Sagan Dalya Tea, a New “Old” Probable Adaptogenic Drug: Metabolic Characterization and Bioactivity Potentials of Rhododendron adamsii Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Chemicals
2.2. Plant Extracts Preparation
2.3. Chemical Composition Analysis
2.4. Antioxidant Activity
2.5. Adaptogenic Activity
2.5.1. One-Step Swimming to Exhaustion Test
2.5.2. Two-Step Swimming to Exhaustion Test
2.6. Polyamide Solid-Phase Extraction (SPE)
2.7. High-Performance Liquid Chromatography with Photodiode Array Detection and Electrospray Ionization Triple Quadrupole Mass Spectrometric Detection (HPLC-PDA-ESI-tQ-MS)
2.8. Metabolite Quantification
2.9. HPLC-UV Assay Coupled with DPPH Precolumn Incubation
2.10. Statistical and Multivariate Analysis
3. Results and Discussion
3.1. Chemical Composition and Bioactivity of Rhododendron Adamsii Leaves: Impact of Solvent Type
3.2. Rhododendron Adamsii Leaves Metabolites: LC-MS Characterisation and Seasonal Variation
3.2.1. Carbohydrates and Organic Acids
3.2.2. Simple Phenol Glycosides
3.2.3. Triterpene Glycosides
3.2.4. Flavonoids
3.2.5. Prenylated Phenols
3.2.6. Benzoic Acid Derivatives, Hydroxycinnamates, and Dihydrochalcones
3.2.7. Catechins and Procyanidins
3.2.8. Chemotaxonomic Significance of R. adamsii Metabolites
3.2.9. Seasonal Variation of R. adamsii Metabolites
3.3. Bioactivity of R. adamsii Extracts: Seasonal Changes of Antioxidant and Adaptogenic Potential
3.3.1. Antioxidant Activity
3.3.2. Adaptogenic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panossian, A.G.; Efferth, T.; Shikov, A.N.; Pozharitskaya, O.N.; Kuchta, K.; Mukherjee, P.K.; Banerjee, S.; Heinrich, M.; Wu, W.; Guo, D.; et al. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med. Res. Rev. 2021, 41, 630–703. [Google Scholar] [CrossRef]
- Panossian, A. Understanding adaptogenic activity: Specificity of the pharmacological action of adaptogens and other phytochemicals. Ann. N. Y. Acad. Sci. 2017, 1401, 49–64. [Google Scholar] [CrossRef]
- Dimpfel, W.; Schombert, L.; Keplinger-Dimpfel, I.K.; Panossian, A. Effects of an adaptogenic extract on electrical activity of the brain in elderly subjects with mild cognitive impairment: A randomized, double-blind, placebo-controlled, two-armed cross-over study. Pharmaceuticals 2020, 13, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panossian, A.; Wikman, G. Effects of adaptogens on the central nervous system and the molecular mechanisms associated with their stress-protective activity. Pharmaceuticals 2010, 3, 188–224. [Google Scholar] [CrossRef] [PubMed]
- Malyschev, L.I. (Ed.) Flora of Siberia, Pyrolaceae-Lamiaceae; CRC Press: Boca-Raton, FL, USA, 2006; Volume 11, pp. 16–19. [Google Scholar]
- Dugarzhapov, T.A.; Basaev, S.E. Myths and Legends of Buryats; Novaya Buryatia: Ulan-Ude, Russia, 2017; pp. 34–45. [Google Scholar]
- Haldar, J.R. Early Buddhist Mythology; Manohar: New Delhi, India, 2019; pp. 115–120. [Google Scholar]
- Batorova, S.M.; Yakovlev, G.P.; Aseeva, T.A. Reference-Book of Traditional Tibetan Medicine Herbs; Nauka: Novosibirsk, Russia, 2013; pp. 182–183. [Google Scholar]
- Ivanov, B.I. (Ed.) Atlas of Medicinal Plants of Yakutia; YaNTc SO RAN: Yakutsk, Russia, 2005; pp. 128–129. [Google Scholar]
- Belenovskaya, L.M.; Lesiovskaya, E.E. (Eds.) Plant Resources of Russia: Actinidiaceae—Malvaceae; KMK: Saint Petersburg, Russia, 2009; Volume 2, pp. 41–50. [Google Scholar]
- Rogachev, A.D.; Fomenko, V.V.; Sal’nikova, O.I.; Pokrovskii, L.M.; Salakhutdinov, N.F. Comparative analysis of essential oil compositions from leaves and stems of Rhododendron adamsii, R. aureum, and R. dauricum. Chem. Nat. Comp. 2006, 42, 426–430. [Google Scholar] [CrossRef]
- Komarova, N.I.; Rogachev, A.D.; Chernyak, E.I.; Morozov, S.V.; Fomenko, V.V.; Salakhutdinov, N.F. Quantitative HPLC determination of main flavonoid content of Rhododendron adamsii leaves and stems. Chem. Nat. Comp. 2009, 45, 27–31. [Google Scholar] [CrossRef]
- Razgonova, M.; Zakharenko, A.; Ercisli, S.; Grudev, V.; Golokhvast, K. Comparative analysis of Far East Sikhotinsky rhododendron (Rh. sichotense) and East Siberian rhododendron (Rh. adamsii) using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. Molecules 2020, 25, 3774. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Dudareva, L.V.; Osipenko, S.N.; Penzina, T.A. Chemical composition of essential oils from leaves of Rhododendron dauricum and Rh. aureum. Chem. Nat. Comp. 2009, 45, 450–452. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Dudareva, L.V.; Osipenko, S.N.; Penzina, T.A. Chemical composition of Rhododendron aureum (gold rosebay) essential oil from Pribaikal’e (Russian Federation). J. Serb. Chem. Soc. 2010, 75, 209–215. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M. Phenolic compounds from Rhododendron dauricum from Baikal region. Chem. Nat. Comp. 2010, 46, 471–473. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 76, 248–254. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M. Absorption spectra of carbohydrates and related compounds in H2SO4. Chem. Nat. Comp. 2006, 42, 262–264. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M.; Samuelsen, A.B. Quantitative analysis of polysaccharides from Plantago major leaves using the Dreywood method. Chem. Nat. Comp. 2006, 42, 265–268. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M. Quantitative determination of phenolic compounds in Mentha piperita leaves. Chem. Nat. Comp. 2010, 46, 22–27. [Google Scholar] [CrossRef]
- Chirikova, N.K.; Olennikov, D.N.; Tankhaeva, L.M. Quantitative determination of flavonoid content in the aerial part of Baical scullcap (Scutellaria baicalensis Georgi). Russ. J. Bioorg. Chem. 2010, 36, 915–922. [Google Scholar] [CrossRef]
