Chemical Composition, In Vitro and In Silico Antioxidant Potential of Melissa officinalis subsp. officinalis Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. GC–MS Analysis
2.3. DPPH• Free-Radical Scavenging Activity
2.4. ABTS•+ Free-Radical Scavenging Activity
2.5. β-Carotene/Linoleic Acid Bleaching Assay
2.6. In Silico Prediction of Bioactivity and Molecular Docking Studies
2.7. Statistical Analysis
3. Results and Discussion
3.1. MOEO Chemical Composition
3.2. Assessment of Antioxidant Activity
3.3. In Silico Prediction of a Protein Target-Based Antioxidant Mechanism by Molecular Docking Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mattos, G.N.; Tonon, R.V.; Furtado, A.; Cabral, L.M. Grape by-product extracts against microbial proliferation and lipid oxidation: A review. J. Sci. Food Agric. 2017, 97, 1055–1064. [Google Scholar] [CrossRef]
- Georgantelis, D.; Blekas, G.; Katikou, P.; Ambrosiadis, I.; Fletouris, D.J. Effect of rosemary extract, chitosan and α-tocopherol on lipid oxidation and colour stability during frozen storage of beef burgers. Meat Sci. 2007, 75, 256–264. [Google Scholar] [CrossRef]
- Sardarodiyan, M.; Sani, A.M. Natural antioxidants: Sources, extraction and application in food systems. Nutr. Food Sci. 2016, 46, 363–373. [Google Scholar] [CrossRef]
- Carocho, M.; Ferreira, I.C. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Min, D.B.; Boff, J.M. Chemistry and Reaction of Singlet Oxygen in Foods. Compr. Rev. Food Sci. Food Saf. 2002, 1, 58–72. [Google Scholar] [CrossRef]
- Kancheva, V.D. Phenolic antioxidants–radical-scavenging and chain-breaking activity: A comparative study. Eur. J. Lipid Sci. Technol. 2009, 111, 1072–1089. [Google Scholar] [CrossRef]
- Chou, P.-H.; Matsui, S.; Misaki, K.; Matsuda, T. Isolation and Identification of Xenobiotic Aryl Hydrocarbon Receptor Ligands in Dyeing Wastewater. Environ. Sci. Technol. 2006, 41, 652–657. [Google Scholar] [CrossRef]
- Devcich, D.A.; Pedersen, I.K.; Petrie, K.J. You eat what you are: Modern health worries and the acceptance of natural and synthetic additives in functional foods. Appetite 2007, 48, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Pokorný, J. Are natural antioxidants better–and safer–than synthetic antioxidants? Eur. J. Lipid Sci. Technol. 2007, 109, 629–642. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, S.; Vasudeva, N. Review on antioxidants and evaluation procedures. Chin. J. Integr. Med. 2017, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Baratta, M.T.; Dorman, H.J.D.; Deans, S.G.; Biondi, D.M.; Ruberto, G. Chemical Composition, Antimicrobial and Antioxidative Activity of Laurel, Sage, Rosemary, Oregano and Coriander Essential Oils. J. Essent. Oil Res. 1998, 10, 618–627. [Google Scholar] [CrossRef]
- Cosentino, S.; Tuberoso, C.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Celikel, N.; Kavas, G. Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech J. Food Sci. 2008, 26, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Rota, C.; Carramiñana, J.J.; Burillo, J.; Herrera, A. In Vitro Antimicrobial Activity of Essential Oils from Aromatic Plants against Selected Foodborne Pathogens. J. Food Prot. 2004, 67, 1252–1256. [Google Scholar] [CrossRef] [PubMed]
