Properties of Dry Hopped Dark Beers with High Xanthohumol Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.1.1. Biological Material
2.1.2. Raw Materials
2.1.3. Brewing Technology
2.1.4. Sample Preparation and Abbreviations
2.2. Analytic methods
2.2.1. Basic Physico-Chemical Parameters
2.2.2. Determination of Beer Bitterness (IBU)
2.2.3. High-Performance Liquid Chromatography (HPLC) Analysis of Carbohydrates Content
2.2.4. High-Performance Liquid Chromatography (HPLC) Analysis of Xanthohumol (XN) and Isoxanthohumol (IXN) Content
2.2.5. High-Performance Liquid Chromatography (HPLC) Analysis of 5—Hydroxymethylfurfural (5-HMF) Content
2.2.6. Total Polyphenols Content
2.2.7. Ability of Iron Ion Reduction (FRAP)
2.2.8. Ability of Radical Cation ABTS•+ Reduction
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Beers
3.2. The Content of Xanthohumol and Isoxanthohumol
3.3. The Content of 5-Hydroxymethylfurfural and the Color (EBC) of Wort and Beers
3.4. Total Polyphenol Content (TPC) and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iniguez, A.B.; Zhu, M.J. Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases. Crit. Rev. Food Sci. Nutr. 2020, 60, 1–14. [Google Scholar] [CrossRef]
- Pascoe, H.M.; Ames, J.M.; Chandra, S. Critical stages of the brewing process for changes in antioxidant activity and levels of phenolic compounds in ale. J. Am. Soc. Brew. Chem. 2003, 61, 203–209. [Google Scholar] [CrossRef]
- Martinez-Gomez, A.; Caballero, I.; Blanco, C.A. Phenols and Melanoidins as Natural Antioxidants in Beer. Structure. Reactivity and Antioxidant Activity. Biomolecules 2020, 10, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, G.; Xavier, P.; Limoeiro, R.; Perrone, D. Contribution of melanoidins from heat-processed foods to the phenolic compound intake and antioxidant capacity of the Brazilian diet. J. Food Sci. Technol. 2020, 57, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus–a story that begs to be told. Rev. J. Inst. Brew. 2014, 289–314. [Google Scholar]
- Koren, D.; Kun, S.; Vecseri, B.H.; Kun-Farkas, G. Study of antioxidant activity during the malting and brewing process. J. Food Sci. Technol. 2019, 56, 3801–3809. [Google Scholar]
- Gerhäuser, C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer 2005, 41, 1941–1954. [Google Scholar] [CrossRef]
- Aron, P.M.; Shellhammer, T.H. A discussion of polyphenols in beer physical and flavour stability. J. Inst. Brew. 2010, 116, 369–380. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Satoh-Yamaguchi, K.; Ono, M. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine 2009, 16, 369–376. [Google Scholar] [CrossRef]
- Di Sotto, A.; Checconi, P.; Celestino, I.; Locatelli, M.; Carissimi, S.; De Angelis, M.; Rossi, V.; Limongi, D.; Toniolo, C.; Martinoli, L.; et al. Antiviral and antioxidant activity of a hydroalcoholic extract from Humulus lupulus L. Oxid. Med. Cell Longev. 2018, 5919237. [Google Scholar] [CrossRef] [Green Version]
