. [Google Scholar] [CrossRef]
- Molinspiration Cheminformatics Free Web Services. Interactive logP Calculator (miLogP2.2). Available online: https://www.molinspiration.com/services/logp.html (accessed on 30 December 2020).
- Malarvannan, G.; Dirinck, E.; Dirtu, A.C.; Pereira-Fernandes, A.; Neels, H.; Jorens, P.G.; van Gaal, L.; Blust, R.; Covaci, A. Distribution of persistent organic pollutants in two different fat compartments from obese individuals. Environ. Int. 2013, 55, 33–42. [Google Scholar] [CrossRef]
- Mustieles, V.; Arrebola, J.P. How polluted is your fat? What the study of adipose tissue can contribute to environmental epidemiology. J. Epidemiol. Community Health 2020, 74, 401–407. [Google Scholar] [CrossRef]
- Jansen, A.; Lyche, J.L.; Polder, A.; Aaseth, J.; Skaug, M.A. Increased blood levels of persistent organic pollutants (POP) in obese individuals after weight loss-A review. J. Toxicol. Environ. Health B Crit. Rev. 2017, 20, 22–37. [Google Scholar] [CrossRef]
- Gallenberg, L.A.; Vodicnik, M.J. Potential mechanisms for redistribution of polychlorinated biphenyls during pregnancy and lactation. Xenobiotica; Fate Foreign Compd. Biol. Syst. 1987, 17, 299–310. [Google Scholar] [CrossRef]
- Peralta-Videa, J.R.; Lopez, M.L.; Narayan, M.; Saupe, G.; Gardea-Torresdey, J. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. Int. J. Biochem. Cell Biol. 2009, 41, 1665–1677. [Google Scholar] [CrossRef]
- Silbergeld, E.K. Implications of new data on lead toxicity for managing and preventing exposure. Environ. Health Perspect. 1990, 89, 49–54. [Google Scholar] [CrossRef]
- Solomon, G.M.; Weiss, P.M. Chemical contaminants in breast milk: Time trends and regional variability. Environ. Health Perspect. 2002, 110, A339–A347. [Google Scholar] [CrossRef]
- Dorne, J.L.C.M.; Fink-Gremmels, J. Human and animal health risk assessments of chemicals in the food chain: Comparative aspects and future perspectives. Toxicol. Appl. Pharmacol. 2013, 270, 187–195. [Google Scholar] [CrossRef]
- Zoeller, R.T.; Brown, T.R.; Doan, L.L.; Gore, A.C.; Skakkebaek, N.E.; Soto, A.M.; Woodruff, T.J.; vom Saal, F.S. Endocrine-disrupting chemicals and public health protection: A statement of principles from The Endocrine Society. Endocrinology 2012, 153, 4097–4110. [Google Scholar] [CrossRef]
- DeRosa, C.; Richter, P.; Pohl, H.; Jones, D.E. Environmental exposures that affect the endocrine system: Public health implications. J. Toxicol. Environ. Health B Crit. Rev. 1998, 1, 3–26. [Google Scholar] [CrossRef]
- Kreitinger, J.M.; Beamer, C.A.; Shepherd, D.M. Environmental Immunology: Lessons Learned from Exposure to a Select Panel of Immunotoxicants. J. Immunol. 2016, 196, 3217–3225. [Google Scholar] [CrossRef] [Green Version]
- Furue, M.; Fuyuno, Y.; Mitoma, C.; Uchi, H.; Tsuji, G. Therapeutic Agents with AHR Inhibiting and NRF2 Activating Activity for Managing Chloracne. Antioxidants 2018, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Yates, M.S.; Kensler, T.W. Keap1 eye on the target: Chemoprevention of liver cancer. Acta Pharmacol. Sin. 2007, 28, 1331–1342. [Google Scholar] [CrossRef]
- Gross-Steinmeyer, K.; Eaton, D.L. Dietary modulation of the biotransformation and genotoxicity of aflatoxin B(1). Toxicology 2012, 299, 69–79. [Google Scholar] [CrossRef]
- Dai, C.; Xiao, X.; Sun, F.; Zhang, Y.; Hoyer, D.; Shen, J.; Tang, S.; Velkov, T. T-2 toxin neurotoxicity: Role of oxidative stress and mitochondrial dysfunction. Arch. Toxicol. 2019, 93, 3041–3056. [Google Scholar] [CrossRef]
- Soza-Ried, C.; Bustamante, E.; Caglevic, C.; Rolfo, C.; Sirera, R.; Marsiglia, H. Oncogenic role of arsenic exposure in lung cancer: A forgotten risk factor. Crit. Rev. Oncol. Hematol. 2019, 139, 128–133. [Google Scholar] [CrossRef]
- Cavaliere, M.; Semeraro, P.; Anania, C.; Frandina, G.; Rea, P.; Pacchiarotti, C.; Torroni, F.; Oliviero, G. Polychlorinated biphenyls and dichlorodiphenyl trichloroethane in human milk. A review. Eur. Rev. Med. Pharmacol. Sci. 1997, 1, 63–68. [Google Scholar] [PubMed]
- Golding, J. Unnatural constituents of breast milk—medication, lifestyle, pollutants, viruses. Early Hum. Dev. 1997, 49, S29–S43. [Google Scholar] [CrossRef]
- Jaga, K.; Dharmani, C. Global surveillance of DDT and DDE levels in human tissues. Int. J. Occup. Med. Environ. Health 2003, 16, 7–20. [Google Scholar] [PubMed]
- Van den Berg, M.; Kypke, K.; Kotz, A.; Tritscher, A.; Lee, S.Y.; Magulova, K.; Fiedler, H.; Malisch, R. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefit-risk evaluation of breastfeeding. Arch. Toxicol. 2017, 91, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Pluim, H.J.; Koppe, J.G.; Olie, K.; Slikke, J.W.V.D.; Kok, J.H.; Vulsma, T.; van Tijn, D.; de Vijlder, J.J.M. Effects of dioxins on thyroid function in newborn babies. Lancet 1992, 339, 1303. [Google Scholar] [CrossRef]
- Fisher, J.S. Environmental anti-androgens and male reproductive health: Focus on phthalates and testicular dysgenesis syndrome. Reproduction 2004, 127, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, R.M.; Skakkebaek, N.E. Testicular dysgenesis syndrome: Mechanistic insights and potential new downstream effects. Fertil. Steril. 2008, 89, e33–e38. [Google Scholar] [CrossRef]
