Green Tea Extract Enhances the Oxidative Stability of DHA-Rich Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation for Oxidative Stability Test
2.3. Assessment of the Oxidative Status
2.3.1. Peroxide Value (PV)
2.3.2. Para-Anisidine Value (p-AV)
2.4. Determination of Fatty Acid Composition
2.5. Determination of Tocopherol Content
2.6. Quantification of Catechins in GTE and in Oil Samples
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of DHA-Rich Oil
3.2. Oxidative Status of Oil during Storage
3.3. The Fatty Acid Composition of DHAO during Storage
3.4. Losses in Catechins
3.5. Changes in Tocopherol Content of Oil during Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vázquez, L.; Corzo-Martínez, M.; Arranz-Martínez, P.; Barroso, E.; Reglero, G.; Torres, C. Bioactive Lipids. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 467–527. [Google Scholar] [CrossRef]
- Zárate, R.; Jaber-Vazdekis, N.E.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; Napier, J.A. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- (AFSSA), Agence Française de Sécurité des Produits Alimentaires. Opinion of the French Food Safety Agency on the Update of French Population Reference Intakes (ANCs) for Fatty Acids; Request no. 2006-SA-0359; AFSSA: Maisons-Alfort, France, 2010. [Google Scholar]
- Ismail, A.; Bannenberg, G.; Rice, H.B.; Schutt, E.; MacKay, D. Oxidation in EPA- and DHA-rich oils: An overview. Lipid Technol. 2016, 28, 55–59. [Google Scholar] [CrossRef]
- Ahmed, M.; Pickova, J.; Ahmad, T.; Liaquat, M.; Farid, A.; Jahangir, M. Oxidation of Lipids in Foods. Sarhad J. Agric. 2016, 32, 230–238. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ratusz, K.; Krygier, K. Comparison of the oxidative stability of linseed (Linum usitatissimum L.) oil by pressure differential scanning calorimetry and Rancimat measurements. J. Food Sci. Technol. 2016, 53, 3986–3995. [Google Scholar] [CrossRef] [Green Version]
- Syed, A. Oxidative Stability and Shelf Life of Vegetable Oils. In Oxidative Stability and Shelf Life of Foods Containing Oils and Fats; Hu, M., Jacobsen, C., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 187–207. [Google Scholar]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, S.E.; Rozin, P.; Small, D.A. Consumers Prefer “Natural” More for Preventatives Than for Curatives. J. Consum. Res. 2020, 47, 454–471. [Google Scholar] [CrossRef]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Jideani, A.I.O.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-rich natural fruit and vegetable products and human health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Matthäus, B. Oxidation of edible oils. In Oxidation in Foods and Beverages and Antioxidant Applications; Decker, E.A., Elias, R.J., McClements, D.J., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2010; pp. 183–238. [Google Scholar]
- Mozuraityte, R.; Kristinova, V.; Standal, I.; Carvajal, A.; Aursand, M. Oxidative Stability and Shelf Life of Fish Oil. In Oxidative Stability and Shelf Life of Foods Containing Oils and Fats; Hu, M., Jacobsen, C., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 209–231. [Google Scholar]
- Shahidi, F.; de Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef]
- Blekas, G.; Tsimidou, M.; Boskou, D. Contribution of α-tocopherol to olive oil stability. Food Chem. 1995, 52, 289–294. [Google Scholar] [CrossRef]
- Kamal-Eldin, A. Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur. J. Lipid Sci. Technol. 2006, 108, 1051–1061. [Google Scholar] [CrossRef]
- Huang, S.-W.; Hopia, A.; Schwarz, K.; Frankel, E.N.; German, J.B. Antioxidant Activity of α-Tocopherol and Trolox in Different Lipid Substrates: Bulk Oils vs Oil-in-Water Emulsions. J. Agric. Food Chem. 1996, 44, 444–452. [Google Scholar] [CrossRef]
- Ganga, A.; Nieto, S.; Sanhuez, J.; Romo, C.; Speisky, H.; Valenzuela, A. Concentration and stabilization of n-3 polyunsaturated fatty acids sardine oil. J. Am. Oil Chem. Soc. 1998, 75, 733–736. [Google Scholar] [CrossRef]
