Microalgal Co-Cultivation Prospecting to Modulate Vitamin and Bioactive Compounds Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Species and Cultivation
2.2. Experimental Strategy and Sampling
2.3. Cell Concentration and Microalgal Growth Rate
2.4. DPPH (2,2-Diphenyl-1-Picrylhydrazyl) Assay
2.5. ABTS (2,2′-Azinobis-3-Ethylbenzothiazoline-6-Sulphonic Acid) Assay
2.6. Total Carbohydrate Content
2.7. Total Protein Content
2.8. Total Lipid and Sterol Content
2.9. Total Polyphenol Content and Total Flavonoid Content
2.10. HPLC Analysis of Pigments
2.11. Vitamin Determination
2.12. HPLC Analysis of Phenolic Compounds
2.13. Human Cell Lines and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) Assay
2.14. Statistical Analysis
3. Results
3.1. Growth and Biomass
3.2. ABTS and DPPH Scavenging Ability
3.3. Macromolecular Composition
3.4. Bioactive Compounds
3.5. Vitamins
3.6. Bioactivity of the Microalgal Extracts on Human Cells Viability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar] [CrossRef]
- Barra, L.; Chandrasekaran, R.; Corato, F.; Brunet, C. The Challenge of Ecophysiological Biodiversity for Biotechnological Applications of Marine Microalgae. Mar. Drugs 2014, 12, 1641–1675. [Google Scholar] [CrossRef]
- Galasso, C.; Gentile, A.; Orefice, I.; Ianora, A.; Bruno, A.; Noonan, D.M.; Sansone, C.; Albini, A.; Brunet, C. Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients 2019, 11, 1226. [Google Scholar] [CrossRef] [Green Version]
- Vigani, M.; Parisi, C.; Rodríguez-Cerezo, E.; Barbosa, M.J.; Sijtsma, L.; Ploeg, M.; Enzing, C. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci. Technol. 2015, 42, 81–92. [Google Scholar] [CrossRef]
- Global Microalgae Market. Global Microalgae Market 2020 by Manufacturers, Regions, Type and Application, Forecast to 2025. Report ID: MSR2438288. 2020. Available online: https://www.marketstudyreport.com/reports/global-microalgae-market-2020-by-manufacturers-regions-type-and-application-forecast-to-2025 (accessed on 15 February 2021).
- Mobin, S.; Alam, F. Some promising microalgal species for commercial applications: A review. Energy Procedia 2017, 110, 510–517. [Google Scholar] [CrossRef]
- Novoveská, L.; Ross, M.; Stanley, M.S.; Pradelles, R.; Wasiolek, V.; Sassi, J.F. Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction. Mar. Drugs 2019, 17, 640. [Google Scholar] [CrossRef] [Green Version]
- Mutanda, T.; Naidoo, D.; Bwapwa, J.K.; Anandraj, A. Biotechnological Applications of Microalgal Oleaginous Compounds: Current Trends on Microalgal Bioprocess Products. Front. Energy Res. 2020. [Google Scholar] [CrossRef]
- Acien, F.G.; Fernández, J.M.; Magán, J.J.; Molina, E. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv. 2012, 30, 1344–1353. [Google Scholar] [CrossRef]
- Blanken, W.; Cuaresma, M.; Wijffels, R.H.; Janssen, M. Cultivation of microalgae on artificial light comes at a cost. Algal Res. 2013, 2, 333–340. [Google Scholar] [CrossRef]
- Ruiz, J.; Olivieri, G.; de Vree, J.; Bosma, R.; Willems, P.; Reith, J.H.; Eppink, M.H.M.; Kleinegris, D.M.M.; Wijffels, R.M.; Barbosa, M.J. Towards industrial products from microalgae. Energy Environ. Sci. 2016, 9, 3036–3043. [Google Scholar] [CrossRef] [Green Version]
- Clippinger, J.; Davis, R. Techno-Economic Analysis for the Production of Algal Biomass via Closed Photobioreactors: Future Cost Potential Evaluated across a Range of Cultivation System Designs; NREL/TP-5100-72716; National Renewable Energy Laboratory: Golden, CO, USA, 2015. Available online: http://www.nrel.gov/docs/fy19osti/72716.pdf (accessed on 15 February 2021).