- Frederiksen, H.; Skakkebaek, N.E.; Andersson, A.-M. Metabolism of phthalates in humans. Mol. Nutr. Food Res. 2007, 51, 899–911. [Google Scholar] [CrossRef]
- Ivell, R.; Heng, K.; Nicholson, H.; Anand-Ivell, R. Brief maternal exposure of rats to the xenobiotics dibutyl phthalate or diethylstilbestrol alters adult-type Leydig cell development in male offspring. Asian J. Androl. 2013, 15, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Hennig, B.; Reiterer, G.; Majkova, Z.; Oesterling, E.; Meerarani, P.; Toborek, M. Modification of Environmental Toxicity by Nutrients: Implications in Atherosclerosis. Cardiovasc. Toxicol. 2005, 5, 153–160. [Google Scholar] [CrossRef]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [Green Version]
- Niestroy, J.; Barbara, A.; Herbst, K.; Rode, S.; van Liempt, M.; Roos, P.H. Single and concerted effects of benzoapyrene and flavonoids on the AhR and Nrf2-pathway in the human colon carcinoma cell line Caco-2. Toxicol. Vitr. 2011, 25, 671–683. [Google Scholar] [CrossRef]
- Safe, S.; Jin, U.-H.; Park, H.; Chapkin, R.S.; Jayaraman, A. Aryl Hydrocarbon Receptor (AHR) Ligands as Selective AHR Modulators (SAhRMs). Int. J. Mol. Sci. 2020, 21, 6654. [Google Scholar] [CrossRef]
- Furue, M.; Uchi, H.; Mitoma, C.; Hashimoto-Hachiya, A.; Chiba, T.; Ito, T.; Nakahara, T.; Tsuji, G. Antioxidants for Healthy Skin: The Emerging Role of Aryl Hydrocarbon Receptors and Nuclear Factor-Erythroid 2-Related Factor-2. Nutrients 2017, 9, 223. [Google Scholar] [CrossRef]
- Basham, K.J.; Leonard, C.J.; Kieffer, C.; Shelton, D.N.; McDowell, M.E.; Bhonde, V.R.; Looper, R.E.; Welm, B.E. Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor. Toxicol. Sci. 2015, 143, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Halwachs, S.; Wassermann, L.; Lindner, S.; Zizzadoro, C.; Honscha, W. Fungicide prochloraz and environmental pollutant dioxin induce the ABCG2 transporter in bovine mammary epithelial cells by the arylhydrocarbon receptor signaling pathway. Toxicol. Sci. 2013, 131, 491–501. [Google Scholar] [CrossRef]
- Brown, A.R.; Whale, G.; Jackson, M.; Marshall, S.; Hamer, M.; Solga, A.; Kabouw, P.; Galay-Burgos, M.; Woods, R.; Nadzialek, S.; et al. Toward the definition of specific protection goals for the environmental risk assessment of chemicals: A perspective on environmental regulation in Europe. Integr. Environ. Assess. Manag. 2017, 13, 17–37. [Google Scholar] [CrossRef]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of endocrine disruptor pesticides: A review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [Green Version]
- Gross, M.; Green, R.M.; Weltje, L.; Wheeler, J.R. Weight of evidence approaches for the identification of endocrine disrupting properties of chemicals: Review and recommendations for EU regulatory application. Regul. Toxicol. Pharmacol. 2017, 91, 20–28. [Google Scholar] [CrossRef]
- Day, P.; Green, R.M.; Gross, M.; Weltje, L.; Wheeler, J.R. Endocrine Disruption: Current approaches for regulatory testing and assessment of plant protection products are fit for purpose. Toxicol. Lett. 2018, 296, 10–22. [Google Scholar] [CrossRef] [PubMed]
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, M.; Corces, V.G.; Rissman, E.F. Mini-review: Epigenetic mechanisms that promote transgenerational actions of endocrine disrupting chemicals: Applications to behavioral neuroendocrinology. Horm. Behav. 2020, 119, 104677. [Google Scholar] [CrossRef] [PubMed]
- Witczak, A.; Pohoryło, A.; Abdel-Gawad, H. Endocrine-Disrupting Organochlorine Pesticides in Human Breast Milk: Changes during Lactation. Nutrients 2021, 13, 229. [Google Scholar] [CrossRef]
- Liu, G.; Niu, Z.; van Niekerk, D.; Xue, J.; Zheng, L. Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: Emissions, analysis, and toxicology. Rev. Environ. Contam. Toxicol. 2008, 192, 1–28. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Gunasekaran, K.; Sasidharan, S.; Jeyamanickavel Mathan, V.; Perumal, E. MicroRNAs and Xenobiotic Toxicity: An Overview. Toxicol. Rep. 2020, 7, 583–595. [Google Scholar] [CrossRef]
- Post, G.B.; Cohn, P.D.; Cooper, K.R. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environ. Res. 2012, 116, 93–117. [Google Scholar] [CrossRef]
- Liu, Y.; An, L.; Buchanan, S.; Liu, W. Exposure characteristics for congeners, isomers, and enantiomers of perfluoroalkyl substances in mothers and infants. Environ. Int. 2020, 144, 106012. [Google Scholar] [CrossRef]
- Forns, J.; Verner, M.-A.; Iszatt, N.; Nowack, N.; Bach, C.C.; Vrijheid, M.; Costa, O.; Andiarena, A.; Sovcikova, E.; Høyer, B.B.; et al. Early Life Exposure to Perfluoroalkyl Substances (PFAS) and ADHD: A Meta-Analysis of Nine European Population-Based Studies. Environ. Health Perspect. 2020, 128, 57002. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Pjanic, M. The role of polycarbonate monomer bisphenol-A in insulin resistance. PeerJ 2017, 5, e3809. [Google Scholar] [CrossRef] [Green Version]
- Candidate List of Substances of Very high Concern for Authorisation: Published in Accordance with Article 59(10) of the REACH Regulation. Available online: https://www.echa.europa.eu/candidate-list-table (accessed on 18 January 2021).