- Božović, M.; Garzoli, S.; Baldisserotto, A.; Romagnoli, C.; Pepi, F.; Cesa, S.; Vertuani, S.; Manfredini, S.; Ragno, R. Melissa officinalis L. subsp. altissima (Sibth. & Sm.) Arcang. essential oil: Chemical composition and preliminary antimicrobial investigation of samples obtained at different harvesting periods and by fractionated extractions. Ind. Crop. Prod. 2018, 117, 317–321. [Google Scholar] [CrossRef]
- Mimica-Dukić, N.; Bozin, B.; Soković, M.; Mihajlović, B.; Matavulj, M. Antimicrobial and Antioxidant Activities of Three Mentha Species Essential Oils. Planta Medica 2003, 69, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and Antioxidant Activities of Melissa officinalis L. (Lamiaceae) Essential Oil. J. Agric. Food Chem. 2004, 52, 2485–2489. [Google Scholar] [CrossRef]
- Zhu, X.; Smith, M.A.; Honda, K.; Aliev, G.; Moreira, P.I.; Nunomura, A.; Casadesus, G.; Harris, P.L.; Siedlak, S.L.; Perry, G. Vascular oxidative stress in Alzheimer disease. J. Neurol. Sci. 2007, 257, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Dickstein, D.L.; Walsh, J.; Brautigam, H.; Stockton, S.D., Jr.; Gandy, S.; Hof, P.R. Role of vascular risk factors and vascular dysfunction in Alzheimer’s disease. Mt. Sinai J. Med. 2010, 77, 82–102. [Google Scholar] [CrossRef] [Green Version]
- Alam, N.; Bristi, N.J. Rafiquzzaman Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.; Fogacci, F.; Cincione, R.I.; Tocci, G.; Borghi, C. Clinical Effects of Xanthine Oxidase Inhibitors in Hyperuricemic Patients. Med Princ. Pr. 2020, 30, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Maccarrone, M.; Melino, G.; Finazzi-Agro, A. Lipoxygenases and their involvement in programmed cell death. Cell Death Differ. 2001, 8, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Miramar, M.D.; Costantini, P.; Ravagnan, L.; Saraiva, L.; Haouzi, D.; Brothers, G.; Penninger, J.M.; Peleato, M.L.; Kroemer, G.; Susin, S.A. NADH Oxidase Activity of Mitochondrial Apoptosis-inducing Factor. J. Biol. Chem. 2001, 276, 16391–16398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozturk, A.; Unlukara, A.; Ipek, A.; Gurbuz, B. Effects of salt stress and water deficit on plant growth and essential oil content of lemon balm (Melissa officinalis L.). Pak. J. Bot. 2004, 36, 787–792. [Google Scholar]
- Marongiu, B.; Porcedda, S.; Piras, A.; Rosa, A.; Deiana, M.; Dessì, M.A. Antioxidant activity of supercritical extract of Melissa officinalis subsp. officinalis and Melissa officinalis subsp. inodora. Phytother. Res. 2004, 18, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Ebadollahi, A.; Parchin, R.A.; Farjaminezhad, M. Phytochemistry, toxicity and feeding inhibitory activity of Melissa officinalis L. essential oil against a cosmopolitan insect pest; Tribolium castaneum Herbst. Toxin Rev. 2016, 35, 77–82. [Google Scholar] [CrossRef]
- Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L.–A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 188, 204–228. [Google Scholar] [CrossRef]
- Miraj, S.; Rafieian-Kopaei, M.; Kiani, S. Melissa officinalis L: A Review Study with an Antioxidant Prospective. J. Evidence-Based Integr. Med. 2016, 22, 385–394. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Sarker, S.D.; Moore, J.E.; Rao, J.R.; Mazumdar, A. Antibacterial activity of some Lamiaceae essential oils using resazurin as an indicator of cell growth. LWT Food Sci. Technol. 2011, 44, 1199–1206. [Google Scholar] [CrossRef]
