Diabetic Embryopathy Susceptibility in Mice Is Associated with Differential Dependence on Glucosamine and Modulation of High Glucose-Induced Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Culture of FVB and B6 LG-ESC
2.3. RT-PCR Assays
2.4. Immunoblot Assays
2.5. Alkaline Phosphatase Staining
2.6. Glucosamine, 2-Deoxy-d-Glucose, and Glutamine Transport Assays
2.7. Glycoprotein Detection
2.8. Glucose-6-PO4 Dehydrogenase (G6PD) Assay
2.9. Malondialdehyde Assay
2.10. Statistical Analyses
3. Results
3.1. Differential Susceptibility of FVB and B6 Embryos and LG-ESC to the Adverse Effects of High Glucose
3.2. Hexosamine Substrate Transport by FVB and B6 LG-ESC
3.3. Protein Glycosylation Substrate Utilization in FVB and B6 LG-ESC
3.4. Growth Metabolic Effects of GlcN Uptake in FVB and B6 LG-ESC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kucera, J. Rate and type of congenital anomalies among offspring of diabetic women. J. Reprod. Med. 1971, 7, 61–70. [Google Scholar]
- Correa, A.; Gilboa, S.M.; Besser, L.M.; Botto, L.D.; Moore, C.A.; Hobbs, C.A.; Cleves, M.A.; Riehle-Colarusso, T.J.; Waller, D.K.; Reece, E.A. Diabetes mellitus and birth defects. Am. J. Obstet. Gynecol. 2008, 199, 237.e1–237.e9. [Google Scholar] [CrossRef] [Green Version]
- Evers, I.M.; de Valk, H.W.; Visser, G.H. Risk of complications of pregnancy in women with type 1 diabetes: Nationwide prospective study in the Netherlands. BMJ 2004, 328, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Loeken, M.R. Mechanisms of Congenital Malformations in Pregnancies with Pre-existing Diabetes. Curr. Diabetes Rep. 2020, 20, 54. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Thorens, B.; Loeken, M.R. Expression of the gene encoding the high Km glucose transporter 2 by the early postimplantation mouse embryo is essential for neural tube defects associated with diabetic embryopathy. Diabetologia 2007, 50, 682–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fine, E.; Horal, M.; Chang, T.; Fortin, G.; Loeken, M. Evidence that hyperglycemia causes altered gene expression, apoptosis, and neural tube defects in a mouse model of diabetic pregnancy. Diabetes 1999, 48, 2454–2462. [Google Scholar] [CrossRef] [PubMed]
- Siman, C.M.; Eriksson, U.J. Vitamin E decreases the occurrence of malformations in the offspring of diabetic rats. Diabetes 1997, 46, 1054–1061. [Google Scholar] [CrossRef]
- Sivan, E.; Reece, E.A.; Wu, Y.K.; Homko, C.J.; Polansky, M.; Borenstein, M. Dietary vitamin E prophylaxis and diabetic embryopathy: Morphologic and biochemical analysis. Am. J. Obstet. Gynecol. 1996, 175, 793–799. [Google Scholar] [CrossRef]
- Viana, M.; Herrera, E.; Bonet, B. Terotogenic effects of diabetes mellitus in the rat. Prevention by vitamin E. Diabetologia 1996, 39, 1041–1046. [Google Scholar] [CrossRef]
- Hagay, Z.J.; Weiss, Y.; Zusman, I.; Peled-Kamar, M.; Reece, E.A.; Eriksson, U.J.; Groner, Y. Prevention of diabetes-associated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am. J. Obstet. Gynecol. 1995, 173, 1036–1041. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, Z.; Reece, E.A. Activation of oxidative stress signaling that is implicated in apoptosis with a mouse model of diabetic embryopathy. Am. J. Obstet. Gynecol. 2008, 198, 130.e1–130.e7. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.I.; Horal, M.; Jain, S.K.; Wang, F.; Patel, R.; Loeken, M.R. Oxidant regulation of gene expression and neural tube development: Insights gained from diabetic pregnancy on molecular causes of neural tube defects. Diabetologia 2003, 46, 538–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelan, S.A.; Ito, M.; Loeken, M.R. Neural tube defects in embryos of diabetic mice: Role of the Pax-3 gene and apoptosis. Diabetes 1997, 46, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Pani, L.; Horal, M.; Loeken, M.R. Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: Implications for Pax-3- dependent development and tumorigenesis. Genes Dev. 2002, 16, 676–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogan, A.; Heyner, S.; Charron, M.J.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Thorens, B.; Schultz, G.A. Glucose transporter gene expression in early mouse embryos. Development 1991, 113, 363–372. [Google Scholar] [CrossRef]
- Matsumoto, K.; Akazawa, S.; Ishibashi, M.; Trocino, R.A.; Matsuo, H.; Yamasaki, H.; Yamaguchi, Y.; Nagamatsu, S.; Nagataki, S. Abundant expression of GLUT1 and GLUT3 in rat embryo during the early organogenesis period. Biochem. Biophys. Res. Commun. 1995, 209, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Uldry, M.; Ibberson, M.; Hosokawa, M.; Thorens, B. GLUT2 is a high affinity glucosamine transporter. FEBS Lett. 2002, 524, 199–203. [Google Scholar] [CrossRef]
- Jung, J.H.; Iwabuchi, K.; Yang, Z.; Loeken, M.R. Embryonic Stem Cell Proliferation Stimulated By Altered Anabolic Metabolism From Glucose Transporter 2-Transported Glucosamine. Sci. Rep. 2016, 6, 28452. [Google Scholar] [CrossRef] [Green Version]
- Pani, L.; Horal, M.; Loeken, M.R. Polymorphic susceptibility to the molecular causes of neural tube defects during diabetic embryopathy. Diabetes 2002, 51, 2871–2874. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Thirumangalathu, S.; Loeken, M.R. Establishment of new mouse embryonic stem cell lines is improved by physiological glucose and oxygen. Cloning Stem Cells 2006, 8, 108–116. [Google Scholar] [CrossRef]
- Jung, J.H.; Wang, X.D.; Loeken, M.R. Mouse embryonic stem cells established in physiological-glucose media express the high KM Glut2 glucose transporter expressed by normal embryos. Stem cells Transl. Med. 2013, 2, 929–934. [Google Scholar] [CrossRef]
- Wu, Y.; Viana, M.; Thirumangalathu, S.; Loeken, M.R. AMP-activated protein kinase mediates effects of oxidative stress on embryo gene expression in a mouse model of diabetic embryopathy. Diabetologia 2012, 55, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.D.; Morgan, S.C.; Loeken, M.R. Pax3 stimulates p53 ubiquitination and degradation independent of transcription. PLoS ONE 2011, 6, e29379. [Google Scholar] [CrossRef] [Green Version]
- Horal, M.; Zhang, Z.; Stanton, R.; Virkamaki, A.; Loeken, M.R. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: Involvement in diabetic teratogenesis. Birth Defects Res. A Clin. Mol. Teratol. 2004, 70, 519–527. [Google Scholar] [CrossRef]
- Tian, W.N.; Pignatare, J.N.; Stanton, R.C. Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells. J. Biol. Chem. 1994, 269, 14798–14805. [Google Scholar] [CrossRef]
- Bode, B.P. Recent molecular advances in mammalian glutamine transport. J. Nutr. 2001, 131, 2475S–2485S. [Google Scholar] [CrossRef] [PubMed]
- Baird, F.E.; Beattie, K.J.; Hyde, A.R.; Ganapathy, V.; Rennie, M.J.; Taylor, P.M. Bidirectional substrate fluxes through the system N (SNAT5) glutamine transporter may determine net glutamine flux in rat liver. J. Physiol. 2004, 559, 367–381. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.M.; Kaye, P.L. Characterization of glutamine uptake in mouse two-cell embryos and blastocysts. Reproduction 1992, 95, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Neu, J.; Shenoy, V.; Chakrabarti, R. Glutamine nutrition and metabolism: Where do we go from here? FASEB J. 1996, 10, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Kim, T.W.; Yoon, S.; Choi, S.Y.; Kang, T.W.; Kim, S.Y.; Kwon, Y.W.; Cho, E.J.; Youn, H.D. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 2012, 11, 62–74. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.H.; Suh, H.N.; Kim, M.O.; Han, H.J. Glucosamine-induced reduction of integrin beta4 and plectin complex stimulates migration and proliferation in mouse embryonic stem cells. Stem Cells Dev. 2013, 22, 2975–2989. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.H.; Suh, H.N.; Kim, M.O.; Ryu, J.M.; Han, H.J. Glucosamine-induced OGT activation mediates glucose production through cleaved Notch1 and FoxO1, which coordinately contributed to the regulation of maintenance of self-renewal in mouse embryonic stem cells. Stem Cells Dev. 2014, 23, 2067–2079. [Google Scholar] [CrossRef] [PubMed]
- Levine, Z.G.; Potter, S.C.; Joiner, C.M.; Fei, G.Q.; Nabet, B.; Sonnett, M.; Zachara, N.E.; Gray, N.S.; Paulo, J.A.; Walker, S. Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Cao, L.; Reece, E.A.; Zhao, Z. Impact of protein O-GlcNAcylation on neural tube malformation in diabetic embryopathy. Sci. Rep. 2017, 7, 11107. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Reece, E.A.; Yang, P. Superoxide dismutase 1 overexpression in mice abolishes maternal diabetes-induced endoplasmic reticulum stress in diabetic embryopathy. Am. J. Obstet. Gynecol. 2013, 209, 345.e1–345.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Yang, P.; Eckert, R.L.; Reece, E.A. Caspase-8: A key role in the pathogenesis of diabetic embryopathy. Birth Defects Res. B Dev. Reprod. Toxicol. 2009, 86, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Kamimoto, Y.; Sugiyama, T.; Kihira, T.; Zhang, L.; Murabayashi, N.; Umekawa, T.; Nagao, K.; Ma, N.; Toyoda, N.; Yodoi, J.; et al. Transgenic mice overproducing human thioredoxin-1, an antioxidative and anti-apoptotic protein, prevents diabetic embryopathy. Diabetologia 2010, 53, 2046–2055. [Google Scholar] [CrossRef] [Green Version]
- Sanders, K.; Jung, J.H.; Loeken, M.R. Use of a murine embryonic stem cell line that is sensitive to high glucose environment to model neural tube development in diabetic pregnancy. Birth Defects Res. Part A Clin. Mol. Teratol. 2014, 100, 584–591. [Google Scholar] [CrossRef] [Green Version]
- Meinhardt, A.; Eberle, D.; Tazaki, A.; Ranga, A.; Niesche, M.; Wilsch-Brauninger, M.; Stec, A.; Schackert, G.; Lutolf, M.; Tanaka, E.M. 3D reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Rep. 2014, 3, 987–999. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.H.; Loeken, M.R. Diabetic Embryopathy Susceptibility in Mice Is Associated with Differential Dependence on Glucosamine and Modulation of High Glucose-Induced Oxidative Stress. Antioxidants 2021, 10, 1156. https://doi.org/10.3390/antiox10081156
Jung JH, Loeken MR. Diabetic Embryopathy Susceptibility in Mice Is Associated with Differential Dependence on Glucosamine and Modulation of High Glucose-Induced Oxidative Stress. Antioxidants. 2021; 10(8):1156. https://doi.org/10.3390/antiox10081156
Chicago/Turabian StyleJung, Jin Hyuk, and Mary R. Loeken. 2021. "Diabetic Embryopathy Susceptibility in Mice Is Associated with Differential Dependence on Glucosamine and Modulation of High Glucose-Induced Oxidative Stress" Antioxidants 10, no. 8: 1156. https://doi.org/10.3390/antiox10081156
APA StyleJung, J. H., & Loeken, M. R. (2021). Diabetic Embryopathy Susceptibility in Mice Is Associated with Differential Dependence on Glucosamine and Modulation of High Glucose-Induced Oxidative Stress. Antioxidants, 10(8), 1156. https://doi.org/10.3390/antiox10081156