- Grün, F. Obesogens. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Peterson, K.E. Maternal Exposure to Synthetic Chemicals and Obesity in the Offspring: Recent Findings. Curr. Environ. Health Rep. 2015, 2, 339–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Savastano, S.; Colao, A. Obesogenic endocrine disruptors and obesity: Myths and truths. Arch. Toxicol. 2017, 91, 3469–3475. [Google Scholar] [CrossRef]
- Filardi, T.; Panimolle, F.; Lenzi, A.; Morano, S. Bisphenol A and Phthalates in Diet: An Emerging Link with Pregnancy Complications. Nutrients 2020, 12, 525. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, Y.; Li, Y.; Zhang, J.; Zhou, C.; Wu, C.; Zhu, Q.; Shen, T. Maternal vitamin D supplementation inhibits bisphenol A-induced proliferation of Th17 cells in adult offspring. Food Chem. Toxicol. 2020, 144, 111604. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, B.; Lin, T.; Wu, S.; Wei, G. Protective effects of vitamin E against reproductive toxicity induced by di(2-ethylhexyl) phthalate via PPAR-dependent mechanisms. Toxicol. Mech. Methods 2017, 27, 551–559. [Google Scholar] [CrossRef]
- El Henafy, H.M.A.; Ibrahim, M.A.; Abd El Aziz, S.A.; Gouda, E.M. Oxidative Stress and DNA methylation in male rat pups provoked by the transplacental and translactational exposure to bisphenol A. Environ. Sci. Pollut. Res. Int. 2020, 27, 4513–4519. [Google Scholar] [CrossRef]
- de Aguiar Greca, S.-C.; Kyrou, I.; Pink, R.; Randeva, H.; Grammatopoulos, D.; Silva, E.; Karteris, E. Involvement of the Endocrine-Disrupting Chemical Bisphenol A (BPA) in Human Placentation. J. Clin. Med. 2020, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Shimpi, P.C.; More, V.R.; Paranjpe, M.; Donepudi, A.C.; Goodrich, J.M.; Dolinoy, D.C.; Rubin, B.; Slitt, A.L. Hepatic Lipid Accumulation and Nrf2 Expression following Perinatal and Peripubertal Exposure to Bisphenol A in a Mouse Model of Nonalcoholic Liver Disease. Environ. Health Perspect. 2017, 125, 87005. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, L.; Liu, H.; Wang, J.; Zheng, N. The compromised intestinal barrier induced by mycotoxins. Toxins 2020, 12, 619. [Google Scholar] [CrossRef]
- Coppa, C.F.S.C.; Mousavi Khaneghah, A.; Alvito, P.; Assunção, R.; Martins, C.; Eş, I.; Gonçalves, B.L.; Valganon de Neeff, D.; Sant’Ana, A.S.; Corassin, C.H.; et al. The occurrence of mycotoxins in breast milk, fruit products and cereal-based infant formula: A review. Trends Food Sci. Technol. 2019, 92, 81–93. [Google Scholar] [CrossRef]
- Hueza, I.M.; Raspantini, P.C.F.; Raspantini, L.E.R.; Latorre, A.O.; Górniak, S.L. Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound. Toxins 2014, 6, 1080–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalska, K.; Habrowska-Górczyńska, D.E.; Piastowska-Ciesielska, A.W. Zearalenone as an endocrine disruptor in humans. Environ. Toxicol. Pharmacol. 2016, 48, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [Green Version]
- Bouhet, S.; Oswald, I.P. The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. Vet. Immunol. Immunopathol. 2005, 108, 199–209. [Google Scholar] [CrossRef]
- Tesfamariam, K.; de Boevre, M.; Kolsteren, P.; Belachew, T.; Mesfin, A.; de Saeger, S.; Lachat, C. Dietary mycotoxins exposure and child growth, immune system, morbidity, and mortality: A systematic literature review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3321–3341. [Google Scholar] [CrossRef]
- Isaac, C.P.J.; Sivakumar, A.; Kumar, C.R.P. Lead levels in breast milk, blood plasma and intelligence quotient: A health hazard for women and infants. Bull. Environ. Contam. Toxicol. 2012, 88, 145–149. [Google Scholar] [CrossRef]
- Oskarsson, A.; Palminger Hallén, I.; Sundberg, J.; Petersson Grawé, K. Risk assessment in relation to neonatal metal exposure. Analyst 1998, 123, 19–23. [Google Scholar] [CrossRef]
- Koyashiki, G.A.K.; Paoliello, M.M.B.; Tchounwou, P.B. Lead levels in human milk and children’s health risk: A systematic review. Rev. Environ. Health 2010, 25, 243–253. [Google Scholar] [CrossRef]
- Kerper, L.E.; Ballatori, N.; Clarkson, T.W. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am. J. Physiol. 1992, 262, R761–R765. [Google Scholar] [CrossRef]
- Grandjean, P.; Jørgensen, P.J.; Weihe, P. Human milk as a source of methylmercury exposure in infants. Environ. Health Perspect. 1994, 102, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Olszowski, T.; Baranowska-Bosiacka, I.; Rębacz-Maron, E.; Gutowska, I.; Jamioł, D.; Prokopowicz, A.; Goschorska, M.; Chlubek, D. Cadmium Concentration in Mother’s Blood, Milk, and Newborn’s Blood and Its Correlation with Fatty Acids, Anthropometric Characteristics, and Mother’s Smoking Status. Biol. Trace Elem. Res. 2016, 174, 8–20. [Google Scholar] [CrossRef]
- McClintock, T.R.; Chen, Y.; Bundschuh, J.; Oliver, J.T.; Navoni, J.; Olmos, V.; Lepori, E.V.; Ahsan, H.; Parvez, F. Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Sci. Total Environ. 2012, 429, 76–91. [Google Scholar] [CrossRef] [Green Version]
- Vahter, M. Health effects of early life exposure to arsenic. Basic Clin. Pharmacol. Toxicol. 2008, 102, 204–211. [Google Scholar] [CrossRef]
- Carignan, C.C.; Karagas, M.R.; Punshon, T.; Gilbert-Diamond, D.; Cottingham, K.L. Contribution of breast milk and formula to arsenic exposure during the first year of life in a US prospective cohort. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Salmani, M.H.; Rezaie, Z.; Mozaffari-Khosravi, H.; Ehrampoush, M.H. Arsenic exposure to breast-fed infants: Contaminated breastfeeding in the first month of birth. Environ. Sci. Pollut. Res. Int. 2018, 25, 6680–6684. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. EU Off. J. 2006. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A02006R1907-20210101 (accessed on 25 March 2021).