- Damien Dorman, H.J.; Shikov, A.N.; Pozharitskaya, O.N.; Hiltunen, R. Antioxidant and pro-oxidant evaluation of a Potentilla alba L. rhizome extract. Chem. Biodiv. 2011, 8, 1344–1356. [Google Scholar] [CrossRef]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Porter, L.J.; Hrstich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Chirikova, N.K.; Okhlopkova, Z.M.; Zulfugarov, I.S. Chemical composition and antioxidant activity of Tánara Ótó (Dracocephalum palmatum Stephan), a medicinal plant used by the North-Yakutian nomads. Molecules 2013, 18, 14105–14121. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Gornostai, T.G.; Selyutina, I.Y.; Zilfikarov, I.N. Effect of low temperature cultivation on the phytochemical profile and bioactivity of Arctic plants: A case of Dracocephalum palmatum. Int. J. Mol. Sci. 2017, 18, 2579. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Kidawara, M.; Iseki, M.; Umegaki, C.; Kishi, T. A simple fluorometric determination of vitamin C. Chem. Pharm. Bull. 1998, 46, 1474–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olennikov, D.N.; Chirikova, N.K.; Vasilieva, A.G.; Fedorov, I.A. LC-MS profile, gastrointestinal and gut microbiota stability and antioxidant activity of Rhodiola rosea herb metabolites: A comparative study with subterranean organs. Antioxidants 2020, 9, 526. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Vasilieva, A.G.; Chirikova, N.K. Fragaria viridis fruit metabolites: Variation of LC-MS profile and antioxidant potential during ripening and storage. Pharmaceuticals 2020, 13, 262. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M.; Agafonova, S.V. Antioxidant components of Laetiporus sulphureus (Bull.: Fr.) Murr. fruit bodies. Appl. Biochem. Microbiol. 2011, 47, 419–425. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Jusha, M.; Saroha, K.; Singif, N.; Vashishta, B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharm. 2008, 58, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. A novel HPLC-assisted method for investigation of the Fe2+-chelating activity of flavonoids and plant extracts. Molecules 2014, 19, 18296–18316. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Gadimli, A.I.; Isaev, J.I.; Kashchenko, N.I.; Prokopyev, A.S.; Katayeva, T.N.; Chirikova, N.K.; Vennos, C. Caucasian Gentiana species: Untargeted LC-MS metabolic profiling, antioxidant and digestive enzyme inhibiting activity of six plants. Metabolites 2019, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N. Synanthropic plants as an underestimated source of bioactive phytochemicals: A case of Galeopsis bifida (Lamiaceae). Plants 2020, 9, 1555. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.-W.; Vennos, C. Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against α-amylase and α-glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Malkoç, M.; Laghari, A.Q.; Kolayli, S.; Can, Z. Phenolic composition and antioxidant properties of Rhododendron ponticum: Traditional nectar source for mad honey. Anal. Chem. Lett. 2016, 6, 224–231. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lin, L.-C.; Ho, S.-T.; Tung, Y.-T.; Tseng, Y.-H.; Wu, J.-H. Antioxidant activities and phytochemicals of leaf extracts from 10 native Rhododendron species in Taiwan. Evid. Based Complement. Altern. Med. 2014, 2014, 283938. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Ma, H.; Fan, P. Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogonoides and its protective effect on hypoxia-induced injury in PC12 cells. BMC Complement. Altern. Med. 2015, 15, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafi, M.; Febriany, S.; Wulandari, P.; Suparto, I.H.; Ridwan, T.; Rahayu, S.; Siswoyo, D.M. Total phenolics, flavonoids, and anthocyanin contents of six Vireya rhododendron from Indonesia and evaluation of their antioxidant activities. J. Appl. Pharm. Sci. 2018, 8, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; He, J.; Miao, X.; Guo, X.; Shang, X.; Wang, W.; Li, B.; Wang, Y.; Pan, H.; Zhang, J. Multiple biological activities of Rhododendron przewalskii Maxim. extracts and UPLC-ESI-Q-TOF/MS characterization of their phytochemical composition. Front. Pharmacol. 2021, 12, 599778. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-S.; Liou, S.-Y.; Chang, Y.-L. Antioxidant evaluation of three adaptogen extracts. Am. J. Chin. Med. 2008, 36, 1209–1217. [Google Scholar] [CrossRef]
- Sanjay, K.; Ameya, K.; Mauro, B.; Andrea, M. Antioxidant, anti-inflammatory, and adaptogenic activity of Asparagus acutifolius extract. Oriental Pharm. Exp. Med. 2009, 9, 83–89. [Google Scholar] [CrossRef]
- Pal Singh, I.; Bharate, S.B. Phloroglucinol compounds of natural origin. Nat. Prod. Rep. 2006, 23, 558–591. [Google Scholar] [CrossRef]
- Xu, W.-H.; Liang, Q.; Zhang, Y.-J.; Zhao, P. Naturally occurring arbutin derivatives and their bioactivities. Chem. Biodiv. 2015, 12, 54–81. [Google Scholar] [CrossRef]
- Macbeth, A.K.; Mackay, J. LXXXIV. Studies of the glucosides. Part II. Arbutin. J. Chem. Soc. Trans. 1923, 123, 717–724. [Google Scholar] [CrossRef]
- Iwata, N.; Wang, N.; Yao, X.; Kitanaka, S. Structures and histamine release inhibitory effects of prenylated orcinol derivatives from Rhododendron dauricum. J. Nat. Prod. 2004, 67, 1106–1109. [Google Scholar] [CrossRef]
- Olennikov, D.N. Makisterone C-20,22-acetonide from Rhaponticum uniflorum. Chem. Nat. Comp. 2018, 54, 930–933. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhou, B.; Gao, K. Chemical constituents of plants from the genus Rhododendron. Chem. Biodiv. 2011, 8, 792–815. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Alam, M. A novel cytotoxic flavonoid glycoside from Physalis angulata. Phytochemistry 2001, 72, 676–679. [Google Scholar] [CrossRef]
- Parker, W.H.; Bohm, B.A. Flavonol glycosides of Limnanthes douglasii. Phytochemistry 1975, 14, 553–555. [Google Scholar] [CrossRef]
- Louis, A.; Petereit, F.; Lechtenberg, M.; Deters, A.; Hensel, A. Phytochemical characterization of Rhododendron ferrugineum and in vitro assessment of an aqueous extract on cell toxicity. Planta Med. 2010, 76, 1550–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinke, R.; Arnold, N.; Wessjohann, L.; Schmidt, J. Negative ion tandem mass spectrometry of prenylated fungal metabolites and their derivatives. Anal. Bioanal. Chem. 2013, 405, 177–189. [Google Scholar] [CrossRef]
- Iijima, M.; Munakata, R.; Takahashi, H.; Kenmoku, H.; Nakagawa, R.; Kodama, T.; Asakawa, Y.; Abe, I.; Yazaki, K.; Kurosaki, F.; et al. Identification and characterization of daurichromenic acid synthase active in anti-HIV biosynthesis. Plant Physiol. 2017, 174, 2213–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acids by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef]
- Olennikov, D.N. Free carbohydrates, glucofructans, and other polysaccharides from Rhaponticum uniflorum. Chem. Nat. Comp. 2018, 54, 751–754. [Google Scholar] [CrossRef]
- Fan, C.Q.; Yang, G.J.; Zhao, W.M.; Ding, B.Y.; Qin, G.W. Phenolic components from Rhododendron latoucheae. Chin. Chem. Lett. 1999, 10, 567–570. [Google Scholar]
- Rawat, P.; Rai, N.; Kumar, N.; Bachheti, R.K. Review on Rhododendron arboreum—A magical tree. Orient. Pharm. Exp. Med. 2017, 17, 297–308. [Google Scholar] [CrossRef]
- Belova, N.V.; Fokina, G.A. The triterpenoids of some species of Rhododendron. Chem. Nat. Comp. 1970, 6, 134. [Google Scholar] [CrossRef]
- Fokina, G.A. Triterpene acids of Rhododendron plants of the flora of the USSR. Chem. Nat. Comp. 1979, 15, 651–652. [Google Scholar] [CrossRef]
