Oxidative Stress Does Not Influence Subjective Pain Sensation in Inflammatory Bowel Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Patients
2.3. Inclusion Criteria
2.4. Material Collection
2.5. Determination of the Antioxidant Capacity
2.6. Determination of SOD Activity
2.7. Determination of CAT Activity
2.8. Measurement of Total GSH and GSSG Levels
2.9. Determination of GPX Activity
2.10. Determination of Total COX, COX-1 and COX-2 Activity
2.11. Measurement of TBARS
2.12. Demographic and Clinical Data
2.13. Assessment of Disease Activity
2.14. Assessment of Pain Experienced by the Patient
2.15. Statistical Analysis
3. Results
3.1. Study Group
3.2. Antioxidant Systems
3.3. Oxidative Stress
3.4. Lipid Peroxidation
3.5. Disease Activity
3.6. Pain and Other Disease Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mrowicka, M.; Mrowicki, J.; Mik, M.; Dziki, Ł.; Dziki, A.; Majsterek, I. Assessment of DNA damage profile and oxidative/antioxidative biomarkers level in patients with inflammatory bowel disease. Pol. J. Surg. 2020, 92, 1–5. [Google Scholar] [CrossRef]
- Alemany-Cosme, E.; Sáez-González, E.; Moret, I.; Mateos, B.; Iborra, M.; Nos, P.; Sandoval, J.; Beltrán, B. Oxidative stress in the pathogenesis of crohn’s disease and the interconnection with immunological response, microbiota, external environmental factors, and epigenetics. Antioxidants 2021, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, T.; Hadizadeh, N.; Nikfar, S.; Abdollahi, M. Drug discovery strategies for modulating oxidative stress in gastrointestinal disorders. Expert Opin. Drug Discov. 2020, 15, 1309–1341. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wang, Z.; Zhang, J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. Oxid. Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef]
- Krzystek-Korpacka, M.; Kempiński, R.; Bromke, M.A.; Neubauer, K. Oxidative Stress Markers in Inflammatory Bowel Diseases: Systematic Review. Diagnostics 2020, 10, 601. [Google Scholar] [CrossRef] [PubMed]
- Dudzińska, E.; Gryzinska, M.; Ognik, K.; Gil-Kulik, P.; Kocki, J. Oxidative stress and effect of treatment on the oxidation product decomposition processes in IBD. Oxid. Med. Cell. Longev. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Sałaga, M.; Włodarczyk, M.; Fichna, J. Focus on current and future management possibilities in inflammatory bowel disease-related chronic pain. Int. J. Colorectal Dis. 2019. [Google Scholar] [CrossRef] [Green Version]
- Moura, F.A.; de Andrade, K.Q.; dos Santos, J.C.F.; Araújo, O.R.P.; Goulart, M.O.F. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol. 2015, 6, 617–639. [Google Scholar] [CrossRef] [Green Version]