- EFSA. Overview of the procedures currently used at EFSA for the assessment of dietary exposure to different chemical substances. EFSA J. 2011, 9, 1–33. [Google Scholar] [CrossRef]
- Petersen, B.J. Methodological aspects related to aggregate and cumulative exposures to contaminants with common mechanisms of toxicity. Toxicol. Lett. 2003, 140–141, 427–435. [Google Scholar] [CrossRef]
- FAO/WHO. Evaluation of Certain Food Additives and Contaminants. In Proceedings of the Fifty-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives, Rome, Italy, 5–14 June 2001; Joint FAO/WHO Expert Committee on Food Additives. World Health Organization: Geneva, Switzerland, 2002. ISBN 9241209097. [Google Scholar]
- Kim, S.; Lee, J.; Park, J.; Kim, H.-J.; Cho, G.; Kim, G.-H.; Eun, S.-H.; Lee, J.J.; Choi, G.; Suh, E.; et al. Concentrations of phthalate metabolites in breast milk in Korea: Estimating exposure to phthalates and potential risks among breast-fed infants. Sci. Total Environ. 2015, 508, 13–19. [Google Scholar] [CrossRef]
- EFSA. Panel on Contaminants in the Food Chain. Available online: https://www.efsa.europa.eu/en/panels/contam (accessed on 9 February 2021).
- HBM4EU. Human Biomonitoring in Europe—Science and Policy for a Healthy Future. Available online: https://www.hbm4eu.eu/about-hbm4eu/ (accessed on 9 February 2021).
- WHO. The Environment and Health for Children and Their Mothers: Factsheet. Available online: https://www.who.int/ceh/publications/factsheets/fs284/en/ (accessed on 20 January 2021).
- Hansen, K. Breastfeeding: A smart investment in people and in economies. Lancet 2016, 387, 416. [Google Scholar] [CrossRef]
- Rollins, N.C.; Bhandari, N.; Hajeebhoy, N.; Horton, S.; Lutter, C.K.; Martines, J.C.; Piwoz, E.G.; Richter, L.M.; Victora, C.G. Why invest, and what it will take to improve breastfeeding practices? Lancet 2016, 387, 491–504. [Google Scholar] [CrossRef]
- Walters, D.D.; Phan, L.T.H.; Mathisen, R. The cost of not breastfeeding: Global results from a new tool. Health Policy Plan 2019, 34, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Uvnäs Moberg, K.; Handlin, L.; Kendall-Tackett, K.; Petersson, M. Oxytocin is a principal hormone that exerts part of its effects by active fragments. Med. Hypotheses 2019, 133, 109394. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Sinha, B.; Sankar, M.J.; Taneja, S.; Bhandari, N.; Rollins, N.; Bahl, R.; Martines, J. Breastfeeding and maternal health outcomes: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 96–113. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zhao, L.-G.; Sun, J.-W.; Yang, Y.; Zheng, J.-L.; Gao, J.; Xiang, Y.-B. Association between breastfeeding and risk of endometrial cancer: A meta-analysis of epidemiological studies. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. (Ecp) 2018, 27, 144–151. [Google Scholar] [CrossRef]
- Zachou, G.; Armeni, E.; Lambrinoudaki, I. Lactation and maternal cardiovascular disease risk in later life. Maturitas 2019, 122, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.; Jin, K.; Ding, D. Breastfeeding and maternal cardiovascular risk factors and outcomes: A systematic review. PLoS ONE 2017, 12, e0187923. [Google Scholar] [CrossRef] [Green Version]
- Shamir, R. The Benefits of Breast Feeding. Nestle Nutr. Inst. Workshop Ser. 2016, 86, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, K. Environmental contaminants in breast milk. J. Midwifery Womens. Health 2006, 51, 26–34. [Google Scholar] [CrossRef]
- WHO. Inheriting the World: The Atlas of Children’s Health and the Environment; Myriad Editions Limited: Brighton, UK, 2004; ISBN 9241591560. [Google Scholar]
- Ngo, S.; Sheppard, A. The role of DNA methylation: A challenge for the DOHaD paradigm in going beyond the historical debate. J. Dev. Orig. Health Dis. 2015, 6, 2–4. [Google Scholar] [CrossRef]
- Alonso-Magdalena, P.; Rivera, F.J.; Guerrero-Bosagna, C. Bisphenol-A and metabolic diseases: Epigenetic, developmental and transgenerational basis. Environ. Epigenetics 2016, 2, 1–10. [Google Scholar] [CrossRef]
- Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int. J. Mol. Sci. 2020, 21, 5761. [Google Scholar] [CrossRef]
- Montrose, L.; Padmanabhan, V.; Goodrich, J.M.; Domino, S.E.; Treadwell, M.C.; Meeker, J.D.; Watkins, D.J.; Dolinoy, D.C. Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics 2018, 13, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [Green Version]
- Tosar, J.P.; Witwer, K.; Cayota, A. Revisiting Extracellular RNA Release, Processing, and Function. Trends Biochem. Sci. 2021. [Google Scholar] [CrossRef]
- Alsaweed, M.; Lai, C.T.; Hartmann, P.E.; Geddes, D.T.; Kakulas, F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Melnik, B.C.; Schmitz, G. Milk’s Role as an Epigenetic Regulator in Health and Disease. Diseases 2017, 5, 12. [Google Scholar] [CrossRef]
- Carrillo-Lozano, E.; Sebastián-Valles, F.; Knott-Torcal, C. Circulating microRNAs in Breast Milk and Their Potential Impact on the Infant. Nutrients 2020, 12, 3066. [Google Scholar] [CrossRef]
- Li, M.; Liu, S.; Wang, M.; Hu, H.; Yin, J.; Liu, C.; Huang, Y. Gut Microbiota Dysbiosis Associated with Bile Acid Metabolism in Neonatal Cholestasis Disease. Sci. Rep. 2020, 10, 7686. [Google Scholar] [CrossRef]
- WHO. Strengthening Action to Improve Feeding of Infants and Young Children 6–23 Months of Age in Nutrition and Child Health Programmes; World Health Organization (WHO) Press: Geneva, Switzerland, 2008; ISBN 9789241597890. [Google Scholar]
- Jensen, R.G. F—Miscellaneous factors affecting composition and volume of human and bovine milks: Chapter 03: Determinants of Milk Volume and Composition. In Handbook of Milk Composition, 1st ed.; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 237–271. ISBN 0-12-384430-4. [Google Scholar]
Molecule and Lactation Stage | Unit and Value | Source | |
---|---|---|---|
Vitamin A | μg retinol ester/L | ||
Milk | range | 450–600 | [7] |
Colostrum | range | 203–2000 | [8] |
Transitional milk | range | 132–2050 | [8] |
Mature milk | range | 137–1080 | [8] |
Mature milk | range | 300–600 | [9] |
Carotenes and carotenoids | μg/L | ||
Colostrum | mean ± SD | 2000 ± 120 | [8] |
Colostrum | mean | 2180 | [9] |
Transitional milk | mean ± SD | 1000 ± 40 | [8] |
Mature milk | mean ± SD | 230 ± 50 | [8] |
α-carotene | nmol/L | ||
Colostrum | mean ± SEM | 59.0 ± 13.5 | [10] |
Mature milk | range | 10–14 | [11] |
Mature milk | mean ± SEM | 19.2 ± 3.0 | [10] |
β-carotene | nmol/L | ||
Milk | median | 49.4 | [12] |
Milk | mean | 32.8 | [13] |
Colostrum | range | 125–423 | [12] |
Colostrum | mean ± SEM | 164.3 ± 25.2 | [10] |
Mature milk | range | 18–78 | [12] |
Mature milk | range | 36–50 | [11] |
Mature milk | mean ± SEM | 104.4 ± 27.7 | [10] |
Lutein | nmol/L | ||
Milk | median | 114.4 | [12] |
Colostrum | range | 69–280 | [12] |
Colostrum | mean ± SEM | 121.2 ± 20.9 | [10] |
Mature milk | range | 27–88 | [12] |
Mature milk | mean ± SEM | 61.9 ± 10.9 | [10] |
Zeaxanthin | nmol/L | ||
Colostrum | range | 10–33 | [12] |
Colostrum | mean ± SEM | 46.3 ± 5.4 | [10] |
Mature milk | range | 6–20 | [12] |
Mature milk | mean ± SEM | 22.8 ± 2.7 | [10] |
β-cryptoxanthin | nmol/L | ||
Milk | median | 33.8 | [12] |
Colostrum | range | 61–238 | [12] |
Colostrum | mean ± SEM | 57.4 ± 10.7 | [10] |
Mature milk | range | 17–61 | [12] |
Mature milk | range | 17–25 | [11] |
Mature milk | mean ± SEM | 27.5 ± 4.8 | [10] |
Lycopene | nmol/L | ||
Milk | mean | 85.9 | [13] |
Milk | median | 33.7 | [12] |
Colostrum | range | 137–508 | [12] |
Colostrum | mean ± SEM | 119.9 ± 18.9 | |
Mature milk | range | 19–60 | [12] |
Mature milk | range | 19–35 | [11] |
Mature milk | mean ± SEM | 68.0 ± 16.3 | [10] |
Vitamin B6 pyridoxal-5′-phosphate | μg/L | ||
Milk | mean | 130 | [7] |
Milk | mean | 150 | [14] |
Milk | range | 81–414 | [14] |
Vitamin C | mg/L | ||
Milk | range | 35–90 | [7] |
Colostrum | range | 39–190 | [8] |
Transitional milk | range | 42–180 | [8] |
Mature milk | mean ± SD | 38 ± 35 | [8] |
Vitamin E | mg α-tocopherol equivalents/L | ||
Milk | mean | 3.50 | [7] |
Colostrum | mean ± SD | 10.13 ± 1.50 | [15] |
Transitional milk | mean ± SD | 4.59 ± 0.93 | [15] |