- Iauk, L.; Bue, A.M.L.; Milazzo, I.; Rapisarda, A.; Blandino, G. Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytother. Res. 2003, 17, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-T.; Chen, Y.-C.; Lee, Y.-C.; Hou, C.-W.R.; Chen, F.-L.; Yang, D.-J. Antioxidant, anti-proliferative and cyclooxygenase-2 inhibitory activities of ethanolic extracts from lemon balm (Melissa officinalis L.) leaves. LWT 2012, 49. [Google Scholar] [CrossRef]
- Meftahizade, H.; Sargsyan, E.; Moradkhani, H. Investigation of antioxidant capacity of Melissa officinalis L. essential oils. J. Med. Plants Res. 2013, 4, 1391–1395. [Google Scholar]
- Carnat, A.; Fraisse, D.; Lamaison, J. The aromatic and polyphenolic composition of lemon balm (Melissa officinalis L. subsp. officinalis) tea. Pharm. Acta Helvetiae 1998, 72, 301–305. [Google Scholar] [CrossRef]
- Jianu, C.; Mişcă, C.; Muntean, S.; Lukinich-Gruia, A. Composition, antioxidant and antimicrobial activity of the essential oil of Achillea collina Becker growing wild in Western Romania. Chem. Ind. 2015, 69, 381–386. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured publishing corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Jianu, C.; Mihail, R.; Muntean, S.G.; Pop, G.; Daliborca, C.V.; Horhat, F.G.; Nitu, R. Composition and antioxidant capacity of essential oils obtained from Thymus vulgaris, Thymus pannonicus and Satureja montana grown in Western Romania. Revista Chimie 2015, 66, 2157–2160. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Bendaoud, H.; Romdhane, M.; Souchard, J.P.; Cazaux, S.; Bouajila, J. Chemical Composition and Anticancer and Antioxidant Activities of Schinus Molle L. and Schinus Terebinthifolius Raddi Berries Essential Oils. J. Food Sci. 2010, 75, 466–472. [Google Scholar] [CrossRef]
- Xin, X.; Fan, R.; Gong, Y.; Yuan, F.; Gao, Y. On-line HPLC-ABTS•+ evaluation and HPLC-MS n identification of bioactive compounds in hot pepper peel residues. Eur. Food Res. Technol. 2014, 238, 837–844. [Google Scholar] [CrossRef]
- Jianu, C.; Goleț, I.; Stoin, D.; Cocan, I.; Lukinich-Gruia, A.T. Antioxidant Activity of Pastinaca sativa L. ssp. sylvestris [Mill.] Rouy and Camus Essential Oil. Molecules 2020, 25, 869. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittler, J.; Krüger, H.; Lohwasser, U.; Ulrich, D.; Zeiger, B.; Schütze, W.; Böttcher, C.; Gudi, G.; Kästner, U.; Marthe, F. Evaluation of 28 balm and lemon balm (Melissa officinalis) accessions for content and composition of essential oil and content of rosmarinic acid. Genet. Resour. Crop. Evol. 2017, 65, 745–757. [Google Scholar] [CrossRef]
- de Sousa, A.C.; Alviano, D.S.; Blank, A.F.; Alves, P.; Alviano, C.S.; Gattass, C.R. Melissa officinalis L. essential oil: Antitumoral and antioxidant activities. J. Pharm. Pharmacol. 2010, 56, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, A.; Alizadeh, O.; Hashemi, M.; Afshari, A.; Aminzare, M. Phytochemical, antioxidant and antibacterial properties of Melissa officinalis and Dracocephalum moldavica essential oils. Vet. Res. Forum 2017, 8, 223–229. [Google Scholar] [PubMed]
- Bomme, U.; Feicht, E.; Rinder, R. Ergebnisse aus mehrjährigen Leistungsprüfungen mit ausgewählten Herkünften von Zitronenmelisse (Melissa officinalis L.). J. Med. Spice Plants 2002, 7, 422–432. [Google Scholar]
- Şarer, E.; Kökdil, G. Constituents of the Essential Oil from Melissa officinalis. Planta Medica 1991, 57, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Dawson, B.S.; Franich, R.A.; Meder, R. Essential oil of Melissa officinalis L. subsp. altissima (Sibthr. et Smith) Arcang. Flavour Fragr. J. 1988, 3, 167–170. [Google Scholar] [CrossRef]