- Bohm, B.A. Intraspecific flavonoid variation. Bot. Rev. 1987, 53, 197–279. [Google Scholar] [CrossRef]
- Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and biosynthesis. Trends Plant Sci. 2020, 25, 985–1004. [Google Scholar] [CrossRef]
- Mechoulam, R. Chemistry of Cannabis. In Psychotropic Agents. Handbook of Experimental Pharmacology; Hoffmeister, F., Stille, G., Eds.; Springer: Berlin/Heidelberg, Germany, 1982; Volume 55. [Google Scholar] [CrossRef]
- Taura, F.; Iijima, M.; Kurosaki, F. Daurichromenic acid and grifolic acid: Phytotoxic meroterpenoids that induce cell death in cell culture of their producer Rhododendron dauricum. Plant Sign. Behav. 2018, 13, e1422463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepak, H.V.; Swamy, M.M.M.; Murai, Y.; Suga, Y.; Anetai, M.; Yo, T.; Kuragano, M.; Uwai, K.; Tokuraku, K.; Monde, K. Daurichromenic acid from the Chinese traditional medicinal plant Rhododendron dauricum inhibits sphingomyelin synthase and Aβ aggregation. Molecules 2020, 25, 4077. [Google Scholar] [CrossRef] [PubMed]
- Shishkin, B.K.; Bobrov, E.G. (Eds.) Flora USSR; AN SSSR: Moscow, Russia, 1952; Volume 18, pp. 43–47. [Google Scholar]
- Joshi, Y.C.; Dobhal, M.P.; Joshi, B.C.; Barar, F.S.K. Chemical investigation and biological screening of the stem of Rhododendron anthopogon (D. Don.). Pharmazie 1981, 36, 381. [Google Scholar]
- Sharma, N.; Sharma, U.K.; Gupta, A.P.; Sinha, A.K. Simultaneous determination of epicatechin, syringic acid, quercetin-3-O-galactoside and quercitrin in the leaves of Rhododendron species by using a validated HPTLC method. J. Food Comp. Anal. 2010, 23, 214–219. [Google Scholar] [CrossRef]
- Dai, S.-J.; Chen, R.-Y.; Yu, D.-Q. Studies on the flavonoid compounds of Rhododendron anthopogonoides. Zhongguo Zhongyao Zazhi 2004, 29, 47. [Google Scholar]
- Fan, M.-X.; Zhao, J.-Q.; Yuan, X.; Tao, Y.-D.; Shao, Y.; Mei, L.-J. Chemical constituents from Rhododendron anthopogonoides. Chin. Trad. Herb. Drugs 2010, 47, 3769–3772. [Google Scholar] [CrossRef]
- Iwata, N.; Kitanaka, S. Tetracyclic chromane derivatives from Rhododendron anthopogonoides. J. Nat. Prod. 2010, 73, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Iwata, N.; Kitanaka, S. New cannabinoid-like chromane and chromene derivatives from Rhododendron anthopogonoides. Chem. Pharm. Bull. 2011, 59, 1409–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Mir, I.; Hussain, G.; Galbraith, M.N. Noreugenin from Rhododendron collettianum. Phytochemistry 1973, 12, 727–728. [Google Scholar] [CrossRef]
- Hakeem Said, I.; Rezk, A.; Hussain, I.; Grimbs, A.; Shrestha, A.; Schepker, H.; Brix, K.; Ullrich, M.S.; Kuhnert, N. Metabolome comparison of bioactive and inactive Rhododendron extracts and identification of an antibacterial cannabinoid(s) from Rhododendron collettianum. Phytochem. Anal. 2017, 28, 454–464. [Google Scholar] [CrossRef]
- Modak, B.; Torres, R.; Urzúa, A. Seasonal variation of the flavonoids pinocembrin and 3-O-methylgalangin, in the surface component mixture (resinous exudates and waxy coating) of Heliotropium stenophyllum. J. Chil. Chem. Soc. 2011, 56, 532–534. [Google Scholar] [CrossRef]
- Fischbach, R.; Kossmann, B.; Panten, H.; Steinbrecher, R.; Heller, W.; Seidlitz, H.; Sandermann, H.; Hertkorn, N.; Schnitzler, J. Seasonal accumulation of ultraviolet-B screening pigments in needles of Norway spruce (Picea abies (L.) Karst.). Plant Cell Environ. 1999, 22, 27–37. [Google Scholar] [CrossRef]
- Bouzoubaâ, Z.; El Mousadik, A.; Belahsen, Y. Variation in amounts of epicuticular wax on leaves of Argania spinosa (L). Skeels. Acta Bot. Gallica 2006, 153, 167–177. [Google Scholar] [CrossRef]
- Zabkiewicz, J.A.; Gaskin, R.E. Seasonal variation of gorse (Ulex europaeus L) surface wax and trichomes. New Phytol. 1978, 81, 367–373. [Google Scholar] [CrossRef]
- Kwak, M.J.; Lee, J.K.; Park, S.; Kim, H.; Lim, Y.J.; Lee, K.-A.; Son, J.-a; Oh, C.-Y.; Kim, I.; Woo, S.Y. Surface-based analysis of leaf microstructures for adsorbing and retaining capability of airborne particulate matter in ten woody species. Forests 2020, 11, 946. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agati, G.; Brunetti, C.; Fini, A.; Gori, A.; Guidi, L.; Landi, M.; Sebastiani, F.; Tattini, M. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants 2020, 9, 1098. [Google Scholar] [CrossRef]
- Song, J.; Manir, M.M.; Moon, S.-S. Cytotoxic grifolin derivatives isolated from the wild mushroom Boletus pseudocalopus (Basidiomycetes). Chem. Biodiv. 2009, 6, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Shikov, A.N.; Lazukina, M.A.; Pozharitskaya, O.N.; Makarova, M.N.; Golubeva, O.V.; Makarov, V.G.; Djachuk, G.I. Pharmacological evaluation of Potentilla alba L. in mice: Adaptogenic and central nervous system effects. Pharm. Biol. 2011, 49, 1023–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domene, A.M. Effects of adaptogen supplementation on sport performance. A recent review of published studies. J. Hum. Sport Exerc. 2013, 8, 1054–1066. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, N.; Nasir, S.B.; Hefferon, K. Plant-based drugs and vaccines for COVID-19. Vaccines 2021, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.; Brendler, T. The role of adaptogens in prophylaxis and treatment of viral respiratory infections. Pharmaceuticals 2020, 13, 236. [Google Scholar] [CrossRef] [PubMed]
Mode No, SPE Eluate (SPE Eluent) | Column | Column Temp., °C | Eluents A/B Composition | Gradient Program, %B | Flow Rate, μL/min |
---|---|---|---|---|---|
Mode 1, SPE-1 (H2O) | ProteCol™ C18 HPH125 (4.6 × 250 mm, 5 μm; Trajan Scientific Australia Pty Ltd., Ringwood, Victoria, Australia) | 22 | 0.2% HCOOH in water/MeCN | 0–1 min 5–6%, 2–5 min 6–8%, 5–8 min 8–15%, 8–15 min 15–29%, 15–20 min 29–5% B | 100 |
Mode 2, SPE-2 (MeOH) | GLC Mastro (2.1 × 150 mm, 3 μm; Shimadzu, Kyoto, Japan) | 30 | 0.5% HCOOH in water/0.5% HCOOH in MeCN | 0–2 min 3–8%, 2–5 min 8–9%, 5–12 min 9–36%, 12–13 min 36–59%, 13–15 min 59–78%, 15–22 min 78–3% | 150 |
Mode 3, SPE-3 (0.55% NH3 in MeOH) | GLC Mastro (2.1 × 150 mm, 3 μm; Shimadzu, Kyoto, Japan) | 28 | 0.5% HCOOH in water/0.5% HCOOH in MeOH | 0–1 min 5–12%, 1–3 min 12–16%, 3–7 min 16–29%, 7–11 min 29–49%, 11–15 min 49–87%, 15–25 min 87–5% | 150 |
Mode 4, SPE-4 (DMSO) | Acclaim 120 C18 (2.1 × 150 mm, 2.2 μm; Dionex, Sunnyvale, CA, USA) | 25 | 0.1% TFA in water/0.1% TFA in MeCN | 0–3 min 0–5%, 3–8 min 5–10%, 8–15 min 8–14%, 15–17 min 14–33%, 17–22 min 33–59%, 22–30 min 59–73%, 30–40 min 73–0% | 300 |