- Karabín, M.; Jelínek, L.; Kinčl, T.; Hudcová, T.; Kotlíková, B.; Dostálek, P. New approach to the production of xanthohumol-enriched beers. J. Inst. Brew. 2013, 119, 98–102. [Google Scholar] [CrossRef]
- Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 2004, 65, 1317–1330. [Google Scholar] [CrossRef]
- Wunderlich, S.; Zürcher, A.; Back, W. Enrichment of xanthohumol in the brewing process. Mol. Nutr. Food Res. 2005, 49, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.J.; Dostalek, P.; Cruz, J.M.; Guido, L.F.; Barros, A.A. The impact of a xanthohumol-enriched hop product on the behavior of xanthohumol and isoxanthohumol in pale and dark beers: A pilot scale approach. J. Inst. Brew. 2008, 114, 246–256. [Google Scholar] [CrossRef]
- Habschied, K.; Lončarić, A.; Mastanjević, K. Screening of Polyphenols and Antioxidative Activity in Industrial Beers. Foods 2020, 9, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Brewery Convention. Analytica-EBC; Fachverlag Hans Carl: Nürnberg, Germany, 2010. [Google Scholar]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z. Characteristics of Cornelian cherry sour non-alcoholic beers brewed with the special yeast Saccharomycodes ludwigii. Food Chem. 2020, 312, 125968. [Google Scholar] [CrossRef]
- Jurkova, M.; Cejka, P.; Houska, M.; Potravinarsky, V.U.; Mikyska, A. Simultaneous determination of prenylflavonoids and isoflavonoids in hops and beer by HPLC-DAD method: Study of green hops homogenate application in the brewing process. Kvasny Prumysl 2013, 59, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Coghe, S.; D’Hollander, H.; Verachtert, H.; Delvaux, F.R. Impact of dark specialty malts on extract composition and wort fermentation. J. Inst. Brew. 2005, 111, 51–60. [Google Scholar] [CrossRef]
- Gąsior, J.; Kawa-Rygielska, J.; Kucharska, A.Z. Carbohydrates profile, polyphenols content and antioxidative properties of beer worts produced with different dark malts varieties or roasted barley grains. Molecules 2020, 25, 3882. [Google Scholar] [CrossRef]
- Walker, G.M.; Stewart, G.G. Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2016, 2, 30. [Google Scholar] [CrossRef]
- Kirkpatrick, K.R.; Shellhammer, T.H. Evidence of dextrin hydrolyzing enzymes in Cascade hops (Humulus lupulus). J. Agric. Food Chem. 2018, 66, 9121–9126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H. Effects of processing stages on the profile of phenolic compounds in beer. In Processing and Impact on Active Components in Food; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 533–539. [Google Scholar]
- Han, X.; Liu, F.; Kun-Farkas, G.; Kiss, Z. Simple HPLC method for determining the glycerol content of beer. J. Am. Soc. Brew. Chem. 2015, 73, 314–317. [Google Scholar]
- Stevens, J.F.; Taylor, A.W.; Deinzer, M.L. Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1999, 832, 97–107. [Google Scholar] [CrossRef]
- Toboła, D.; Stompor, M.; Blazewicz, J.; Anioł, M. Xanthohumol content in Polish beers. Przemysl Chem. 2014, 93, 1447–1450. [Google Scholar]