- Frigstad, S.O.; Høivik, M.L.; Jahnsen, J.; Cvancarova, M.; Grimstad, T.; Berset, I.P.; Huppertz-Hauss, G.; Hovde, Ø.; Bernklev, T.; Moum, B.; et al. Pain severity and vitamin D deficiency in ibd patients. Nutrients 2020, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Ossum, A.M.; Palm, Ø.; Cvancarova, M.; Bernklev, T.; Jahnsen, J.; Moum, B.; Høivik, M.L. The Impact of Spondyloarthritis and Joint Symptoms on Health-Related Quality of Life and Fatigue in IBD Patients. Results from a Population-Based Inception Cohort (20-Year Follow-up in the Ibsen Study). Inflamm. Bowel Dis. 2020, 26, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68, s1–s106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finamore, A.; Peluso, I.; Cauli, O. Salivary stress/immunological markers in crohn’s disease and ulcerative colitis. Int. J. Mol. Sci. 2020, 21, 8562. [Google Scholar] [CrossRef] [PubMed]
- Sheethal, S.; Ratheesh, M.; Jose, S.P.; Asha, S.; Krishnakumar, I.M.; Sandya, S.; Girishkumar, B.; Grace, J. Anti-Ulcerative Effect of Curcumin-Galactomannoside Complex on Acetic Acid-Induced Experimental Model by Inhibiting Inflammation and Oxidative Stress. Inflammation 2020, 43, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.; Palmer, R.; Travis, S. Mucosal healing as a target of therapy for colonic inflammatory bowel disease and methods to score disease activity. Gastrointest. Endosc. Clin. N. Am. 2014, 24, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Goddard, G.; Karibe, H.; McNeill, C. Reproducibility of visual analog scale (VAS) pain scores to mechanical pressure. Cranio 2004, 22, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Kocjan, J. Kinesiophobia (fear of movement) level among patients with diagnosis of cervicogenic headache. J. Educ. Health Sport 2017, 7, 390–397. [Google Scholar]
- Gecit, I.; Meral, I.; Aslan, M.; Kocyigit, A.; Celik, H.; Taskın, A.; Kaba, M.; Pirincci, N.; Gunes, M.; Taken, K.; et al. Peripheral mononuclear leukocyte DNA damage, plasma prolidase activity, and oxidative status in patients with benign prostatic hyperplasia. Redox Rep. 2015, 20, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Yuksel, M.; Ates, I.; Kaplan, M.; Arikan, M.F.; Ozin, Y.O.; Kilic, Z.M.Y.; Topcuoglu, C.; Kayacetin, E. Is Oxidative Stress Associated with Activation and Pathogenesis of Inflammatory Bowel Disease? J. Med. Biochem. 2017, 36, 341–348. [Google Scholar] [CrossRef]
- Luceri, C.; Bigagli, E.; Agostiniani, S.; Giudici, F.; Zambonin, D.; Scaringi, S.; Ficari, F.; Lodovici, M.; Malentacchi, C. Analysis of Oxidative Stress-Related Markers in Crohn’s Disease Patients at Surgery and Correlations with Clinical Findings. Antioxidants 2019, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.; Coelho, R.; Grácio, D.; Dias, C.; Silva, M.; Peixoto, A.; Lopes, P.; Costa, C.; Teixeira, J.P.; Macedo, G.; et al. DNA Damage and Oxidative DNA Damage in Inflammatory Bowel Disease. J. Crohn’s Colitis 2016, 10, 1316–1323. [Google Scholar] [CrossRef] [Green Version]
- Sampietro, G.M.; Cristaldi, M.; Cervato, G.; Maconi, G.; Danelli, P.; Cervellione, R.; Rovati, M.; Bianchi, P.; Cestaro, B.; Taschieri, A.M. Oxidative stress, vitamin A and vitamin E behaviour in patients submitted to conservative surgery for complicated crohn’s disease. Dig. Liver Dis. 2002, 34, 696–701. [Google Scholar] [CrossRef]