- Usai, M.; Atzei, A.; Picci, V.; Furesi, A. Essential oil from Sardinian Melissa officinalis L. and Melissa romana Mill. In Proceedings of the 27th International Symposium on Essential Oils, Vienna, Austria, 8–11 September 1996. [Google Scholar]
- Nurzyńska-Wierdak, R.; Bogucka-Kocka, A.; Szymczak, G. Volatile Constituents of Melissa officinalis Leaves Determined by Plant Age. Nat. Prod. Commun. 2014, 9, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Hose, S.; Zänglein, A.; van den Berg, T.; Schultze, W.; Kubeczka, K.-H. Ontogenetic variation of the essential leaf oil of Melissa officinalis L. Pharmazie 1997, 52, 247–253. [Google Scholar]
- Aghaei, Y.; Mirjalili, M.H.; Nazeri, V. Chemical Diversity among the Essential Oils of Wild Populations of Stachys lavandulifolia Vahl (Lamiaceae) from Iran. Chem. Biodivers. 2013, 10, 262–273. [Google Scholar] [CrossRef]
- Ferreira, A.; Proença, C.; Serralheiro, M.L.; Araújo, M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef]
- Spiridon, I.; Colceru, S.; Anghel, N.; Teaca, C.A.; Bodirlau, R.; Armatu, A. Antioxidant capacity and total phenolic contents of oregano (Origanum vulgare), lavender (Lavandula angustifolia) and lemon balm (Melissa officinalis) from Romania. Nat. Prod. Res. 2011, 25, 1657–1661. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Shahidi, F. Melissa officinalis essential oil: Chemical compositions, antioxidant potential, total phenolic content and antimicrobial activity. Nutr. Food Sci Res. 2019, 6, 17–25. [Google Scholar]
- Dastmalchi, K.; Dorman, H.D.; Laakso, I.; Hiltunen, R. Chemical composition and antioxidative activity of Moldavian balm (Dracocephalum moldavica L.) extracts. LWT Food Sci. Technol. 2007, 40, 1655–1663. [Google Scholar] [CrossRef]
- Dastmalchi, K.; Dorman, H.D.; Oinonen, P.P.; Darwis, Y.; Laakso, I.; Hiltunen, R. Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT Food Sci. Technol. 2008, 41, 391–400. [Google Scholar] [CrossRef]
- Ben Aicha, B.; Rouabhi, R.; Gasmi, S.; Bensouici, C.; Mohammedi, H.; Mennai, I. LC-MS Analysis and Antioxidant Activity of the Hydro-alcoholic Extract of Melissa officinalis L. From Algeria. Chem. J. Mold. 2020, 15, 78–87. [Google Scholar] [CrossRef]
- Olszowy, M.; Dawidowicz, A. Essential oils as antioxidants: Their evaluation by DPPH, ABTS, FRAP, CUPRAC, and β-carotene bleaching methods. Monatsh. Chem. 2016, 147, 2083–2091. [Google Scholar] [CrossRef]
- Wettasinghe, M.; Shahidi, F. Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals. Food Chem. 2000, 70, 17–26. [Google Scholar] [CrossRef]
- More, G.K.; Makola, R.T. In-vitro analysis of free radical scavenging activities and suppression of LPS-induced ROS production in macrophage cells by Solanum sisymbriifolium extracts. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Bai, K.; Xu, W.; Zhang, J.; Kou, T.; Niu, Y.; Wan, X.; Zhang, L.; Wang, C.; Wang, T. Assessment of Free Radical Scavenging Activity of Dimethylglycine Sodium Salt and Its Role in Providing Protection against Lipopolysaccharide-Induced Oxidative Stress in Mice. PLoS ONE 2016, 11, e0155393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and Medicinal Uses of Terpenes. In Medicinal Plants; Springer Science and Business Media LLC: Berlin, Germany, 2019; pp. 333–359. [Google Scholar]