- Żołnierczyk, A.K.; Mączka, W.K.; Grabarczyk, M.; Wińska, K.; Woźniak, E.; Anioł, M. Isoxanthohumol—Biologically active hop flavonoid. Fitoterapia 2015, 103, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Gołąbczak, J.; Gendaszewska-Darmach, E. Ksantohumol i inne prenyloflawonoidy szyszek chmielu–aspekty biologiczne i technologiczne. Biotechnologia 2010, 1, 75–89. [Google Scholar]
- Kahraman, S.İ.B.E.L.; Yeşilada, O. Decolorization and bioremediation of molasses wastewater by white-rot fungi in a semi-solid-state condition. Folia Microbiol. 2003, 48, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Tsiakiri, E.P.; Sompatzi, E.; Voukia, M.P.; Sotiropoulos, S.; Pantazaki, A.A. Biocatalytic and bioelectrolytic decolorization of simulated melanoidin wastewaters by Saccharomyces cerevisiae cells suspended and conjugated on silica and alumina. J. Environ. Chem. Eng. 2020, 8, 104078. [Google Scholar] [CrossRef]
- Da Silva, T.L.; Baptista, C.; Reis, A.; Passarinho, P.C. Using flow cytometry to evaluate the stress physiological response of the yeast Saccharomyces carlsbergensis ATCC 6269 to the presence of 5-Hydroxymethylfurfural during ethanol fermentations. Appl. Biochem. Biotechnol. 2017, 181, 1096–1107. [Google Scholar]
- Modig, T.; Lidén, G.; Taherzadeh, M.J. Inhibition effects of furfural on alcohol dehydrogenase aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 2002, 363, 769–776. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, K.T.; Lin, J.A.; Chen, Y.T.; Chen, Y.A.; Wu, J.T.; Hsieh, C.W. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends Food Sci. Technol. 2019, 93, 271–280. [Google Scholar] [CrossRef]
- Viegas, O.; Prucha, M.; Gökmen, V.; Ferreira, I.M. Parameters affecting 5-hydroxymethylfurfural exposure from beer. Food Addit. Contam. Part A 2018, 35, 1464–1471. [Google Scholar] [CrossRef]
- Jelinek, L.; Šneberger, M.; Karabin, M.; Dostalek, P. Comparison of Czech hop cultivars based on their contenst of secondary metabolites. Czech J. Food Sci. 2010, 28, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M.; Yamaguchi, T.; Takamura, H.; Atoba, T.M. Effects of thermal treatment on radical-scavenging activity of single and mixed polyphenolic compounds. J. Food Sci. 2004, 69, FCT7–FCT10. [Google Scholar] [CrossRef]
- Saha, R.B. Intracellular nicotinamide adenine dinucleotide content of brewer’s yeast during different stages of fermentation. J. Am. Soc. Brew. Chem. 1988, 46, 72–76. [Google Scholar] [CrossRef]
- Oladokun, O.; James, S.; Cowley, T.; Smart, K.; Hort, J.; Cook, D. Dry-hopping: The effects of temperature and hop variety on the bittering profiles and properties of resultant beers. Brew. Sci. 2017, 70, 187–196. [Google Scholar]
- McMurrough, I.; Madigan, D.; Kelly, R.J.; Smyth, M.R. The role of flavanoid polyphenols in beer stability. J. Am. Soc. Brew. Chem. 1996, 54, 141–148. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Serrano, J.; Pérez-Jiménez, J. What Contribution Is Beer to the Intake of Antioxidants in the Diet? In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2008; pp. 441–448. [Google Scholar]