Mature milk | mean ± SD | 3.00 ± 0.85 | [15] |
α-tocopherol | mg/L | ||
Colostrum | mean ± SD | 9.99 ± 1.51 | [15] |
Colostrum | range | 8.86–24.55 | [16] |
Colostrum | mean ± SD | 11.00 ± 2.50 | [8] |
Transitional milk | mean ± SD | 4.45 ± 095 | [15] |
Transitional milk | range | 2.60–16.36 | [16] |
Mature milk | mean ± SD | 2.92 ± 0.84 | [15] |
Mature milk | range | 2.70–9.84 | [15] |
Mature milk | range | 1.00–9.84 | [16] |
γ-tocopherol | mg/L | ||
Colostrum | mean ± SD | 0.57 ± 0.21 | [15] |
Transitional milk | mean ± SD | 0.60 ± 0.21 | [15] |
Mature milk | mean ± SD | 0.30 ± 0.14 | [15] |
Mature milk | range | 0.25–1.17 | [15] |
Choline (water soluble) | μmol/L | ||
Mature milk | mean (95% CI) | 1102 (1072, 1133) | [17] |
mg/L | |||
Colostrum | mean | 70 | [7] |
Mature milk | mean | 160 | [7] |
Mature milk | range | 57–318 | [7] |
Ubiquinone | μmol/L | ||
Milk | mean ± SD | 0.32 ± 0.21 | [18] |
Colostrum | mean ± SD | 0.81 ± 0.06 | [19] |
Transitional milk | mean ± SD | 0.75 ± 0.06 | [19] |
Mature milk | mean ± SD | 0.54 ± 0.33 | [19] |
Selenium | μg/L | ||
Colostrum | range | 14–83 | [20] |
Colostrum | mean | 41.0 | [20] |
Transitional milk | median | 19.8 | [21] |
Mature milk | range | 3–283 | [20] |
Mature milk | range | 10–30 | [20] |
Mature milk | range | 3–84 | [7] |
Mature milk | mean ± SD | 16.3 ± 4.7 | [7] |
Zinc | mg/L | ||
Colostrum | range | 8–12 | [20] |
Transitional milk | mean | 3.66 | [22] |
Mature milk | range | 1–3 | [20] |
Mature milk (4 weeks) | mean ± SD | 4.11 ± 1.50 | [7] |
Mature milk (1–2 month) | mean ± SD | 1.91 ± 0.53 | [7] |
Mature milk 3–5 month | mean ± SD | 0.98 ± 0.35 | [7] |
Mature milk (6–11 month) | mean ± SD | 0.77 ± 0.22 | [7] |
Mature milk | median | 0.625 | [22] |
Copper | μg/L | ||
Colostrum | range | 500–800 | [20] |
Transitional milk | median | 590 | [22] |
Mature milk | range | 200–400 | [20] |
Mature milk | mean | 329–390 | [7] |
Mature milk | median | 368–400 | [7] |
Manganese | μg/L | ||
Colostrum | range | 5–12 | [20] |
Mature milk | range | 3–6 | [20] |
Mature milk | range | 3–30 | [7] |
Mature milk | mean | 4 | [7] |
Iron | mg/L | ||
Transitional milk | median | 0.46 | [22] |
Mature milk | mean | 0.88 | [22] |
Mature milk | range | 0.20–0.80 | [20] |
Mature milk | range | 0.20–0.40 | [7] |
Mature milk | range | 0.20–0.50 | [22] |
Magnesium | mg/L | ||
Colostrum | range | 2.29–4.41 | [23] |
Mature milk | range | 15–64 | [7] |
Mature milk | median | 31 | [7] |
Mature milk | range | 2.4–3.58 | [23] |
Thioredoxin | μg/L | ||
Colostrum | mean ± SEM | 268 ± 23 | [24] |
α-lactalbumin | g/L | ||
Colostrum | mean ± SD | 4.56 ± 0.41 | [25] |
Transitional milk | mean ± SD | 4.30 ± 1.19 | [25] |
Mature milk | mean ± SD | 2.85 ± 0.24 | [25] |
Ceruloplasmin | mg/L | ||
Colostrum | mean ± SD | 150 ± 30 | [26] |
Transitional milk | mean ± SD | 40 ± 20 | [26] |
Lactoferrin | g/L | ||
Colostrum | range | 6–8 | [27] |
Colostrum | range | 5–6 | [28] |
Colostrum | mean ± SD | 3.53 ± 0.54 | [29] |
Colostrum | mean ± SD | 6.15 ± 0.89 | [25] |
Colostrum | mean | 5 | [30] |
Transitional milk | mean ± SD | 3.65 ± 1.19 | [25] |
Mature milk | range | 1–2 | [27,28] |
Mature milk | mean | 2 | [30] |
Mature milk | mean ± SD | 1.76 ± 0.28 | [25] |
Mature milk (6–14 weeks) | mean ± SD | 1.65 ± 0.29 | [29] |
Mature milk (14–26 weeks) | mean ± SD | 1.39 ± 0.26 | [29] |
Milk | range | 1.2–3.1 | [30] |
Osteopontin a | mg/L | ||
Milk | mean | 130 | [31] |
Milk | range | 60–220 | [30] |
Milk | mean ± SD | 128 ± 79 | [30] |
Colostrum | mean ± SD | 180 ± 100 | [25] |
Mature milk | mean ± SD | 138 ± 90 | [25] |
Erythropoietin | units/L | ||
Milk | mean | 0.8–4.1 | [32] |
Milk | median | 4.1–4.7 | [32] |
Milk | mean ± SD | 11.7 ± 0.75 | [33] |
Transitional milk | mean | 9.4–12.0 | [33] |
Mature milk | mean ± SD | 33.8 ± 6.14 | [33] |
Melatonin | pg/ml | ||
Daytime milk | IR | 1.5 (1.0–2.1) | [34] |
Nighttime milk | IR | 7.3 (3.8–13.6) | [34] |
Nighttime colostrum | mean | 25.3–28.7 | [35] |
Nighttime transitional milk | mean | 22.6–24.7 | [35] |
Nighttime mature milk | mean | 20.1–22.4 | [35] |