Parameter | Solvent Type, % Methanol | |||||||
---|---|---|---|---|---|---|---|---|
0 | 20 | 40 | 50 | 60 | 70 | 80 | 100 | |
Yield, g/100 g | 12.5 ± 0.6 | 17.5 ± 0.8 | 18.5 ± 0.9 | 27.9 ± 1.1 | 30.5 ± 1.5 | 35.0 ± 1.7 | 32.5 ± 1.6 | 32.0 ± 1.4 |
Protein, mg/g | 23.69 ± 0.71 | 11.27 ± 0.31 | 2.09 ± 0.06 | n.d. | n.d. | n.d. | n.d. | n.d. |
Lipids, mg/g | 1.18 ± 0.04 | 10.86 ± 0.34 | 53.69 ± 1.61 | 73.14 ± 2.19 | 86.03 ± 2.44 | 183.22 ± 5.49 | 229.17 ± 6.87 | 254.12 ± 12.70 |
Soluble carbohydrates, mg/g | 326.03 ± 8.15 | 308.02 ± 7.73 | 153.62 ± 3.94 | 92.14 ± 2.25 | 76.02 ± 1.83 | 43.25 ± 1.08 | 20.63 ± 0.51 | 9.35 ± 0.23 |
Polysaccharides, mg/g | 57.60 ± 1.73 | 24.18 ± 0.70 | 3.02 ± 0.06 | n.d. | n.d. | n.d. | n.d. | n.d. |
Phenolics, mg/g | 163.15 ± 0.48 | 185.69 ± 5.57 | 293.35 ± 8.79 | 253.8 ± 6.32 | 197.54 ± 5.82 | 143.20 ± 4.25 | 127.03 ± 3.80 | 108.27 ± 3.20 |
Flavonols, mg/g | 97.86 ± 1.95 | 107.75 ± 2.37 | 138.88 ± 2.78 | 102.03 ± 2.50 | 90.64 ± 1.90 | 82.16 ± 1.64 | 74.81 ± 1.42 | 64.59 ± 1.29 |
Flavanols, mg/g | 10.21 ± 0.18 | 12.59 ± 0.25 | 16.84 ± 0.31 | 16.09 ± 0.27 | 14.69 ± 0.25 | 10.03 ± 0.18 | 5.63 ± 0.11 | 2.29 ± 0.04 |
Catechins, mg/g | 40.10 ± 1.00 | 48.52 ± 1.28 | 89.27 ± 2.73 | 88.41 ± 2.65 | 82.16 ± 2.46 | 61.01 ± 1.65 | 58.44 ± 1.43 | 55.20 ± 1.21 |
Procyanidins, mg/g | 14.85 ± 0.52 | 24.32 ± 0.87 | 27.98 ± 0.95 | 26.92 ± 0.79 | 25.08 ± 0.75 | 15.41 ± 0.57 | 6.65 ± 0.21 | 3.49 ± 0.12 |
DPPH•, IC50, μg/mL | 10.47 ± 0.31 | 7.33 ± 0.21 | 4.82 ± 0.14 | 4.93 ± 0.15 | 5.67 ± 0.17 | 14.22 ± 0.42 | 16.06 ± 0.48 | 25.81 ± 0.77 |
No | tR, min a | Compound b [Ref. c] | [M − H]−, m/z | Content in Leaves d, mg/g of Dry Plant Weight ± S.D. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
January (n = 15) | March (n = 19) | May (n = 26) | June (n = 31) | July (n = 42) | August (n = 36) | October (n = 27) | December (n = 19) | ||||
Carbohydrates | |||||||||||
1 | 0.62 I | O-Hexosyl-hexose L | 341 | 42.14 ± 0.45 | 40.32 ± 0.36 | 27.32 ± 1.91 | 35.14 ± 2.81 | 39.63 ± 3.18 | 45.18 ± 3.27 | 53.18 ± 5.84 | 50.72 ± 5.07 |
2 | 0.76 I | Hexose L | 179 | 2.11 ± 0.25 | 4.53 ± 0.39 | 11.08 ± 0.67 | 39.65 ± 3.55 | 52.19 ± 4.25 | 18.03 ± 1.29 | 10.81 ± 1.15 | 3.76 ± 0.38 |
Organic acids | |||||||||||
3 | 0.92 I | Malic acid R | 133 | 1.02 ± 0.08 | 6.36 ± 0.72 | 14.73 ± 0.58 | 18.39 ± 1.20 | 11.07 ± 0.22 | 5.39 ± 0.48 | 2.18 ± 0.27 | 1.93 ± 0.20 |
4 | 1.05 I | Citric acid R | 191 | <0.01 | 1.93 ± 0.15 | 3.75 ± 0.35 | 5.14 ± 0.42 | 3.07 ± 0.33 | 1.53 ± 0.10 | 0.93 ± 0.08 | 0.28 ± 0.02 |
5 | 1.26 I | Tartaric acid R | 149 | < 0.01 | 0.92 ± 0.06 | 2.53 ± 0.15 | 5.27 ± 0.45 | 4.18 ± 0.37 | 2.11 ± 0.14 | <0.01 | <0.01 |
6 | 1.42 I | Succinic acid R | 117 | <0.01 | <0.01 | 1.09 ± 0.08 | 1.23 ± 0.12 | 1.57 ± 0.14 | 1.43 ± 0.10 | <0.01 | <0.01 |
7 | 1.51 I | Fumaric acid R | 115 | <0.01 | <0.01 | 0.93 ± 0.07 | 1.14 ± 0.07 | 1.01 ± 0.08 | 0.52 ± 0.04 | <0.01 | <0.01 |
Simple phenolic glycosides | |||||||||||
8 | 2.48 I | Phloroglucinol di-O-hexoside L | 449 | <0.01 | 0.22 ± 0.03 | 0.90 ± 0.05 | 0.99 ± 0.10 | 1.63 ± 0.14 | 2.35 ± 0.25 | <0.01 | <0.01 |
9 | 2.67 I | Phloroglucinol di-O-hexoside L | 449 | <0.01 | <0.01 | 0.53 ± 0.04 | 0.69 ± 0.04 | 1.12 ± 0.10 | 1.97 ± 0.23 | 0.59 ± 0.06 | <0.01 |
10 | 2.75 I | Phlorin (phloroglucinol O-glucoside) R | 287 | 0.52 ± 0.06 | 1.67 ± 0.15 | 4.39 ± 0.48 | 5.63 ± 0.51 | 7.39 ± 1.03 | 6.85 ± 0.83 | 2.11 ± 0.18 | 1.45 ± 0.12 |
11 | 2.93 I | Phloroglucinol di-O-hexoside-O-acetate L | 491 | 1.83 ± 0.14 | 1.79 ± 0.18 | 0.59 ± 0.05 | 0.73 ± 0.06 | 0.92 ± 0.11 | 1.26 ± 0.11 | 1.43 ± 0.10 | 2.03 ± 0.21 |
12 | 3.09 I | Phloroglucinol di-O-hexoside-O-acetate L | 491 | 0.37 ± 0.04 | 0.35 ± 0.04 | 0.21 ± 0.01 | 0.25 ± 0.02 | 0.29 ± 0.02 | 0.35 ± 0.02 | 0.40 ± 0.03 | 0.35 ± 0.03 |
13 | 3.18 I | Phloroglucinol di-O-hexoside-di-O-acetate L | 533 | 0.68 ± 0.07 | 0.42 ± 0.03 | 0.29 ± 0.02 | 0.37 ± 0.04 | 0.38 ± 0.06 | 0.55 ± 0.05 | 0.63 ± 0.05 | 0.79 ± 0.07 |
14 | 3.24 I | Phloroglucinol di-O-hexoside-di-O-acetate L | 533 | 0.08 ± 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
15 | 3.31 I | Hydroquinone di-O-hexoside L | 433 | <0.01 | <0.01 | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.07 ± 0.00 | 0.04 ± 0.00 | <0.01 | <0.01 |
16 | 3.43 I | Hydroquinone di-O-hexoside L | 433 | 0.27 ± 0.02 | 0.29 ± 0.02 | 0.57 ± 0.06 | 0.61 ± 0.05 | 0.67 ± 0.07 | 0.42 ± 0.34 | 0.31 ± 0.03 | 0.30 ± 0.02 |
17 | 3.64 I | Arbutin (hydroquinone O-glucoside) R | 271 | <0.01 | <0.01 | 0.09 ± 0.01 | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.05 ± 0.00 | <0.01 |
18 | 3.69 I | Orcinol di-O-hexoside L | 447 | <0.01 | <0.01 | <0.01 | 0.14 ± 0.01 | 0.19 ± 0.03 | 0.15 ± 0.02 | <0.01 | <0.01 |
19 | 3.81 I | Hydroquinone di-O-hexoside-O-methyl ester L | 447 | 0.05 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.05 ± 0.00 |
20 | 3.92 I | Hydroquinone O-hexoside-O-methyl ester L | 285 | <0.01 | <0.01 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | <0.01 | <0.01 |
21 | 4.09 I | Sakakin (orcinol O-glucoside) R | 285 | 3.14 ± 0.31 | 3.46 ± 0.32 | 4.73 ± 0.52 | 5.79 ± 0.46 | 6.18 ± 0.74 | 6.03 ± 0.70 | 5.76 ± 0.42 | 5.31 ± 0.50 |
24 | 4.47 I | Orcinol O-hexoside-O-acetate L | 327 | <0.01 | <0.01 | <0.01 | 0.20 ± 0.01 | 0.42 ± 0.04 | 0.20 ± 0.03 | <0.01 | <0.01 |
Triterpene glycosides | |||||||||||
22 | 4.26 I | Ursolic acid tri-O-hexoside L | 941 | <0.01 | <0.01 | <0.01 | 0.08 ± 0.01 | 0.53 ± 0.06 | 0.59 ± 0.06 | <0.01 | <0.01 |
23 | 4.31 I | Ursolic acid tri-O-hexoside L | 941 | <0.01 | <0.01 | 0.27 ± 0.03 | 0.37 ± 0.04 | 0.63 ± 0.05 | 0.72 ± 0.08 | <0.01 | <0.01 |
25 | 4.58 I | Ursolic acid di-O-hexoside L | 779 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
26 | 4.74 I | Ursolic acid di-O-hexoside L | 779 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
27 | 4.79 I | Ursolic acid tri-O-hexoside-O-acetate L | 983 | 0.42 ± 0.03 | 0.40 ± 0.05 | <0.01 | <0.01 | 0.11 ± 0.01 | 0.12 ± 0.02 | 0.26 ± 0.02 | 0.31 ± 0.03 |
28 | 4.97 I | Ursolic acid tri-O-hexoside-O-acetate L | 983 | 0.69 ± 0.07 | 0.63 ± 0.05 | <0.01 | 0.08 ± 0.01 | 0.22 ± 0.02 | 0.25 ± 0.03 | 0.41 ± 0.03 | 0.73 ± 0.06 |
29 | 5.18 I | Ursolic acid di-O-hexoside-O-acetate L | 821 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
30 | 5.46 I | Ursolic acid O-hexoside L | 617 | 2.57 ± 0.31 | 4.85 ± 0.32 | 11.73 ± 1.42 | 15.37 ± 1.50 | 17.26 ± 1.83 | 17.54 ± 1.85 | 14.31 ± 1.28 | 3.06 ± 0.36 |
31 | 5.53 I | Ursolic acid di-O-hexoside-di-O-acetate L | 863 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
32 | 5.74 I | Ursolic acid di-O-hexoside-di-O-acetate L | 863 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