- Rezaie, A.; Ghorbani, F.; Eshghtork, A.; Zamani, M.J.; Dehghan, G.; Taghavi, B.; Nikfar, S.; Mohammadirad, A.; Daryani, N.E.; Abdollahi, M. Alterations in salivary antioxidants, nitric oxide, and transforming growth factor-β1 in relation to disease activity in Crohn’s disease patients. Ann. N. Y. Acad. Sci. 2006, 1091, 110–122. [Google Scholar] [CrossRef]
- Jahanshahi, G.; Motavasel, V.; Rezaie, A.; Hashtroudi, A.A.; Daryani, N.E.; Abdollahi, M. Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases. Dig. Dis. Sci. 2004, 49, 1752–1757. [Google Scholar] [CrossRef] [PubMed]
- Szczeklik, K.; Krzyściak, W.; Cibor, D.; Domagała-Rodacka, R.; Pytko-Polończyk, J.; Mach, T.; Owczarek, D. Markers of lipid peroxidation and antioxidant status in the serum and saliva of patients with active Crohn disease. Pol. Arch. Intern. Med. 2018, 128, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Alzoghaibi, M.A.; Al-Mofleh, I.A.; Al-Jebreen, A.M. Antioxidant activities for superoxide dismutase in patients with crohn’s disease. J. Basic Clin. Physiol. Pharmacol. 2014, 25, 59–62. [Google Scholar] [CrossRef]
- Achitei, D.; Ciobica, A.; Balan, G.; Gologan, E.; Stanciu, C.; Stefanescu, G. Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig. Dis. Sci. 2013, 58, 1244–1249. [Google Scholar] [CrossRef]
- Szczeklik, K.; Krzysciak, W.; Domagala-Rodacka, R.; Mach, P.; Darczuk, D.; Cibor, D.; Pytko-Polonczyk, J.; Rodacki, T.; Owczarek, D. Alterations in glutathione peroxidase and superoxide dismutase activities in plasma and saliva in relation to disease activity in patients with Crohn’s disease. J. Physiol. Pharmacol. 2016, 67, 709–715. [Google Scholar] [PubMed]
- Kruidenier, L.; Kuiper, I.; Lamers, C.B.H.W.; Verspaget, H.W. Intestinal oxidative damage in inflammatory bowel disease: Semi-quantification, localization, and association with mucosal antioxidants. J. Pathol. 2003, 201, 28–36. [Google Scholar] [CrossRef]
- Pinto, M.A.S.; Lopes, M.S.M.S.; Bastos, S.T.O.; Reigada, C.L.L.; Dantas, R.F.; Neto, J.C.B.; Luna, A.S.; Madi, K.; Nunes, T.; Zaltman, C. Does active Crohn’s disease have decreased intestinal antioxidant capacity? J. Crohn’s Colitis 2013, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, S.V.; Sharma, S.; Prasad, K.K.; Sinha, S.K.; Singh, K. Role of oxidative stress & antioxidant defence in ulcerative colitis patients from north India. Indian J. Med. Res. 2014, 139, 568–571. [Google Scholar] [PubMed]
- Krzystek-Korpacka, M.; Neubauer, K.; Berdowska, I.; Zielinski, B.; Paradowski, L.; Gamian, A. Impaired erythrocyte antioxidant defense in active inflammatory bowel disease: Impact of anemia and treatment. Inflamm. Bowel Dis. 2010, 16, 1467–1475. [Google Scholar] [CrossRef]
- Bouzid, D.; Gargouri, B.; Mansour, R.; Amouri, A.; Tahri, N.; Lassoued, S.; Masmoudi, H. Oxidative stress markers in intestinal mucosa of Tunisian inflammatory bowel disease patients. Saudi J. Gastroenterol. 2013, 19, 131. [Google Scholar] [CrossRef]