Glutathione peroxidase activity | units/L | ||
Colostrum | mean ± SD | 73 ± 21 | [36] |
Transitional milk | mean ± SD | 75 ± 24 | [36] |
Mature milk | mean | 68–80 | [36] |
Milk | mean ± SD | 73 ± 21 | [36] |
Mature milk | mean | 31–77 | [37] |
Mature milk | mean ± SD | 51 ± 15 | [23] |
Mature milk | range | 25–80 | [20] |
Mature milk | range | 31–39 | [38] |
Mature milk | mean | 90.8 | [21] |
units/mg protein | |||
Colostrum | mean ± SD | 0.08 ± 0.04 | [36] |
Transitional milk | median | 0.04–0.08 | [22] |
Transitional milk | median | 0.06 | [21] |
Transitional milk | mean ± SD | 0.15 ± 0.05 | [36] |
Mature milk | mean | 0.08–0.16 | [36] |
Milk | mean ± SD | 0.10 ± 0.04 | [36] |
Glutathione reductase activity | units/mg protein | ||
Transitional milk | median | 0.01–0.02 | [22] |
Transitional milk | median | 0.02 | [21] |
Glutathione S-transferase activity | units/mg protein | ||
Transitional milk | median | 0.001–0.003 | [22] |
Transitional milk | median | 0.002 | [39] |
nM/min/mg protein | |||
Colostrum | mean ± SD | 34.03 ± 5.76 | [40] |
Mature milk | mean ± SD | 56.13 ± 10.59 | [40] |
Superoxide dismutase activity | units/mg protein | ||
Colostrum | mean ± SD | 4.0 ± 2.9 | [36] |
Transitional milk | mean ± SD | 5.6 ± 2.8 | [36] |
Transitional milk | median | 132.4–267.0 | [22] |
Transitional milk | median | 198.2 | [21] |
Mature milk | mean | 4.3–5.6 | [36] |
Milk | mean ± SD | 4.8 ± 2.0 | [36] |
Catalase activity | units/mg protein | ||
Colostrum | mean ± SD | 0.50 ± 0.08 | [41] |
Transitional milk | mean ± SD | 0.72 ± 0.10 | [41] |
Transitional milk | median | 0.23–0.27 | [22] |
Transitional milk | median | 0.25 | [21] |
Mature milk | mean ± SD | 0.97 ± 0.21 | [41] |
Glutathione | μmol/L | ||
Transitional milk | mean ± SD | 252.5 ± 173.9 | [42] |
Mature milk | mean ± SD | 164.9 ± 128.0 | [42] |
Enzymatic Antioxidants | |
---|---|
glutathione peroxidase (GSHPx, E.C.1.11.1.9) glutathione reductase (GR, E.C.1.6.4.2) glutathione S-transferase (GST, E.C.2.5.1.18) superoxide dismutase (SOD, E.C.1.15.1.1) catalase (CAT, E.C.1.11.1.6) | |
Non-Enzymatic Antioxidants | |
Enzymatic cofactors | |
Quinone | ubiquinone (coenzyme Q10) |
Minerals | selenium zinc copper manganese iron |
Bioactive molecules | |
Vitamins | α-tocopherol (vitamin E) ascorbic acid/dehydroascorbic acid (vitamin C) pyridoxal-5′-phosphate (vitamin B6) menaquinone (vitamin K) folic acid |
Carotenoids and flavonoids | α and β-carotene β-cryptoxanthin lutein lycopene zeaxanthin |
Fatty acids | conjugated linoleic acid 9,11–18: ct2 (CLA) n-3 long-chain polyunsaturated fatty acids (LCPUFA) |
Thiol containing amino acids, peptides and proteins | cysteine methionine glutathione thioredoxin |
Binding and transport proteins | α-lactalbumin ceruloplasmin lactoferrin transferrin osteopontin |
Other molecules | bilirubin uric acid lysozyme immunoglobulins |
Growth factors | erythropoietin |
Hormones | melatonin leptin adiponectin |
% of Total | Milk Fat/MFGM | Low-Molecule Aqueous Fraction/Whey (Protein Bound) | Casein/Micelle |
---|---|---|---|
Selenium | 5–10% on the outer MFGM; increased in hindmilk | 60–70% | 20–35% |
Copper | 5–15% | 75–80%; most bound to ceruloplasmin or albumin, some to citrate and free amino acids | rest |
Zinc | 29% bound to alkaline phosphatase embedded in the MFGM | 28% bound to serum albumin 29 bound to citrate | 14% predominantly bound to phosphoserine residues |
Manganese | rest | 70% and bound to lactoferrin | 11% |
Iron | 33% MFGM, bound to xanthine oxidase | ~30% in aqueous fraction 20–30% in whey fraction | 10% |
Chemical Name | CAS No. | LogP a | Source |
---|---|---|---|
polychlorinated biphenyls (PCBs) congeners | |||
PCB 118 | 31508-00-6 | 6.91 | [120] |
PCB 138 | 35065-28-2 | 7.51 | [120,121] |
PCB 153 | 35065-27-1 | 7.51 | [120,121] |
PCB 180 | 35065-29-3 | 8.11 | [120,121] |
polybrominated diphenyl ethers (PBDEs) congeners | |||
PBDE 47 | 5436-43-1 | 6.78 | [120,122] |
PBDE 99 | 60348-60-9 | 7.52 | [120,122] |
PBDE 100 | 189084-64-8 | 7.52 | [120] |
PBDE 153 | 68631-49-2 | 8.23 | [120,122] |
PBDE 154 | 207122-15-4 | 8.23 | [120] |