- Battelli, M.G.; Polito, L.; Bortolotti, M.; Bolognesi, A. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects. Oxidative Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umamaheswari, M.; Prabhu, P.; Asokkumar, K.; Sivashanmugam, T.; SubhadraDevi, V.; Jagannath, P.; Madeswaran, A. In silico docking studies and in vitro xanthine oxidase inhibitory activity of commercially available terpenoids. Int. J. Phytopharm. 2012, 2, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Jianu, C.; Stoin, D.; Cocan, I.; David, I.; Pop, G.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Muntean, D.; et al. In Silico and In Vitro Evaluation of the Antimicrobial and Antioxidant Potential of Mentha × smithiana R. GRAHAM Essential Oil from Western Romania. Foods 2021, 10, 815. [Google Scholar] [CrossRef]
- Rezaeinasab, M.; Benvidi, A.; Gharaghani, S.; Abbasi, S.; Zare, H.R. Electrochemical investigation of the inhibition effect of carvacrol on xanthine oxidase activity merging with theoretical studies. Process. Biochem. 2019, 83, 86–95. [Google Scholar] [CrossRef]
Protein | PDB ID | Grid Box Center Coordinates | Grid Box Size | Conformers Generated per Ligand |
---|---|---|---|---|
Lipoxygenase | 1N8Q | center_x = 22.4550 | size_x = 12.4283 | 8 |
center_y = 1.2929 | size_y = 10.6802 | |||
center_z = 20.3621 | size_z = 12.1421 | |||
CYP2C9 | 1OG5 | center_x = −19.8236 | size_x = 12.3877 | 8 |
center_y = 86.6869 | size_y = 11.6533 | |||
center_z = 38.2757 | size_z = 11.6542 | |||
NADPH-oxidase | 2CDU | center_x = 18.9974 | size_x = 14.0073 | 8 |
center_y = −5.7774 | size_y = 14.9976 | |||
center_z = −1.8087 | size_z = 18.7956 | |||
Xanthine oxidase | 3NRZ | center_x = 37.4800 | size_x = 7.3289 | 8 |
center_y = 19.3054 | size_y = 10.3411 | |||
center_z = 18.1518 | size_z = 9.1241 |
No | Compounds | RI 1 | % |
---|---|---|---|
1. | Hydroperoxide, 1-ethylbutyl | 925 | 0.11 |
2. | Hydroperoxide, 1-methylpentyl | 934 | 0.08 |
3. | p-Cymene | 1005 | 0.07 |
4. | beta-trans-Ocimene | 1017 | 0.09 |
5. | beta-cis-Ocimene | 1029 | 0.51 |
6. | gama-Terpinene | 1042 | 0.09 |
7. | Nonanal | 1092 | 0.17 |
8. | (R)-(+)-Citronellal | 1145 | 0.27 |
9. | Decanal | 1206 | 0.11 |
10. | Octyl acetate | 1211 | 0.08 |
11. | beta-Citral | 1241 | 1.15 |
12. | (S)-(−)-Citronellic acid, methyl ester | 1264 | 0.66 |
13. | alpha-Citral | 1275 | 2.06 |
14. | Carvacrol | 1309 | 0.18 |
15. | Methyl geranate | 1333 | 0.19 |
16. | p-Menthane-3,8-diol | 1352 | 2.14 |
17. | alpha-Copaene | 1394 | 2.78 |
18. | beta-Bourbonene | 1402 | 1.16 |
19. | beta-Elemene | 1408 | 2.73 |
20. | beta-Caryophyllene | 1442 | 27.41 |
21. | alpha-Cubebene | 1450 | 0.41 |
22. | alpha-Caryophyllene | 1476 | 3.37 |
23. | Alloaromadendrene | 1481 | 0.87 |
24. | beta-Cubebene | 1504 | 27.66 |
25. | (Z,E)-alpha-Farnesene | 1512 | 1.37 |
26. | alpha-Muurolene | 1520 | 0.96 |
27. | alpha-Farnesene | 1526 | 0.71 |
28. | gamma-Cadinene | 1534 | 1.36 |
29. | alpha-Cadinene | 1540 | 4.72 |
30. | Germacrene D-4-ol | 1596 | 1.96 |
31. | Caryophyllene oxide | 1601 | 4.09 |
32. | alpha-Cadinol | 1669 | 4.07 |
33. | Isoaromadendrene epoxide | 1819 | 0.98 |
34. | Platambin | 1849 | 2.13 |
35. | Murolan-3,9(11)-diene-10-peroxy | 1884 | 1.18 |
36. | Aromadendrene oxide | 1891 | 0.92 |
Total: | 98.79 |
Samples Tested | Parameters | ||
---|---|---|---|
DPPH, IC50 (μg/mL) | ABTS, IC50 (μg/mL) | β-Carotene/Linoleic Acid, (% Inhibition Rate) | |