- Martín, D.; Terrón, A.; Fornari, T.; Reglero, G.; Torres, C.F. Oxidative stabilization of ultra-high omega-3 concentrates as ethyl esters or triacylglycerols. Food Res. Int. 2012, 45, 336–341. [Google Scholar] [CrossRef]
- Kozłowska, M.; Żbikowska, A.; Szpicer, A.; Półtorak, A. Oxidative stability of lipid fractions of sponge-fat cakes after green tea extracts application. J. Food Sci. Technol. 2019, 56, 2628–2638. [Google Scholar] [CrossRef] [Green Version]
- Phuong, N.N.M.; Le, T.T.; Nguyen, M.V.T.; Van Camp, J.; Raes, K. Antioxidant Activity of Rambutan (Nephelium lappaceum L.) Peel Extract in Soybean Oil during Storage and Deep Frying. Eur. J. Lipid Sci. Technol. 2020, 122, 1900214. [Google Scholar] [CrossRef]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Elbadrawy, E.; Sello, A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. 2016, 9, S1010–S1018. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Chatterjee, J. Efficient extraction strategies of tea (Camellia sinensis) biomolecules. J. Food Sci. Technol. 2015, 52, 3158–3168. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P.; Henning, S.M.; Niu, Y.; Lee, R.; Scheuller, H.S.; Heber, D. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. J. Agric. Food Chem. 2006, 54, 1599–1603. [Google Scholar] [CrossRef]
- He, Y.; Shahidi, F. Antioxidant Activity of Green Tea and Its Catechins in a Fish Meat Model System. J. Agric. Food Chem. 1997, 45, 4262–4266. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Obuchowski, W.; Gośliński, M. Evaluation of antioxidant activity of green tea extract and its effect on the biscuits lipid fraction oxidative stability. J. Food Sci. 2009, 74, S362–S370. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Huang, J.A. Antioxidant effects of tea catechins on the shelf life of raw minced duck meat. Food Sci. Technol. 2019, 39, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Boroski, M.; Giroux, H.; Visentainer, J.; Dubé, P.; Desjardins, Y.; Britten, M. Tea catechin role in decreasing the oxidation of dairy beverages containing linseed oil. Int. J. Vitam. Nutr. Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Dwyer, S.P.O.; O’Beirne, D.; Ní Eidhin, D.; O’Kennedy, B.T. Effects of Green Tea Extract and α-Tocopherol on the Lipid Oxidation Rate of Omega-3 Oils, Incorporated into Table Spreads, Prepared using Multiple Emulsion Technology. J. Food Sci. 2012, 77, N58–N65. [Google Scholar] [CrossRef] [PubMed]
- Wanasundara, U.N.; Shahidi, F. Antioxidant and pro-oxidant activity of green tea extracts in marine oils. Food Chem. 1998, 63, 335–342. [Google Scholar] [CrossRef]
- Shen, C.-Y.; Ankolekar, C.; Ban, L. Comparison of Oil Soluble Green Tea Extract with Common Antioxidantive Ingredients in Bulk Oil under Different Storage Conditions. J. Am. Oil Chem. Soc. 2021, 98, 65–72. [Google Scholar] [CrossRef]
- AOCS. Recommended Practice Cg 5-97: Oven Storage Test for Accelerated Ageing of Oils. Official Methods and Recommended Practices of the AOCS; AOCS: Champaign, IL, USA, 1997. [Google Scholar]
- Douny, C.; Razanakolona, R.; Ribonnet, L.; Milet, J.; Baeten, V.; Rogez, H.; Scippo, M.L.; Larondelle, Y. Linseed oil presents different patterns of oxidation in real-time and accelerated aging assays. Food Chem. 2016, 208, 111–115. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOCS. Official methods and recommended practices of the American Oil Chemists’ Society; AOCS: Champaign, IL, USA, 1998; Volume 5, pp. 2–93. [Google Scholar]
- Mellery, J.; Geay, F.; Tocher, D.R.; Kestemont, P.; Debier, C.; Rollin, X.; Larondelle, Y. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet. PLoS ONE 2016, 11, e0164478. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, M.L.; Becerra, M.; Sayago, A.; Beltrán, M.; Beltrán, R. Comparison of Different Extraction Methods to Determine Phenolic Compounds in Virgin Olive Oil. Food Anal. Methods 2013, 6, 123–132. [Google Scholar] [CrossRef]
- Codex. Standard for Fish Oils. CXS329-2017; Codex Alimentarius Commission: Rome, Italy, 2017.