33 | 7.87 I | Ursolic acid O-hexoside-O-acetate L | 659 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
34 | 8.28 I | Ursolic acid O-hexoside-O-acetate L | 659 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
35 | 10.26 I | Ursolic acid O-hexoside-di-O-acetate L | 701 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Flavonols | |||||||||||
Glycosides: myricetin derivatives | |||||||||||
36 | 2.72 II | Myricetin tri-O-hexoside-tri-O-desoxyhexoside L | 1241 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
37 | 2.79 II | Myricetin tri-O-hexoside-di-O-desoxyhexoside L | 1095 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
46 | 4.09 II | Myricetin di-O-hexoside-di-O-desoxyhexoside L | 933 | <0.01 | <0.01 | 1.53 ± 0.11 | 1.67 ± 0.12 | 1.99 ± 0.17 | 1.52 ± 0.12 | 0.35 ± 0.04 | <0.01 |
47 | 4.18 II | Myricetin di-O-hexoside-O-desoxyhexoside L | 787 | <0.01 | <0.01 | 3.63 ± 0.29 | 3.69 ± 0.27 | 4.35 ± 0.52 | 4.10 ± 0.32 | 1.76 ± 0.15 | <0.01 |
49 | 4.31 II | Myricetin O-hexoside-O-desoxyhexoside L | 625 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
50 | 4.43 II | Myricetin 3-O-rutinoside R | 625 | <0.01 | <0.01 | 0.53 ± 0.04 | 0.79 ± 0.06 | 0.75 ± 0.07 | 0.42 ± 0.03 | <0.01 | <0.01 |
51 | 4.51 II | Myricetin 3-O-galactoside R | 479 | <0.01 | <0.01 | 0.75 ± 0.08 | 1.27 ± 0.12 | 1.53 ± 0.16 | 1.42 ± 0.12 | 0.53 ± 0.04 | <0.01 |
52 | 4.58 II | Isomyricitrin (myricetin 3-O-glucoside) R | 479 | 7.18 ± 0.86 | 9.06 ± 0.89 | 18.67 ± 1.68 | 22.14 ± 2.65 | 25.83 ± 2.45 | 21.15 ± 1.90 | 20.63 ± 1.85 | 9.32 ± 0.92 |
56 | 4.97 II | Myricetin O-pentoside R | 449 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
58 | 5.26 II | Myricitrin (myricetin 3-O-rhamnoside) R | 463 | <0.01 | <0.01 | 0.43 ± 0.03 | 0.52 ± 0.06 | 0.63 ± 0.05 | 0.27 ± 0.03 | <0.01 | <0.01 |
91 | 3.42 III | Myricetin di-O-hexoside-di-O-hexuronide L | 993 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
92 | 3.54 III | Myricetin di-O-hexoside-di-O-hexuronide L | 993 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
93 | 3.74 III | Myricetin di-O-hexoside-O-hexuronide L | 817 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
94 | 4.11 III | Myricetin O-hexoside-di-O-hexuronide L | 831 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
97 | 4.67 III | Myricetin O-hexoside-O-hexuronide L | 655 | 2.63 ± 0.31 | 1.37 ± 0.14 | 6.40 ± 0.70 | 7.55 ± 0.63 | 9.32 ± 0.74 | 9.07 ± 0.54 | 5.18 ± 0.41 | 4.57 ± 0.37 |
99 | 4.89 III | Myricetin O-hexuronide L | 493 | 4.76 ± 0.30 | 3.22 ± 0.35 | 8.26 ± 0.75 | 10.29 ± 0.92 | 11.57 ± 1.23 | 10.83 ± 1.05 | 8.62 ± 0.73 | 5.62 ± 0.54 |
106 | 6.01 III | Myricetin O-hexuronide-O-acetate L | 535 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
107 | 6.78 III | Myricetin O-hexoside-di-O-acetate L | 563 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
108 | 6.92 III | Myricetin O-hexouronide-di-O-acetate L | 577 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
111 | 7.92 III | Myricetin O-hexoside-di-O-acetate L | 563 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
118 | 9.18 III | Myricetin O-hexoside-tri-O-acetate L | 605 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
119 | 9.24 III | Myricetin O-hexoside-tri-O-acetate L | 605 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.53 ± 0.03 | 0.40 ± 0.03 |
165 | 22.97 IV | Myricetin tri-O-hexoside-di-O-gallate L | 1107 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
166 | 23.67 IV | Myricetin di-O-hexoside-di-O-gallate L | 945 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
167 | 24.43 IV | Myricetin di-O-hexoside-O-gallate L | 793 | <0.01 | <0.01 | <0.01 | 0.14 ± 0.02 | 0.37 ± 0.03 | 0.25 ± 0.02 | <0.01 | <0.01 |
168 | 25.63 IV | Myricetin O-hexoside-O-gallate L | 631 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
169 | 25.83 IV | Myricetin O-hexoside-O-gallate L | 631 | 1.04 ± 0.10 | 0.82 ± 0.09 | 1.55 ± 0.17 | 2.80 ± 0.25 | 4.18 ± 0.38 | 3.53 ± 0.32 | 1.77 ± 0.18 | 1.52 ± 0.14 |
Glycosides: quercetin derivatives | |||||||||||
38 | 2.97 II | Quercetin tri-O-hexoside-di-O-desoxyhexoside L | 1079 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
48 | 4.26 II | Quercetin di-O-hexoside-O-desoxyhexoside L | 771 | <0.01 | <0.01 | 0.93 ± 0.10 | 1.45 ± 0.11 | 1.59 ± 0.11 | 1.53 ± 0.12 | <0.01 | <0.01 |
53 | 4.74 II | Rutin (quercetin 3-O-rutinoside) R [12] | 609 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
54 | 4.78 II | Hyperoside (quercetin 3-O-galactoside) R | 463 | <0.01 | 0.26 ± 0.02 | 0.97 ± 0.07 | 1.14 ± 0.12 | 1.29 ± 0.14 | 0.92 ± 0.06 | <0.01 | <0.01 |
55 | 4.83 II | Isoquercitrin (quercetin 3-O-glucoside) R | 463 | 0.29 ± 0.04 | 0.41 ± 0.03 | 1.10 ± 0.09 | 1.53 ± 0.12 | 2.83 ± 0.21 | 1.43 ± 0.12 | 0.92 ± 0.08 | 0.35 ± 0.03 |
57 | 5.11 II | Avicularin (quercetin 3-O-arabinoside) R [13] | 433 | 0.23 ± 0.02 | 0.20 ± 0.02 | 0.53 ± 0.04 | 0.73 ± 0.08 | 1.11 ± 0.10 | 1.12 ± 0.09 | 0.96 ± 0.07 | 0.92 ± 0.09 |
59 | 5.63 II | Quercitrin (quercetin 3-O-rhamnoside) R [13] | 433 | <0.01 | <0.01 | 0.59 ± 0.04 | 0.63 ± 0.07 | 0.65 ± 0.06 | 0.32 ± 0.04 | <0.01 | <0.01 |
100 | 5.03 III | Quercetin di-O-hexoside-O-hexuronide L | 801 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
101 | 5.14 III | Quercetin O-hexoside-di-O-hexuronide L | 815 | <0.01 | <0.01 | 0.50 ± 0.04 | 0.53 ± 0.04 | 0.92 ± 0.11 | 0.86 ± 0.12 | 0.27 ± 0.03 | <0.01 |
103 | 5.38 III | Quercetin O-hexoside-O-hexuronide L | 639 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
104 | 5.63 III | Quercetin O-hexoside-O-hexuronide L | 639 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
105 | 5.69 III | Miquelianin (quercetin 3-O-glucuronide) R | 477 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
110 | 7.36 III | Quercetin O-hexuronide-O-acetate L | 519 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.42 ± 0.03 | 0.37 ± 0.03 |
114 | 8.47 III | Quercetin O-hexuronide-di-O-acetate L | 561 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
115 | 8.69 III | Quercetin O-hexuronide-di-O-acetate L | 561 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
121 | 9.46 III | Quercetin O-hexoside-tri-O-acetate L | 589 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
122 | 9.53 III | Quercetin O-hexoside-tri-O-acetate L | 589 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
170 | 26.74 IV | Quercetin 3-O-(6’’-O-galloyl)-glucoside R | 615 | 0.52 ± 0.04 | 0.50 ± 0.05 | 0.83 ± 0.06 | 1.07 ± 0.11 | 1.54 ± 0.12 | 1.62 ± 0.14 | 0.93 ± 0.10 | 0.73 ± 0.06 |
171 | 28.02 IV | Quercetin O-hexoside-di-O-gallate L | 767 | <0.01 | <0.01 | <0.01 | 0.53 ± 0.04 | 0.96 ± 0.10 | 0.83 ± 0.09 | 0.21 ± 0.02 | <0.01 |