- Sido, B.; Hack, V.; Hochlehnert, A.; Lipps, H.; Herfarth, C.; Dröge, W. Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut 1998, 42, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iantomasi, T.; Marraccini, P.; Favilli, F.; Vincenzini, M.T.; Ferretti, P.; Tonelli, F. Glutathione Metabolism in Crohn′s Disease. Biochem. Med. Metab. Biol. 1994, 53, 87–91. [Google Scholar] [CrossRef]
- Hamouda, H.E.; Zakaria, S.S.; Ismail, S.A.; Khedr, M.A.; Mayah, W.W. P53 antibodies, metallothioneins, and oxidative stress markers in chronic ulcerative colitis with dysplasia. World J. Gastroenterol. 2011, 17, 2417–2423. [Google Scholar] [CrossRef]
- Zaidan, Z.K. Oral findings, Oxidative Stress and Antioxidant Biomarker Assessment in Serum and Saliva of Crohn’s Patients. Int. J. Sci. Res. 2017, 6, 1684–1687. [Google Scholar] [CrossRef]
- Christophi, G.P.; Rong, R.; Holtzapple, P.G.; Massa, P.T.; Landas, S.K. Immune markers and differential signaling networks in ulcerative colitis and Crohn’s disease. Inflamm. Bowel Dis. 2012, 18, 2342–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelli, M.A.; Trovarelli, G.; Capodicasa, E.; De Medio, G.E.; Bassotti, G. Breath alkanes determination in ulcerative colitis and Crohn’s disease. Dis. Colon Rectum 1999, 42, 71–76. [Google Scholar] [CrossRef]
- Boehm, D.; Krzystek-Korpacka, M.; Neubauer, K.; Matusiewicz, M.; Paradowski, L.; Gamian, A. Lipid peroxidation markers in Crohn’s disease: The associations and diagnostic value. Clin. Chem. Lab. Med. 2012, 50, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Nikkhah-Bodaghi, M.; Maleki, I.; Agah, S.; Hekmatdoost, A. Zingiber officinale and oxidative stress in patients with ulcerative colitis: A randomized, placebo-controlled, clinical trial. Complement. Ther. Med. 2019, 43, 1–6. [Google Scholar] [CrossRef]
- Shi, X.Z.; Winston, J.H.; Sarna, S.K. Differential immune and genetic responses in rat models of Crohn’s colitis and ulcerative colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control Group | IBD Patients | |
---|---|---|
Subjects, n (%) | 32 Sigmoid cancer 11 (34.4%) Ascending colon cancer 4 (12.5%) Hepatic flex. cancer 2 (6.3%) Splenic flex. cancer 1 (3.1%) Caecal cancer 1 (3.1%) Rectal cancer 5 (15.6%) Diverticulosis 2 (6.3%) Sigmoid fistula 1 (3.1%) Ileus 3 (9.4%) Colon reconstruction 2 (6.3%) | 31 CD 18 (58.1%) UC 13 (41.9%) |
Sex | ||
Men, n (%) | 13 (40.6%) | 17 (54.8%) |
Women, n (%) | 19 (59.4%) | 14 (45.2%) |
Age, year | 62.28 ± 16.22 | 38.87 ± 12.64 |
BMI, kg/m2 | 24.45 ± 4.05 | 22.20 ± 4.33 |
Control Group | IBD Patients | |
---|---|---|
Duration of disease, n (%) | ||
<5 years | 17 (54.8%) | |
5–10 years | 5 (16.1%) | |
10–15 years | 3 (9.7%) | |
>15 years | 6 (19.4%) | |
Number of stools per day | ||
0–5 a day | 26 (81.25%) | 20 (64.5%) |
5–10 a day | 5 (15.6%) | 8 (25.8%) |
10–15 a day | - | 2 (6.5%) |
>15 a day | 1 (3.1%) | 1 (3.2%) |
Extraintestinal symptoms, n (%) | 9 (29.0%) | |
Use of analgesics, n (%) | 5 (15.6%) | 11 (33.3%) |
NSAIDs | 3 (9.4%) | 7 (22.6%) |
Opioids- Tramadol | 2 (6.3%) | 4 (12.9%) |
Biological treatment, IFX, n (%) | 2 (6.45%) | |