- Frankel, E.N.; Satué-Gracia, T.; Meyer, A.S.; German, J.B. Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions. J. Agric. Food Chem. 2002, 50, 2094–2099. [Google Scholar] [CrossRef]
- Fan, F.-Y.; Sang, L.-X.; Jiang, M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules 2017, 22, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, A.E.; Shahidi, F. Bailey’s Industrial Oil & Fat Products; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Seppanen, C.M.; Song, Q.; Csallany, A.S. The Antioxidant Functions of Tocopherol and Tocotrienol Homologues in Oils, Fats, and Food Systems. J. Am. Oil Chem. Soc. 2010, 87, 469–481. [Google Scholar] [CrossRef]
- Hamilton, R.J.; Kalu, C.; McNeill, G.P.; Padley, F.B.; Pierce, J.H. Effects of tocopherols, ascorbyl palmitate, and lecithin on autoxidation of fish oil. J. Am. Oil Chem. Soc. 1998, 75, 813–822. [Google Scholar] [CrossRef]
- Mohanan, A.; Nickerson, M.T.; Ghosh, S. Oxidative stability of flaxseed oil: Effect of hydrophilic, hydrophobic and intermediate polarity antioxidants. Food Chem. 2018, 266, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Fuster, M.D.; Lampi, A.M.; Hopia, A.; Kamal-Eldin, A. Effects of alpha- and gamma-tocopherols on the autooxidation of purified sunflower triacylglycerols. Lipids 1998, 33, 715–722. [Google Scholar] [CrossRef]
- Shi, M.; Ying, D.; Hlaing, M.M.; Ye, J.; Sanguansri, L.; Augustin, M.A. Oxidative stability of spray dried matcha-tuna oil powders. Food Res. Int. 2020, 132, 109050. [Google Scholar] [CrossRef]
- Jung, L.; Lee, E.; Choe, E. Effects of catechin and α-tocopherol addition on the autoxidative stability of diacylglycerol oil derived from an olive oil and perilla oil mixture. Food Sci. Biotechnol. 2014, 23, 1793–1798. [Google Scholar] [CrossRef]
- Phung, A.S.; Bannenberg, G.; Vigor, C.; Reversat, G.; Oger, C.; Roumain, M.; Galano, J.-M.; Durand, T.; Muccioli, G.G.; Ismail, A.; et al. Chemical Compositional Changes in Over-Oxidized Fish Oils. Foods 2020, 9, 1501. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Chan, P.T. Antioxidative activity of green tea catechins in canola oil. Chem. Phys. Lipids 1996, 82, 163–172. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Duthie, G.G. Determination of activity of antioxidants in human subjects. Proc. Nutr. Soc. 1999, 58, 1015–1024. [Google Scholar] [CrossRef] [Green Version]
- Almajano, M.P.; Delgado, M.E.; Gordon, M.H. Albumin causes a synergistic increase in the antioxidant activity of green tea catechins in oil-in-water emulsions. Food Chem. 2007, 102, 1375–1382. [Google Scholar] [CrossRef]
- Kmiecik, D.; Fedko, M.; Siger, A.; Kulczyński, B. Degradation of Tocopherol Molecules and Its Impact on the Polymerization of Triacylglycerols during Heat Treatment of Oil. Molecules 2019, 24, 4555. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.S.; Johnson, E.R.; DiLabio, G.A. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. J. Am. Chem. Soc. 2001, 123, 1173–1183. [Google Scholar] [CrossRef]
- Jung, M.Y.; Jung, D.M.; Wu, J.W.; Choi, D.S. Effects of catechins and green tea extract on the photosensitized singlet oxygen oxidation of linoleic acid in a model system as compared with α-tocopherol. Food Sci. Biotechnol. 2011, 20, 725–733. [Google Scholar] [CrossRef]