Glycosides: kaempferol derivatives | |||||||||||
60 | 5.77 II | Juglanin (kaempferol 3-O-arabinoside) R | 417 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
61 | 6.29 II | Afzelin (kaempferol 3-O-rhamnoside) R | 431 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Aglycones | |||||||||||
65 | 9.01 II | Myricetin R [12] | 317 | 0.90 ± 0.09 | 0.72 ± 0.08 | 0.39 ± 0.02 | 0.34 ± 0.03 | 0.28 ± 0.03 | 0.35 ± 0.04 | 0.83 ± 0.07 | 0.97 ± 0.11 |
66 | 9.23 II | Quercetin R [12] | 301 | 0.53 ± 0.04 | 0.42 ± 0.03 | 0.12 ± 0.01 | <0.01 | <0.01 | <0.01 | 0.98 ± 0.12 | 1.57 ± 0.14 |
69 | 9.51 II | Isorhamnetin R | 315 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
73 | 10.24 II | Kaempferol R [13] | 285 | 0.39 ± 0.04 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Dihydroflavonols | |||||||||||
Dihydromyricetin derivatives | |||||||||||
39 | 3.22 II | Dihydromyricetin di-O-hexoside L | 643 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
40 | 3.45 II | Dihydromyricetin O-hexoside L | 481 | 1.53 ± 0.16 | 1.48 ± 0.17 | 2.73 ± 0.21 | 3.11 ± 0.43 | 3.52 ± 0.47 | 3.18 ± 0.40 | 2.39 ± 0.18 | 2.01 ± 0.20 |
Dihydroquercetin derivatives | |||||||||||
41 | 3.52 II | Dihydroquercetin di-O-hexoside-di-O-desoxyhexoside L | 919 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
42 | 3.64 II | Dihydroquercetin di-O-hexoside-O-desoxyhexoside L | 773 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
43 | 3.72 II | Dihydroquercetin O-hexoside-O-desoxyhexoside L | 611 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
44 | 3.78 II | Dihydroquercetin O-hexoside L | 465 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
45 | 3.83 II | Astilbin (=dihydroquercetin-3-O-rhamnoside) R | 449 | 4.32 ± 0.51 | 5.27 ± 0.57 | 5.29 ± 0.53 | 6.18 ± 0.43 | 7.11 ± 0.78 | 6.53 ± 0.97 | 5.12 ± 0.71 | 5.06 ± 0.75 |
62 | 8.25 II | Dihydroquercetin (taxifloin) R [12] | 303 | 2.35 ± 0.16 | 1.58 ± 0.14 | 0.27 ± 0.04 | 0.35 ± 0.04 | 0.32 ± 0.03 | 0.41 ± 0.03 | 0.86 ± 0.09 | 1.43 ± 0.12 |
102 | 5.26 III | Dihydroquercetin O-hexuronide L | 479 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
109 | 7.22 III | Dihydroquercetin O-hexuronide-O-acetate L | 521 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
112 | 8.14 III | Dihydroquercetin O-hexuronide-di-O-acetate L | 563 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.57 ± 0.06 | 0.62 ± 0.06 |
113 | 8.26 III | Dihydroquercetin O-hexuronide-di-O-acetate L | 563 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Dihydrokaempferol derivatives | |||||||||||
64 | 8.83 II | Dihydrokaempferol (aromadendrin) R | 287 | 0.11 ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.14 ± 0.02 |
Flavones | |||||||||||
67 | 9.27 II | Luteolin R | 285 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
68 | 9.37 II | Apigenin R | 269 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
74 | 10.48 II | Farrerol R [13] | 299 | 0.52 ± 0.06 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.62 ± 0.05 | 1.58 ± 0.14 |
Prenylared phenols | |||||||||||
Cannabigerorcinic acid derivatives | |||||||||||
70 | 9.76 II | Cannabigerorcinic acid O-methyl ester di-O-hexoside L | 641 | <0.01 | <0.01 | 2.35 ± 0.28 | 2.53 ± 0.31 | 2.11 ± 0.27 | 2.53 ± 0.22 | 1.03 ± 11 | 0.58 ± 0.04 |
71 | 9.93 II | Cannabigerorcinic acid O-methyl ester di-O-hexoside L | 641 | <0.01 | <0.01 | 0.62 ± 0.05 | 0.69 ± 0.06 | 0.50 ± 0.04 | 0.31 ± 0.02 | <0.01 | <0.01 |
72 | 10.04 II | Cannabigerorcinic acid O-methyl ester O-hexoside-O-desoxyhexoside L | 625 | <0.01 | <0.01 | 0.95 ± 0.10 | 1.14 ± 0.12 | 1.16 ± 0.14 | 0.73 ± 0.08 | <0.01 | <0.01 |
75 | 10.63 II | Cannabigerorcinic acid methyl ester O-hexoside L | 479 | 1.43 ± 0.12 | 1.20 ± 0.10 | 1.93 ± 0.22 | 2.35 ± 0.25 | 2.30 ± 0.23 | 2.04 ± 0.20 | 2.56 ± 0.24 | 2.33 ± 0.20 |
76 | 10.97 II | Cannabigerorcinic acid di-O-methyl ester O-hexoside L | 493 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
77 | 11.05 II | Cannabigerorcinic acid di-O-methyl ester O-hexoside L | 493 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
78 | 11.22 II | Cannabigerorcinic acid di-O-methyl ester O-hexoside L | 493 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
79 | 11.47 II | Cannabigerorcinic acid O-methyl ester L | 317 | 35.16 ± 3.57 | 32.03 ± 3.28 | 18.35 ± 2.14 | 20.39 ± 2.24 | 19.03 ± 1.92 | 25.76 ± 2.06 | 36.18 ± 3.25 | 39.92 ± 4.02 |
80 | 11.52 II | Cannabigerorcinic acid O-methyl ester L | 317 | 0.14 ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.24 ± 0.02 |
81 | 11.74 II | Cannabigerorcinic acid di-O-methyl ester L | 331 | 0.10 ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.10 ± 0.01 |
82 | 12.04 II | Cannabigerorcinic acid di-O-methyl ester L | 331 | 0.20 ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.18 ± 0.02 |
83 | 13.15 II | Cannabigerorcinic acid tri-O-methyl ester L | 345 | 0.18 ± 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.27 ± 0.03 |
116 | 8.92 III | Cannabigerorcinic acid di-O-hexoside L | 627 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
117 | 9.01 III | Cannabigerorcinic acid O-hexoside L | 465 | 0.40 ± 0.04 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.92 ± 0.11 | 0.86 ± 0.09 |
120 | 9.33 III | Cannabigerorcinic acid R [13] | 303 | 0.63 ± 0.07 | 0.62 ± 0.08 | 0.37 ± 0.04 | 0.21 ± 0.02 | 0.08 ± 0.00 | 0.21 ± 0.03 | 0.95 ± 0.11 | 0.99 ± 0.11 |
123 | 9.72 III | Cannabigerorcinic acid O-acetate L | 345 | 0.34 ± 0.03 | 0.19 ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | 0.42 ± 0.03 | 0.40 ± 0.03 |
124 | 9.81 III | Cannabigerorcinic acid di-O-acetate L | 387 | 1.05 ± 0.09 | 0.86 ± 0.07 | <0.01 | <0.01 | <0.01 | 0.38 ± 0.04 | 1.53 ± 0.14 | 1.27 ± 0.11 |
129 | 10.40 III | Cannabigerorcinic acid tri-O-acetate L | 429 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Grifolic acid derivatives | |||||||||||
125 | 9.93 III | Hydroxy-grifolic acid di-O-hexoside L | 711 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.53 ± 0.06 | 0.62 ± 0.05 | 0.35 ± 0.04 |
126 | 9.98 III | Hydroxy-grifolic acid O-hexoside L | 549 | 0.42 ± 0.04 | 0.27 ± 0.04 | 1.22 ± 0.10 | 1.53 ± 0.16 | 2.14 ± 0.19 | 2.53 ± 0.22 | 1.67 ± 0.14 | 0.93 ± 0.10 |
127 | 10.09 III | Hydroxy-grifolic acid O-hexoside L | 549 | 0.97 ± 0.11 | 0.53 ± 0.04 | 1.09 ± 0.12 | 2.75 ± 0.24 | 3.10 ± 0.31 | 3.16 ± 0.28 | 2.39 ± 0.22 | 1.86 ± 0.16 |
128 | 10.27 III | Hydroxy-grifolic acid O-pentoside L | 519 | 0.11 ± 0.02 | <0.01 | <0.01 | 0.20 ± 0.01 | 0.63 ± 0.04 | 1.45 ± 0.10 | 0.92 ± 0.11 | 0.53 ± 0.04 |