- Zhao, H.; Chen, W.; Lu, J.; Zhao, M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010, 119, 1150–1158. [Google Scholar] [CrossRef]
- Rahman, M.J.; Liang, J.; Eskin, N.M.; Eck, P.; Thiyam-Holländer, U. Identification of hydroxycinnamic acid derivatives of selected canadian and foreign commercial beer extracts and determination of their antioxidant properties. LWT 2020, 122, 109021. [Google Scholar] [CrossRef]
- Piazzon, A.; Forte, M.; Nardini, M. Characterization of phenolics content and antioxidant activity of different beer types. J. Agric. Food Chem. 2010, 58, 10677–10683. [Google Scholar] [CrossRef] [PubMed]
- Pulido, R.; Hernandez-Garcia, M.; Saura-Calixto, F. Contribution of beverages to the intake of lipophilic and hydrophilic antioxidants in the Spanish diet. Eur. J. Clin. Nutr. 2003, 57, 1275–1282. [Google Scholar] [CrossRef]
Sample | Ethanol | Attenuation | Extract | Density | Bitterness | ||
---|---|---|---|---|---|---|---|
Apparent | Real | Apparent | Real | ||||
% v/v | % w/w | % w/w | g/cm3 | IBU | |||
A4 | 5.42 ± 0.03 a | 80.71 ± 0.02 c | 65.21 ± 0.02 c | 12.61 ± 0.05 a | 4.39 ± 0.02 a | 1.0076 ± 0.00 b | 59.45 ± 0.10 b |
B4 | 5.37 ± 0.05 a | 81.33 ± 0.01 b | 65.67 ± 0.01 b | 12.31 ± 0.03 c | 4.23 ± 0.02 c | 1.0072 ± 0.00 d | 55.45 ± 0.67 c |
C4 | 5.42 ± 0.02 a | 80.385 ± 0.02 a | 65.73 ± 0.02 a | 12.43 ± 0.02 b | 4.33 ± 0.01 b | 1.0075 ± 0.00 c | 56.35 ± 0.31 c |
D4 | 5.49 ± 0.02 a | 80.27 ± 0.02 d | 64.93 ± 0.02 d | 12.60 ± 0.02 a | 4.4 ± 0.01 a | 1.0078 ± 0.00 a | 75.22 ± 1.16 a |
Sample | Maltose | Maltotriose | Glucose | Dextrins | Glycerol |
---|---|---|---|---|---|
g/L | |||||
Hopping | |||||
A1 | 52.59 ± 0.23 c | 13.63 ± 0.10 b | 7.53 ± 0.20 b | 39.46 ± 0.08 d | nd |
B1 | 49.21 ± 1.6 d | 12.13 ± 0.05 c | 7.01 ± 0.05 c | 34.46 ± 0.35 g | nd |
C1 | 53.87 ± 0.79 b | 12.06 ± 0.45 c | 6.53 ± 0.15 d | 30.68 ± 0.56 h | nd |
D1 | 58.02 ± 0.90 a | 15.13 ± 0.26 a | 8.34 ± 0.39 a | 46.85 ± 1.32 a | nd |
Main fermentation | |||||
A2 | 0.36 ± 0.01 e | 5.17± 0.10 d | nd | 38.49 ± 0.78 de | 3.39 ± 0.03 a |
B2 | 0.34 ± 0.00 e | 4.83 ± 0.06 e | nd | 37.28 ± 0.34 ef | 2.61± 0.03 g |
C2 | 0.36 ± 0.00 e | 5.31 ± 0.05 d | nd | 39.86 ± 0.59 d | 2.71 ± 0.01 f |
D2 | 0.36 ± 0.01 e | 4.51 ± 0.09 e | nd | 37.06 ± 0.18 ef | 2.83 ± 0.01 cd |
Post-fermentation | |||||
A3 | 0.41 ± 0.01 e | nd | nd | 37.15 ± 0.09 ef | 2.88 ± 0.00 c |
B3 | 0.31 ± 0.01 e | nd | nd | 34.22 ± 0.55 g | 2.62 ± 0.02 g |
C3 | 0.32 ± 0.01 e | 1.13 ± 0.02 f | nd | 36.19 ± 0.32 f | 2.13 ± 0.11 h |
D3 | 0.39 ± 0.04 e | nd | nd | 44.24 ± 0.75 b | 3.01 ± 0.02 b |
Maturation | |||||
A4 | 0.44 ± 0.04 e | 1.18± 0.05 f | 0.84 ± 0.06 e | 34.8± 0.22 g | 2.85 ± 0.03 cd |
B4 | 0.14 ± 0.03 e | nd | nd | 33.58 ± 0.08 g | 2.74± 0.00 ef |
C4 | 0.46 ± 0.02 e | 1.34 ± 0.14 f | nd | 36.82 ± 2.75 f | 2.80 ± 0.12 de |