CDAI, points | 305.61 ± 109.87 | |
MAYO, points | 2.65 ± 0.74 | |
Vitamin D3 supplementation, n (%) | ||
None | 23 (71.9%) | 21 (67.7%) |
2000 IU | 9 (28.1%) | 7 (22.6%) |
4000 IU | 2 (6.5%) | |
10,000 IU | 1 (3.2%) | |
Total Antioxidant, mM/mg | 0.034 ± 0.008 | 0.032 ± 0.010 |
SOD activity, U/mg | 4.703 ± 1.611 | 3.125 ± 1.439 |
CAT activity, U/mg | 0.411 ± 0.303 | 0.755 ± 0.468 |
Total GSH, µM/mg | 0.212 ± 0.104 | 0.165 ± 0.125 |
GSSG, µM/mg | 0.131 ± 0.082 | 0.078 ± 0.076 |
GPX activity, U/mg | 1.230 ± 0.742 | 0.863 ± 0.810 |
Total COX activity, U/mg | 0.105 ± 0.037 | 0.098 ± 0.037 |
COX-1, % | 34.285 ± 11.278 | 71.445 ± 12.094 |
COX-2, % | 65.715 ± 11.278 | 28.555 ± 12.094 |
TBARS, µM/mg | 0.071 ± 0.039 | 0.184 ± 0.193 |
CRP, mg/L | 2.203 ± 5.948 | 66.037 ± 64.267 |
Factor | Subjective Evaluation | Points | Controls n, % | IBD n, % |
---|---|---|---|---|
Pain intensity | Without pain | 0 | 10 (31.3%) | 4 (12.9%) |
Mild | 1 | 10 (31.3%) | 10 (32.3%) | |
Strong | 2 | 10 (31.3%) | 7 (22.6%) | |
Very strong | 3 | 2 (6.3%) | 6 (19.3%) | |
Not sustainable | 4 | 0 | 4 (12.9%) | |
Pain frequency | Does not occur | 0 | 13 (40.6%) | 5 (16.1%) |
Periodical | 1 | 10 (31.3%) | 12 (38.7%) | |
Frequent | 2 | 4 (12.5%) | 7 (22.6%) | |
Very frequent | 3 | 3 (9.4%) | 4 (12.9%) | |
Continuous | 4 | 2 (6.3%) | 3 (9.7%) | |
Painkillers’ intake | Without medication | 0 | 16 (50.0%) | 7 (22.6%) |
Periodically | 1 | 8 (25.0%) | 16 (51.6%) | |
Permanently—small doses | 2 | 5 (15.6%) | 2 (6.5%) | |
Permanently—big doses | 3 | 3 (9.4%) | 6 (19.4%) | |
Permanently—very big doses | 4 | 0 | 0 | |
Motor activity limitation | None | 0 | 19 (59.4%) | 8 (25.8%) |
Partial | 1 | 6 (18.8%) | 8 (25.8%) | |
Demanding partial help/making work difficult | 2 | 3 (9.4%) | 11 (35.5%) | |
Demanding partial help/making work impossible | 3 | 4 (12.5%) | 2 (6.5%) | |
Demanding full help/preventing self sufficiency | 4 | 0 | 2 (6.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, A.K.; Sałaga, M.; Siwiński, P.; Włodarczyk, M.; Dziki, A.; Fichna, J. Oxidative Stress Does Not Influence Subjective Pain Sensation in Inflammatory Bowel Disease Patients. Antioxidants 2021, 10, 1237. https://doi.org/10.3390/antiox10081237
Zielińska AK, Sałaga M, Siwiński P, Włodarczyk M, Dziki A, Fichna J. Oxidative Stress Does Not Influence Subjective Pain Sensation in Inflammatory Bowel Disease Patients. Antioxidants. 2021; 10(8):1237. https://doi.org/10.3390/antiox10081237
Chicago/Turabian StyleZielińska, Anna Krystyna, Maciej Sałaga, Paweł Siwiński, Marcin Włodarczyk, Adam Dziki, and Jakub Fichna. 2021. "Oxidative Stress Does Not Influence Subjective Pain Sensation in Inflammatory Bowel Disease Patients" Antioxidants 10, no. 8: 1237. https://doi.org/10.3390/antiox10081237
APA StyleZielińska, A. K., Sałaga, M., Siwiński, P., Włodarczyk, M., Dziki, A., & Fichna, J. (2021). Oxidative Stress Does Not Influence Subjective Pain Sensation in Inflammatory Bowel Disease Patients. Antioxidants, 10(8), 1237. https://doi.org/10.3390/antiox10081237