130 | 10.67 III | Hydroxy-grifolic acid L | 387 | 3.15 ± 0.40 | 3.01 ± 0.39 | 1.86 ± 0.20 | 1.04 ± 0.11 | 1.59 ± 0.14 | 3.67 ± 0.34 | 4.18 ± 0.39 | 4.50 ± 0.48 |
131 | 10.75 III | Grifolic acid di-O-hexoside L | 695 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
132 | 10.86 III | Grifolic acid O-hexoside L | 533 | <0.01 | <0.01 | <0.01 | <0.01 | 0.27 ± 0.03 | 0.50 ± 0.03 | 0.42 ± 0.04 | 0.22 ± 0.03 |
137 | 11.64 III | Grifolic acid R | 371 | 7.09 ± 0.67 | 6.59 ± 0.65 | 4.18 ± 0.42 | 3.62 ± 0.40 | 5.73 ± 0.52 | 5.62 ± 0.57 | 7.33 ± 0.69 | 7.56 ± 0.73 |
138 | 12.72 III | Grifolic acid O-methyl ester L | 385 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
139 | 12.81 III | Grifolic acid di-O-methyl ester L | 399 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
140 | 12.92 III | Grifolic acid O-methyl ester-O-acetate L | 427 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Daurichromenic acid derivatives | |||||||||||
133 | 10.86 III | Daurichromenic acid di-O-hexoside L | 693 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
134 | 11.06 III | Daurichromenic acid O-hexoside L | 531 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
135 | 11.26 III | Hydroxy-daurichromenic acid L | 385 | 3.57 ± 0.33 | 3.02 ± 0.31 | 0.25 ± 0.03 | 0.77 ± 0.08 | 0.93 ± 0.11 | 2.09 ± 0.21 | 2.59 ± 0.31 | 3.82 ± 0.35 |
136 | 11.43 III | Hydroxy-daurichromenic acid O-methyl ester L | 399 | 1.63 ± 0.17 | 1.42 ± 0.12 | <0.01 | <0.01 | 0.50 ± 0.04 | 0.84 ± 0.07 | 1.42 ± 0.10 | 1.53 ± 0.14 |
141 | 13.14 III | Daurichromenic acid R [13] | 369 | 2.30 ± 0.21 | 1.93 ± 0.20 | 1.04 ± 0.09 | 1.27 ± 0.14 | 1.53 ± 0.14 | 2.07 ± 0.17 | 2.56 ± 0.22 | 2.69 ± 0.25 |
142 | 13.42 III | Daurichromenic acid O-acetate L | 411 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
143 | 13.58 III | Daurichromenic acid O-methyl ester L | 383 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
144 | 13.74 III | Daurichromenic acid O-methyl ester-O-acetate L | 425 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
145 | 14.23 III | Daurichromenic acid di-O-methyl ester L | 397 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzoic acid derivatives | |||||||||||
84 | 0.68 III | Protocatechuic acid di-O-hexoside L | 477 | <0.01 | <0.01 | <0.01 | 0.14 ± 0.01 | 0.53 ± 0.04 | 0.63 ± 0.05 | 0.21 ± 0.02 | <0.01 |
85 | 0.89 III | Protocatechuic acid O-hexoside L | 315 | <0.01 | <0.01 | <0.01 | <0.01 | 0.23 ± 0.02 | <0.01 | <0.01 | <0.01 |
87 | 2.71 III | Vanillic/isovanillic acid O-hexoside L | 329 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
88 | 2.76 III | Vanillic/isovanillic acid O-hexoside L | 329 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
89 | 2.81 III | Vanillic acid 4-O-glucoside R | 329 | <0.01 | <0.01 | 0.53 ± 0.06 | 1.90 ± 0.16 | 2.51 ± 0.21 | 2.07 ± 0.20 | 0.95 ± 0.10 | 0.27 ± 0.03 |
90 | 2.95 III | Vanillic/isovanillic acid O-hexoside L | 329 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
146 | 2.70 IV | Gallic acid di-O-hexoside L | 493 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
147 | 3.27 IV | Gallic acid O-hexoside L | 331 | <0.01 | <0.01 | 0.67 ± 0.04 | 1.53 ± 0.12 | 2.11 ± 0.19 | 1.83 ± 0.17 | 0.84 ± 0.06 | <0.01 |
148 | 3.94 IV | Gallic acid R | 169 | 0.26 ± 0.03 | <0.01 | 1.72 ± 0.14 | 2.73 ± 0.31 | 4.37 ± 0.48 | 4.20 ± 0.45 | 2.63 ± 0.25 | 1.15 ± 0.10 |
149 | 4.32 IV | Gallic acid O-methyl ester O-hexoside L | 345 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
150 | 4.91 IV | Gallic acid O-methyl ester O-hexoside L | 345 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
151 | 5.60 IV | Gallic acid O-methyl ester R | 183 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Hydroxycinnamates | |||||||||||
86 | 2.42 III | 1-O-Caffeoylquinic acid R | 353 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
95 | 4.26 III | 5-O-Caffeoylquinic acid R | 353 | <0.01 | <0.01 | 0.70 ± 0.06 | 0.82 ± 0.06 | 0.97 ± 0.10 | 0.52 ± 0.06 | 0.30 ± 0.02 | 0.08 ± 0.00 |
96 | 4.51 III | 3-O-Caffeoylquinic acid R | 353 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
98 | 4.72 III | 4-O-Caffeoylquinic acid R | 353 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Catechins | |||||||||||
152 | 7.82 IV | Catechin/epicatechin di-O-hexoside L | 613 | <0.01 | <0.01 | <0.01 | <0.01 | 0.26 ± 0.02 | <0.01 | <0.01 | <0.01 |
153 | 8.51 IV | Catechin/epicatechin O-hexoside L | 451 | <0.01 | <0.01 | <0.01 | 0.27 ± 0.02 | 0.58 ± 0.05 | 0.52 ± 0.04 | 0.03 ± 0.00 | <0.01 |
155 | 9.82 IV | Catechin R | 289 | 8.63 ± 0.85 | 7.16 ± 0.63 | 9.35 ± 1.02 | 10.22 ± 1.07 | 15.23 ± 1.40 | 15.39 ± 1.45 | 12.82 ± 1.14 | 10.04 ± 0.93 |
156 | 10.76 IV | Catechin/epicatechin O-gallate-O-hexoside L | 603 | <0.01 | <0.01 | 0.02 ± 0.00 | 0.11 ± 0.01 | 0.35 ± 0.03 | 0.30 ± 0.02 | <0.01 | <0.01 |
157 | 12.15 IV | Catechin/epicatechin O-hexoside L | 451 | <0.01 | <0.01 | <0.01 | <0.01 | 0.14 ± 0.02 | 0.10 ± 0.02 | <0.01 | <0.01 |
159 | 13.54 IV | Epicatechin R | 289 | 0.86 ± 0.10 | 0.53 ± 0.04 | 1.10 ± 0.09 | 1.57 ± 0.16 | 1.54 ± 0.14 | 1.95 ± 0.20 | 1.26 ± 0.10 | 0.94 ± 0.09 |
161 | 19.67 IV | Catechin 3-O-gallate R | 441 | 0.02 ± 0.00 | <0.01 | 0.37 ± 0.04 | 0.39 ± 0.04 | 0.92 ± 0.08 | 0.95 ± 0.07 | 0.42 ± 0.03 | 0.11 ± 0.01 |
164 | 22.26 IV | Epicatechin 3-O-gallate R | 441 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Procyanidins | |||||||||||
154 | 9.03 IV | Procyanidin B1 R | 577 | 0.95 ± 0.08 | 0.73 ± 0.08 | 1.14 ± 0.10 | 2.06 ± 0.018 | 2.89 ± 0.25 | 2.73 ± 0.26 | 1.39 ± 0.14 | 1.22 ± 0.10 |
158 | 13.02 IV | Procyanidin B2 R | 577 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
160 | 15.51 IV | Procyanidin C1 R | 865 | 0.72 ± 0.06 | 0.63 ± 0.06 | 0.99 ± 0.10 | 1.27 ± 0.14 | 1.37 ± 0.14 | 1.27 ± 0.11 | 1.02 ± 0.09 | 0.83 ± 0.09 |
162 | 20.52 IV | Catechin/epicatechin dimer O-gallate L | 729 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
163 | 21.48 IV | Catechin/epicatechin dimer di-O-gallate L | 881 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Dihydrochalcones | |||||||||||
63 | 8.68 II | Phloretin R | 273 | 0.18 ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.23 ± 0.02 | 0.29 ± 0.03 |
Group of Compounds | Content, mg/g | |||||||
---|---|---|---|---|---|---|---|---|
January | March | May | June | July | August | October | December | |
Total carbohydrates | 44.25 | 44.85 | 38.40 | 74.79 | 91.82 | 63.21 | 63.99 | 54.48 |
Total organic acids | 1.02 | 9.21 | 23.03 | 31.17 | 20.90 | 10.98 | 3.11 | 2.21 |
Total simple phenol glycosides | 6.94 | 8.23 | 12.40 | 15.41 | 19.45 | 20.36 | 11.33 | 10.28 |
incl. phloroglucinol derivatives | 3.48 | 4.45 | 6.91 | 8.66 | 11.73 | 13.33 | 5.16 | 4.62 |