D4 | 0.43 ± 0.04 e | 1.39 ± 0.04 f | nd | 42.56 ± 0.21 c | 3.03 ± 0.02 b |
Sample | XN | IXN |
---|---|---|
mg/L | ||
A4 | 1.93 ± 0.03 c | 0.96 ± 0.00 c |
B4 | 1.77 ± 0.02 d | 0.85 ± 0.00 d |
C4 | 2.55 ± 0.01 b | 1.03 ± 0.00 b |
D4 | 3.83 ± 0.05 a | 1.19 ± 0.01 a |
Sample | Color | 5-HMF |
---|---|---|
EBC | mg/L | |
Worts | ||
W0 | 106.73 ± 0.22 h | 18.92 ± 0.07 e |
W1 | 133.43 ± 3.08 b | 24.65 ± 0.03 b |
Hopping | ||
A1 | 114.15 ± 0.00 fg | 20.05 ± 0.46 d |
B1 | 139.58 ± 2.32 a | 23.4 ± 0.29 c |
C1 | 142.95 ± 0.45 a | 26.52 ± 0.01 a |
D1 | 141.60 ± 0.90 a | 26.72 ± 0.12 a |
Main fermentation | ||
A2 | 107.10 ± 2.10 h | nd |
B2 | 113.03 ± 0.08 fg | nd |
C2 | 126.45 ± 3.30 cd | nd |
D2 | 132.08 ± 1.58 b | nd |
Post-fermentation | ||
A3 | 122.93 ± 2.03 de | nd |
B3 | 114.68 ± 0.53 f | nd |
C3 | 131.03 ± 2.32 b | nd |
D3 | 131.40 ± 1.80 b | nd |
Maturation | ||
A4 | 121.32 ± 3.30 e | nd |
B4 | 110.40 ± 4.95 gh | nd |
C3 | 123.15 ± 2.85 de | nd |
D4 | 130.05 ± 0.30 bc | nd |
Sample | TPC | FRAP | ABTS+· |
---|---|---|---|
mg GAE/L | mmol TE/L | mmol TE/L | |
Worts | |||
W0 | 336.13 ± 3.92 k | 1.61 ± 0.05 l | 0.91 ± 0.01 g |
W1 | 388.19 ± 10.67 j | 1.94 ± 0.03 k | 1.27 ± 0.09 ef |
Hopping | |||
A1 | 418.00 ± 16.57 i | 2.56 ± 0.04 i | 1.53 ± 0.1 cd |
B1 | 387.53 ± 10.03 j | 2.32 ± 0.06 j | 1.61 ± 0.16 bc |
C1 | 383.82 ± 15.93 j | 2.71 ± 0.07 gh | 1.75 ± 0.00 ab |
D1 | 477.1 ± 20.56 h | 2.78 ± 0.03 fg | 1.76 ± 0.06 ab |
Main fermentation | |||
A2 | 676.74 ± 6.51 ef | 2.9 ± 0.17 e | 1.51 ± 0.24 cd |
B2 | 670.2 ± 14.08 f | 2.39 ± 0.09 j | 1.21 ± 0.13 f |
C2 | 713.8 ± 9.12 cd | 2.85 ± 0.01 ef | 1.43 ± 0.05 cde |
D2 | 623.91 ± 9.35 g | 2.78 ± 0.07 fg | 1.91 ± 0.02 a |
Post-fermentation | |||
A3 | 693.34 ± 17.01 de | 2.67 ± 0.03 gh | 1.38 ± 0.04 def |
B3 | 740.1 ± 5.44 b | 2.61 ± 0.03 hi | 1.26 ± 0.06 ef |
C3 | 840.75 ± 14.89 a | 2.36 ± 0.03 j | 1.49 ± 0.1 cd |
D3 | 732.04 ± 8.29 bc | 3.08 ± 0.03 d | 1.43 ± 0.08 cde |
Maturation | |||
A4 | 433.32 ± 9.54 i | 3.64 ± 0.05 c | 1.18 ± 0.1 f |
B4 | 418.32 ± 11.63 i | 4.88 ± 0.04 a | 1.2 ± 0.11 f |
C4 | 371.51 ± 10.94 j | 3.73 ± 0.05 c | 1.24 ± 0.21 ef |
D4 | 475.05 ± 23.30 h | 3.86 ± 0.04 b | 1.43 ± 0.11 cde |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paszkot, J.; Kawa-Rygielska, J.; Anioł, M. Properties of Dry Hopped Dark Beers with High Xanthohumol Content. Antioxidants 2021, 10, 763. https://doi.org/10.3390/antiox10050763
Paszkot J, Kawa-Rygielska J, Anioł M. Properties of Dry Hopped Dark Beers with High Xanthohumol Content. Antioxidants. 2021; 10(5):763. https://doi.org/10.3390/antiox10050763
Chicago/Turabian StylePaszkot, Justyna, Joanna Kawa-Rygielska, and Mirosław Anioł. 2021. "Properties of Dry Hopped Dark Beers with High Xanthohumol Content" Antioxidants 10, no. 5: 763. https://doi.org/10.3390/antiox10050763
APA StylePaszkot, J., Kawa-Rygielska, J., & Anioł, M. (2021). Properties of Dry Hopped Dark Beers with High Xanthohumol Content. Antioxidants, 10(5), 763. https://doi.org/10.3390/antiox10050763