- Prabsangob, N.; Benjakul, S. Effect of tea catechin derivatives on stability of soybean oil/tea seed oil blend and oxidative stability of fried fish crackers during storage. Food Sci. Biotechnol. 2018, 28, 679–689. [Google Scholar] [CrossRef] [PubMed]
Characteristics | DHAO | |
---|---|---|
Fatty acid composition (mg/g) | C16:1cis9 | 2.0 ± 0.13 |
C18:1cis9 | 1.4 ± 0.07 | |
C20:4c5,c8,c11,c14 | 6.1 ± 0.17 | |
C20:5c5,c8,c11,c14,c17 (EPA) | 149.3 ± 4.4 | |
C22:5c4,c7,c10,c13,c16 | 15.4 ± 0.5 | |
C22:5c7,c10,c13,c16,c19 | 54.7 ± 1.3 | |
C22:6c4,c7,c10,c13,c16,c19 (DHA) | 626.7 ± 16.1 | |
c24:5c9,c12,c15,c18,c21 | 1.5 ± 0.1 | |
c24:6c6,c9,c12,c15,c18,c21 | 11.1 ± 0.28 | |
Total SFA | 3.4 ± 0.84 | |
Total MUFA | 4.9 ± 0.57 | |
Total PUFA | 873 ± 22.84 | |
Tocopherol (µg/g) | α | 342.2 ± 3.6 |
γ | 1380.9 ± 7.1 | |
δ | 448.3 ± 0.7 | |
Total | 2171.4 ± 10.0 | |
Oxidative status | Peroxide value (meq O2/kg) | 2.0 ± 0.0 |
p-anisidine value | 5.2 ± 0.3 |
EPA | DHA | |||
---|---|---|---|---|
Treatment | Week 0 | Week 9 | Week 0 | Week 9 |
Control | 149.3 ± 4.4 aA | 136.8 ± 5.0b cB | 626.7 ± 16.1 aA | 582.8 ± 20.3 cdB |
Toco80 | 146.3 ± 1.9 aA | 134.6 ± 4.3 cB | 614.0 ± 7.5 aA | 570.8 ± 18.2 cdB |
Toco200 | 147.2 ± 0.9 aA | 129.8 ± 3.0 cB | 617.4 ± 3.4 aA | 550.5 ± 12.0 dB |
Toco500 | 141.6 ± 5.7 aA | 132.7 ± 8.6 cA | 593.9 ± 23.6 aA | 563.4 ± 35.2 cdA |
GTE160 | 138.7 ± 14.3 aA | 140.1 ± 1.94 abcA | 583.5 ± 58.3 aA | 599.89 ± 7.8 bcA |
GTE400 | 139.28 ± 7.3 aA | 146.5 ± 1.5 abA | 585.2 ± 28.2 aA | 628.2 ± 7.1 abA |
GTE1000 | 151.3 ± 8.8 aA | 149.57 ± 2.12 aA | 635.7 ± 36.9 aA | 644.0 ± 9.0 aA |
EGC | EC | EGCG | ECG | Total | ||
---|---|---|---|---|---|---|
Control | T = 0 week | 0.72 d | 0.07 d | 0.91 d | 0.31 d | 2.1 d |
GTE160 | T = 0 week | 22.7 ± 0.02 c | 2.8 ± 0.06 c | 9.7 ± 0.14 c | 3.6 ± 0.02 c | 39.4 ± 0.1 c |
T = 9 weeks | 10.3 ± 0.19 a | 1.3 ± 0.04 a | 4.4 ± 1.4 a | 3.9 ± 0.5 a | 22 ± 2.3 a | |
% loss | 54.72 | 54.00 | 55.03 | 0.0 | 44.21 | |
GTE400 | T = 0 week | 60.2 ± 1.5 b | 7.4 ± 0.20 b | 25.9 ± 0.56 b | 4.8 ± 0.06 b | 99.4 ± 2.1 b |
T = 9 weeks | 8.1 ±0.62 b | 1.1 ± 0.12 a | 3.6 ± 0.09 a | 4.1 ± 0.15 a | 19.1 ± 1.1 a | |
% loss | 86.56 | 85.34 | 86.01 | 15.55 | 80.84 | |
GTE1000 | T = 0 week | 138.9 ± 5.3 a | 16.8 ± 0.5 a | 59.5 ± 2.3 a | 7.6 ± 0.39 a | 224.8 ± 7.5 ab |
T = 9 weeks | 9.5 ± 1.22 ab | 1.2 ± 0.49 a | 3.02 ± 0.2 a | 4.3 ± 0.16 a | 20.1 ± 2.14 a | |
% loss | 93.19 | 92.77 | 94.93 | 43.54 | 91.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nain, C.W.; Berdal, G.; Thao, P.T.P.; Mignolet, E.; Buchet, M.; Page, M.; Larondelle, Y. Green Tea Extract Enhances the Oxidative Stability of DHA-Rich Oil. Antioxidants 2021, 10, 982. https://doi.org/10.3390/antiox10060982
Nain CW, Berdal G, Thao PTP, Mignolet E, Buchet M, Page M, Larondelle Y. Green Tea Extract Enhances the Oxidative Stability of DHA-Rich Oil. Antioxidants. 2021; 10(6):982. https://doi.org/10.3390/antiox10060982
Chicago/Turabian StyleNain, Caroline Waingeh, Gwennaëlle Berdal, Phan Thi Phuong Thao, Eric Mignolet, Marine Buchet, Melissa Page, and Yvan Larondelle. 2021. "Green Tea Extract Enhances the Oxidative Stability of DHA-Rich Oil" Antioxidants 10, no. 6: 982. https://doi.org/10.3390/antiox10060982
APA StyleNain, C. W., Berdal, G., Thao, P. T. P., Mignolet, E., Buchet, M., Page, M., & Larondelle, Y. (2021). Green Tea Extract Enhances the Oxidative Stability of DHA-Rich Oil. Antioxidants, 10(6), 982. https://doi.org/10.3390/antiox10060982