incl. hydroquinone derivatives | 0.32 | 0.32 | 0.76 | 0.82 | 0.93 | 0.65 | 0.41 | 0.35 |
incl. orcinol derivatives | 3.14 | 3.46 | 4.73 | 5.93 | 6.79 | 6.38 | 5.76 | 5.31 |
Total triterpene glycosides | 3.68 | 5.88 | 12.00 | 15.90 | 18.75 | 19.22 | 14.98 | 4.10 |
Total flavonols | 18.47 | 16.98 | 47.54 | 58.81 | 71.69 | 61.54 | 45.19 | 26.34 |
incl. glycosides, myricetin derivatives | 15.61 | 14.47 | 41.75 | 50.86 | 60.52 | 52.56 | 39.37 | 21.43 |
incl. glycosides, quercetin derivatives | 1.04 | 1.37 | 5.45 | 7.61 | 10.89 | 8.63 | 3.71 | 2.37 |
incl. glycosides, kaempferol derivatives | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
incl. aglycones | 1.82 | 1.14 | 0.51 | 0.34 | 0.28 | 0.35 | 1.81 | 2.54 |
Total dihydroflavonols | 8.31 | 8.33 | 8.29 | 9.64 | 10.95 | 10.12 | 8.94 | 9.26 |
incl. dihydromyricetin derivatives | 1.53 | 1.48 | 2.73 | 3.11 | 3.52 | 3.18 | 2.39 | 2.01 |
incl. dihydroquercetin derivatives | 6.67 | 6.85 | 5.56 | 6.53 | 7.43 | 6.94 | 6.55 | 7.11 |
incl. dihydrokaempferol derivatives | 0.11 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.14 |
Total flavones | 0.52 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.62 | 1.58 |
Total prenylated phenols | 58.87 | 51.67 | 34.21 | 38.49 | 41.60 | 54.42 | 67.69 | 71.13 |
incl. cannabigerorcinic acid derivatives | 39.63 | 34.90 | 24.57 | 27.31 | 25.18 | 31.96 | 43.59 | 47.14 |
incl. grifolic acid derivatives | 11.74 | 10.40 | 8.35 | 9.14 | 13.46 | 17.46 | 17.53 | 15.95 |
incl. daurichromenic acid derivatives | 7.50 | 6.37 | 1.29 | 2.04 | 2.96 | 5.00 | 6.57 | 8.04 |
Total benzoic acid derivatives | 0.26 | <0.01 | 2.92 | 6.30 | 9.75 | 8.73 | 4.63 | 1.42 |
Total hydroxycinnamates | <0.01 | <0.01 | 0.70 | 0.82 | 0.97 | 0.52 | 0.30 | 0.08 |
Total catechins | 9.51 | 7.69 | 10.84 | 12.56 | 19.02 | 19.21 | 14.53 | 11.17 |
Total procyanidins | 1.67 | 1.36 | 2.13 | 3.33 | 4.26 | 4.00 | 2.41 | 2.05 |
Total dihydrochalcones | 0.18 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.23 | 0.29 |
Total phenolics | 107.66 | 97.26 | 126.04 | 153.03 | 186.28 | 184.97 | 159.70 | 136.77 |
Total non-phenolics | 48.95 | 59.94 | 73.43 | 121.86 | 131.47 | 93.41 | 82.08 | 60.79 |
Total phenolics/non-phenolics | 156.61 | 157.20 | 199.47 | 274.89 | 317.75 | 278.38 | 241.78 | 197.56 |
Extract (Collection Month), Compound | DPPH• b | ABTS•+ b | DMPD•+ b | O2•− b | OH• b | CBA b | Cl• c | NO d | FeCA e |
---|---|---|---|---|---|---|---|---|---|
R. adamsii extract (January) | 25.37 ± 0.68 | 15.80 ± 0.31 | 87.35 ± 2.53 | 82.11 ± 2.46 | 59.73 ± 1.79 | 30.62 ± 1.29 | 263.93 ± 6.55 | <5 | 129.03 ± 5.12 |
R. adamsii extract (May) | 9.82 ± 0.21 | 10.54 ± 0.21 | 53.62 ± 1.61 | 52.69 ± 1.54 | 15.25 ± 0.42 | 15.35 ± 0.61 | 408.34 ± 10.26 | 4.05 ± 0.19 | 193.55 ± 7.63 |
R. adamsii extract (July) | 3.27 ± 0.06 | 8.25 ± 0.16 | 37.53 ± 1.12 | 25.83 ± 0.77 | 5.43 ± 0.16 | 12.50 ± 0.53 | 475.62 ± 11.89 | 3.67 ± 0.16 | 211.74 ± 8.44 |
R. adamsii extract (October) | 12.62 ± 0.31 | 12.32 ± 0.24 | 63.82 ± 1.99 | 49.63 ± 1.45 | 26.82 ± 0.73 | 27.09 ± 1.08 | 378.21 ± 9.40 | 4.89 ± 0.22 | 173.62 ± 6.90 |
Malic acid | >100 | >100 | >100 | >200 | >100 | >200 | <1 | <5 | <1 |
Phlorin | 52.06 ± 1.63 | >100 | >100 | >200 | >100 | >200 | 4.27 ± 0.08 | <5 | <1 |
Ursolic acid | >100 | >100 | >100 | >200 | >100 | >200 | <1 | <5 | <1 |
Myricetin-3-O-glucoside | 5.83 ± 0.12 | 2.35 ± 0.04 | 18.89 ± 0.56 | 22.17 ± 0.66 | 3.81 ± 0.10 | 12.27 ± 0.47 | 893.57 ± 17.85 | 1.07 ± 0.04 | 70.52 ± 2.11 |
Quercetin-3-O-glucoside | 9.36 ± 0.18 | 5.72 ± 0.11 | 62.65 ± 1.86 | 73.62 ± 2.21 | 12.63 ± 0.39 | 35.64 ± 1.40 | 569.21 ± 11.38 | 2.35 ± 0.09 | 62.04 ± 1.82 |
Cannabigerorcinic acid | >100 | >100 | >100 | >200 | >100 | 89.63 ± 3.59 | 25.63 ± 0.50 | <5 | 23.12 ± 0.69 |
Grifolic acid | >100 | >100 | >100 | >200 | >100 | 124.18 ± 4.96 | 18.04 ± 0.32 | <5 | 15.60 ± 0.41 |
Daurichromenic acid | >100 | >100 | >100 | >200 | >100 | 93.52 ± 3.74 | 22.57 ± 0.45 | <5 | 12.09 ± 0.34 |
Gallic acid | 1.53 ± 0.03 | 0.86 ± 0.02 | 22.45 ± 0.67 | 20.14 ± 0.58 | 9.57 ± 0.29 | 5.92 ± 0.23 | 1267.02 ± 25.27 | 0.97 ± 0.03 | 157.12 ± 4.83 |
Catechin | 3.02 ± 0.06 | 1.41 ± 0.03 | 20.39 ± 0.60 | 43.10 ± 1.25 | 7.73 ± 0.23 | 26.84 ± 1.07 | 853.14 ± 17.06 | 1.56 ± 0.06 | 75.14 ± 2.20 |
Trolox a | 8.89 ± 0.15 | 3.02 ± 0.06 | 53.10 ± 1.59 | 90.63 ± 2.40 | 10.25 ± 0.26 | 20.63 ± 0.82 | 1000 | 0.83 ± 0.03 | 42.72 ± 1.26 |
Experimental Group | Skeletal Muscles | Blood Serum | Liver | |||||
---|---|---|---|---|---|---|---|---|
ATP, pmol/g | Creatine Phosphate, pmol/g | Lactate, μmol/kg | Pyruvic Acid, pg/mL | Glucose, mmol/L | MDA, nmol/L | Catalase, mcat/L | Glycogen, mg/g | |
Saline, without test (intact) | 359 ± 71 * | 3215 ± 160 * | 3.7 ± 0.2 * | 210 ± 57 * | 9.5 ± 1.5 * | 1.8 ± 0.1 * | 11.5 ± 0.7 * | 23.3 ± 1.1 * |
Saline, after test (control) | 71 ± 17 | 937 ± 53 | 8.8 ± 0.6 | 1408 ± 281 | 1.1 ± 0.2 | 6.7 ± 0.5 | 6.2 ± 0.5 | 5.7 ± 0.3 |
R. adamsii, without test | 325 ± 58 * | 3107 ± 156 * | 3.7 ± 0.2 * | 215 ± 55 * | 9.7 ± 1.7 * | 1.8 ± 0.1 * | 11.5 ± 0.7 * | 22.9 ± 1.1 * |
R. adamsii, after test | 143 ± 44 * | 1631 ± 98 * | 5.2 ± 0.3 * | 806 ± 145 * | 3.3 ± 0.5 * | 2.8 ± 0.2 * | 10.0 ± 0.8 * | 12.8 ± 0.8 * |
R. rosea, without test | 337 ± 60 * | 3163 ± 142 * | 3.6 ± 0.2 * | 203 ± 48 * | 9.2 ± 1.1 * | 1.8 ± 0.1 * | 11.4 ± 0.7 * | 23.5 ± 1.2 * |
R. rosea, after test | 173 ± 36 * | 1986 ± 107 * | 4.3 ± 0.3 * | 706 ± 204 * | 3.7 ± 0.7 * | 2.3 ± 0.2 * | 10.2 ± 0.8 * | 12.0 ± 0.7 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olennikov, D.N.; Nikolaev, V.M.; Chirikova, N.K. Sagan Dalya Tea, a New “Old” Probable Adaptogenic Drug: Metabolic Characterization and Bioactivity Potentials of Rhododendron adamsii Leaves. Antioxidants 2021, 10, 863. https://doi.org/10.3390/antiox10060863
Olennikov DN, Nikolaev VM, Chirikova NK. Sagan Dalya Tea, a New “Old” Probable Adaptogenic Drug: Metabolic Characterization and Bioactivity Potentials of Rhododendron adamsii Leaves. Antioxidants. 2021; 10(6):863. https://doi.org/10.3390/antiox10060863
Chicago/Turabian StyleOlennikov, Daniil N., Vyacheslav M. Nikolaev, and Nadezhda K. Chirikova. 2021. "Sagan Dalya Tea, a New “Old” Probable Adaptogenic Drug: Metabolic Characterization and Bioactivity Potentials of Rhododendron adamsii Leaves" Antioxidants 10, no. 6: 863. https://doi.org/10.3390/antiox10060863
APA StyleOlennikov, D. N., Nikolaev, V. M., & Chirikova, N. K. (2021). Sagan Dalya Tea, a New “Old” Probable Adaptogenic Drug: Metabolic Characterization and Bioactivity Potentials of Rhododendron adamsii Leaves. Antioxidants, 10(6), 863. https://doi.org/10.3390/antiox10060863