organochlorine-based plant protection products (PPPs) | |||
β-hexachlorocyclohexane (β-HCH, lindane, γ-HCH isomer and byproduct) | 58-89-9 | 3.73 | [123,124] |
dimethyl tetrachloroterephthalate (dacthal, organochloride herbicide) | 1861-32-1 | 4.03 | [121] |
hexachlorobenzene (HCB) | 118-74-1 | 5.72 | [121] |
o,p′-DDE | 3424-82-6 | 6.00 | [120,121,124] |
p,p′-DDE | 72-55-9 | 6.05 | [120,121,124] |
o,p′-DDT | 789-02-6 | 6.66 | [120,121,124] |
p,p′-DDT | 50-29-3 | 6.71 | [120,121,124] |
methoxychlor | 72-43-5 | 5.46 | [124] |
dieldrin | 60-57-1 | 5.10 | [124] |
endosulfan | 115-29-7 | 4.29 | [124] |
aldrin | 309-00-2 | 5.80 | [124] |
heptachlor | 76-44-8 | 5.52 | [124] |
polycyclic aromatic hydrocarbons (PAHs) | |||
benzo(a)pyrene | 50-32-8 | 6.01 | [125] |
anthracene | 120-12-7 | 4.30 | [125] |
pyrene | 129-00-0 | 4.88 | [125] |
phenanthrene | 85-01-8 | 4.30 | [125] |
indeno(1,2,3-cd) pyrene | 193-39-5 | 6.54 | [125] |
fluorene | 86-73-7 | 3.83 | [125] |
benzo(k)fluoranthene | 207-08-9 | 5.99 | [125] |
benzo(ghi)perylene | 191-24-2 | 6.56 | [125] |
perfluoralkylated substances (PFASs) | |||
perfluorooctane sulfonate (PFOS) | 45298-90-6 | 1.74 | [126,127,128,129] |
perfluorooctanoid acid (PFOA) | 335-67-1 | 4.33 | [126,127,128,129] |
perfluorononanoic acid (PFNA) | 375-95-1 | 4.97 | [127,128,129] |
perfluoroalchilhexane sulfonic acid (PFHxS) | 355-46-4 | 1.51 | [127,128,129] |
other PPPs | |||
chlorpyrifos/CPF (organophosphate) | 2921-88-2 | 5.16 | [120,123,130] |
malathion (organophosphate) | 121-75-5 | 2.32 | [121,123] |
permethrin/PERM (pyrethroid) | 52645-53-1 (cis: 52341-33-0 trans: 52341-32-9) | 6.61 | [120,121] |
propoxur (carbamate) | 114-26-1 | 1.67 | [121] |
plasticizers (i.e., phthalates and bisphenols) and monoester metabolites | |||
diethylphthalate/DEP | 84-66-2 | 2.31 | N.D. # |
monoethylphthalate/MEP (diethylphthalate/DEP metabolite) | 2306-33-4 | 1.67 | [120] |
di-(2-ethylhexyl) phthalate/DEHP | 117-81-7 | 7.94 | N.D. # |
mono-2-ethylhexyl phthalate/MEHP (di-(2-ethylhexyl) phthalate/DEHP metabolite) | 4376-20-9 | 4.49 | [120] |
mono(2-ethyl-5-hydroxyhexyl) phthalate/MEHHP (DEHP metabolite) | 40321-99-1 | 2.81 | [120] |
mono-(2-ethyl-5-oxohexyl) phthalate/MEOHP (DEHP metabolite) | 40321-98-0 | 2.63 | [120] |
benzyl butyl phthalate/BBP | 85-68-7 | 4.59 | N.D. # |
monobenzyl phthalate/BzBP (benzyl butyl phthalate/BBP metabolite) | 2528-16-7 | 2.89 | [120] |
di-n-butyl phthalate/DBP | 84-74-2 | 4.43 | N.D. # |
mono-iso-butyl phthalate/miBP (di-n-butylphthalate/DBP and benzyl butyl phthalate/BBP metabolite) | 30833-53-5 | 2.42 | [120] |
mono-n-butyl phthalate/MnBP (DBP and BBP metabolite) | 34-74-2 | 2.73 | [120] |
bisphenol A/BPA | 80-05-7 | 3.37 | [120] |
TBBPA | 79-94-7 | 6.83 | [131] |
mycotoxins and metabolites | |||
aflatoxin M1 (AFM1) | 6795-23-9 | 0.90 | [132,133,134,135] |
aflatoxin B1 (AFB1) | 1162-65-8 | 1.48 | [133,134] |
ochratoxin A (OTA) | 303-47-9 | 1.74 | [132,133,134,135] |
deoxynivalenol (DON) | 51481-10-8 | −0.97 | [133,134] |
fumonisin B2 (FB2) | 116355-84-1 | 2.66 | [133] |
zearalenone (ZEA) | 17924-92-4 | 3.41 | [132,133,135] |
T-2 toxin (T2) | 21259-20-1 | 2.46 | [133] |
toxic trace elements | |||
arsenic | 7440-38-2 | −0.61 | [136,137] |
cadmium | 7440-43-9 | −1.11 | [138] |
mercury | 7439-97-6 | −0.26 | [138] |
lead | 7439-92-1 | 2.93 | [138] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenzetti, S.; Plösch, T.; Teller, I.C. Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants 2021, 10, 550. https://doi.org/10.3390/antiox10040550
Lorenzetti S, Plösch T, Teller IC. Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants. 2021; 10(4):550. https://doi.org/10.3390/antiox10040550
Chicago/Turabian StyleLorenzetti, Stefano, Torsten Plösch, and Inga C. Teller. 2021. "Antioxidative Molecules in Human Milk and Environmental Contaminants" Antioxidants 10, no. 4: 550. https://doi.org/10.3390/antiox10040550
APA StyleLorenzetti, S., Plösch, T., & Teller, I. C. (2021). Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants, 10(4), 550. https://doi.org/10.3390/antiox10040550