MOEO | 14.015 ± 0.027 | 1.225 ± 0.011 | 94.031 ± 0.082 |
BHA 1 | 11.006 ± 0.011 | 0.902 ± 0.003 | 100 |
Ascorbic acid | 618.117 ± 0.174 | 29.434 ± 0.081 | N.T. |
Protein PBD ID | 1N8Q | 1OG5 | 2CDU | 3NRZ | |
---|---|---|---|---|---|
Ligand | Binding Free Energy ∆G (kcal/mol) 1 | ||||
Native co-crystalized ligand | −5.8 | −9.8 | −9.3 | −6.7 | |
Hydroperoxide, 1-ethylbutyl | −4.6 | −6.4 | −6.1 | −5.7 | |
Hydroperoxide, 1-methylpentyl | −3.3 | −5.8 | −6 | −5.8 | |
p-Cymene | −5.1 | −4.8 | −4.4 | −6.9 | |
beta-trans-Ocimene | −5 | −5.1 | −5.1 | −6.3 | |
beta-cis-Ocimene | −6 | −6.7 | −6 | −6.2 | |
gamma-Terpinene | −5.6 | −6 | −5.9 | −6.8 | |
Nonanal | −6.5 | −5.7 | −5.6 | −6.4 | |
(R)-(+)-Citronellal | −0.6 | −7.3 | −6.8 | −6.4 | |
Decanal | −5.3 | −5.5 | −4.9 | −6.5 | |
Octyl acetate | −5.1 | −5.9 | −5.5 | −6.5 | |
beta-Citral (Neral) | −4.4 | −7.4 | −6.8 | −6.3 | |
(S)-(−)-Citronellic acid, methyl ester | −2.8 | −5.7 | −5.3 | −6.5 | |
alpha-Citral (Geranial) | −3.8 | −7.6 | −7.3 | −6.4 | |
Carvacrol | −3.9 | −5.7 | −5.6 | −7.2 | |
Methyl geranate | −0.4 | −7.7 | −7.2 | −7 | |
p-Menthane-3,8-diol | −5.8 | −6.3 | −6.1 | −6.7 | |
alpha-Copaene | −4 | −5.9 | −5.9 | −6.1 | |
beta-Bourbonene | −5.3 | −6.5 | −6.2 | −6.2 | |
beta-Elemene | −3.5 | −6.7 | −6.4 | −6.4 | |
beta-Caryophyllene | −4.9 | −6.4 | −6.1 | −5.2 | |
alpha-Cubebene | −5.9 | −6.1 | −6 | −5.2 | |
alpha-Caryophyllene | −4.4 | −6.4 | −5.8 | −5.1 | |
Alloaromadendrene | −5.3 | −6.3 | −5.9 | −5.1 | |
beta-Cubebene | −4.7 | −5.8 | −5.7 | −5.1 | |
(Z,E)-alpha-Farnesene | −3.3 | −5.5 | −5.9 | −7.1 | |
alpha-Muurolene | −4.4 | −5.6 | −5.7 | −5.9 | |
alpha-Farnesene | −3.2 | −6.8 | −6 | −7 | |
gamma-Cadinene | −5.2 | −6 | −6.3 | −6.7 | |
alpha-Cadinene | −5.6 | −6.3 | −5.7 | −6.5 | |
Germacrene D-4-ol | −4.8 | −5.5 | −5 | −5 | |
Caryophyllene oxide | −4.6 | −6.3 | −5.6 | −4.5 | |
alpha-Cadinol | −4.9 | −4.9 | −4.7 | −5 | |
Isoaromadendrene epoxide | −6 | −6.2 | −5.7 | −4.5 | |
Platambin | −5.5 | −6.3 | −5.7 | −3.1 | |
Murolan-3,9(11)-diene-10-peroxy | −4 | −6.1 | −5.8 | −5.2 | |
Aromadendrene oxide | −1.2 | −7.9 | −7.1 | −4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rădulescu, M.; Jianu, C.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Stana, L.G. Chemical Composition, In Vitro and In Silico Antioxidant Potential of Melissa officinalis subsp. officinalis Essential Oil. Antioxidants 2021, 10, 1081. https://doi.org/10.3390/antiox10071081
Rădulescu M, Jianu C, Lukinich-Gruia AT, Mioc M, Mioc A, Șoica C, Stana LG. Chemical Composition, In Vitro and In Silico Antioxidant Potential of Melissa officinalis subsp. officinalis Essential Oil. Antioxidants. 2021; 10(7):1081. https://doi.org/10.3390/antiox10071081
Chicago/Turabian StyleRădulescu, Matilda, Călin Jianu, Alexandra Teodora Lukinich-Gruia, Marius Mioc, Alexandra Mioc, Codruța Șoica, and Loredana Gabriela Stana. 2021. "Chemical Composition, In Vitro and In Silico Antioxidant Potential of Melissa officinalis subsp. officinalis Essential Oil" Antioxidants 10, no. 7: 1081. https://doi.org/10.3390/antiox10071081
APA StyleRădulescu, M., Jianu, C., Lukinich-Gruia, A. T., Mioc, M., Mioc, A., Șoica, C., & Stana, L. G. (2021). Chemical Composition, In Vitro and In Silico Antioxidant Potential of Melissa officinalis subsp. officinalis Essential Oil. Antioxidants, 10(7), 1081. https://doi.org/10.3390/antiox10071081