- Williams, P.J.B.; Laurens, L.M.L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 2010, 3, 554–590. [Google Scholar] [CrossRef]
- Del Mondo, A.; Smerilli, A.; Sané, E.; Sansone, C.; Brunet, C. Challenging microalgal vitamins for human health. Microb. Cell Fact. 2020, 19, 201. [Google Scholar] [CrossRef] [PubMed]
- Del Mondo, A.; Smerilli, A.; Ambrosino, L.; Albini, A.; Noonan, D.M.; Sansone, C.; Brunet, C. Insights into phenolic compound from microalgae: Structural variety and complex beneficial activities from health to nutraceutics. Crit. Rev. Biotechnol. 2021, 41, 155–171. [Google Scholar] [CrossRef]
- Sansone, C.; Brunet, C. Promises and challenges of microalgal antioxidant production. Antioxidants 2019, 8, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajinajaf, N.; Mehrabadi, A.; Tavakoli, O. Practical strategies to improve harvestable biomass energy yield in microalgal culture: A review. Biomass Bioenergy 2021, 145, 105941. [Google Scholar] [CrossRef]
- Jacobi, A.; Steinweg, C.; Sastre, R.R.; Posten, C. Advanced photobioreactor LED illumination system: Scale-down approach to study microalgal growth kinetics. Eng. Life Sci. 2012, 6, 621–630. [Google Scholar] [CrossRef]
- Rebolledo-Oyarce, J.; Mejía-López, J.; García, G.; Rodríguez-Córdova, L.; Sáez-Navarrete, C. Novel photobioreactor design for the culture of Dunaliella tertiolecta—Impact of color in the growth of microalgae. Bioresour. Technol. 2019, 289, 121645. [Google Scholar] [CrossRef] [PubMed]
- Atta, M.; Idris, A.; Bukhari, A.; Wahidin, S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour. Technol. 2013, 148, 373–378. [Google Scholar] [CrossRef]
- Darko, E.; Heydarizadeh, P.; Schoefs, B.; Sabzalian, M.R. Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130243. [Google Scholar] [CrossRef]
- Orefice, I.; Musella, M.; Smerilli, A.; Sansone, C.; Chandrasekaran, R.; Corato, F.; Brunet, C. Role of nutrient concentrations and water movement on diatom’s productivity in culture. Sci. Rep. 2019, 9, 1479. [Google Scholar] [CrossRef] [Green Version]
- Smerilli, A.; Orefice, I.; Corato, F.; Ruban, A.; Brunet, C. Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatom Skeletonema marinoi. Environ. Microbiol. 2017, 19, 611–627. [Google Scholar] [CrossRef]
- Smerilli, A.; Balzano, S.; Maselli, M.; Blasio, M.; Orefice, I.; Galasso, C.; Sansone, C.; Brunet, C. Antioxidant and Photoprotection Networking in the Coastal Diatom Skeletonema marinoi. Antioxidants 2019, 8, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmaperuma, G.; Kapoore, R.V.; Gilmour, D.J.; Vaidyanathan, S. Microbial consortia: A critical look at microalgae co-cultures for enhanced biomanufacturing. Crit. Rev. Biotechnol. 2018, 38, 690–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, D.H.; Ramanan, R.; Heo, J.; Lee, J.; Kim, B.H.; Oh, H.M.; Kim, H.S. Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community. Bioresour. Technol. 2015, 175, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Hays, S.G.; Patrick, W.G.; Ziesack, M.; Oxman, N.; Silver, P.A. Better together: Engineering and application of microbial symbioses. Curr. Opin. Biotechnol. 2015, 36, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, G.E. The paradox of the plankton. Am. Nat. 1961, 95, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, Q.; Ruan, X.; Cunde, P.; Jiang, D. Phenolics and Plant Allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.R.; Jeffrey, S.W.; Volkman, J.K.; Dunstan, G. Nutritional properties of microalgae for mariculture. Aquaculture 1997, 1–4, 315–331. [Google Scholar] [CrossRef]
- Traller, J.C.; Cokus, S.J.; Lopez, D.A.; Gaidarenko, O.; Smith, S.R.; McCrow, J.P.; Gallaher, S.D.; Podell, S.; Thompson, M.; Cook, O. Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetix flexibility toward a high lipid phenotype. Biotechnol. Biofuels 2016, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Zhang, J.; Cui, J.; Feng, Y.; Cui, Q. Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresour. Technol. 2013, 130, 731–738. [Google Scholar] [CrossRef]
- Zanella, L.; Vianello, F. Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. J. Funct. Food 2020, 68, 103919. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.; Chung, S.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Barra, L.; Carillo, S.; Caruso, T.; Corsaro, L.; Dal Piaz, F.; Graziani, G.; Corato, F.; Pepe, D.; Manfredonia, A.; et al. Light modulation of biomass and macromolecular composition of the diatom Skeletonema marinoi. J. Biotechnol. 2014, 192, 114–122. [Google Scholar] [CrossRef]
- Orefice, I.; Chandrasekaran, R.; Smerilli, A.; Corato, F.; Carillo, S.; Caruso, T.; Corsaro, M.M.; Dal Piaz, F.; Ruban, A.; Brunet, C. Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. Algal Res. 2016, 17, 1–13. [Google Scholar] [CrossRef]
- Brunet, C.; Corato, F. PhoLia: A Light System for Aquatic Organisms. European Patent EP2883950A1, 17 June 2015. Available online: https://worldwide.espacenet.com/patent/search/family/049765858/publication/EP2883950A1 (accessed on 15 February 2021).
- Cheng, D.; Li, D.; Yuan, Y.; Zhou, L.; Li, X.; Wu, T.; Wang, L.; Quanyu, Z.; Wei, W.; Yuhan, S. Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnol. Biofuels 2017, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Desjardins, P.; Hansen, J.B.; Allen, M. Microvolume spectrophotometric and fluorometric determination of protein concentration. Curr. Protoc. Protein Sci. 2009, 55, 3.10.1–3.10.16. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Muylaert, K.; Foubert, I. Optimization of an Analytical Procedure for Extraction of Lipids from Microalgae. J. Am. Oil Chem. Soc. 2011, 89, 189–198. [Google Scholar] [CrossRef]
- Araújo, L.B.D.C.; Silva, S.L.; Galvão, M.A.M.; Ferreira, M.R.A.; Araújo, E.L.; Randau, K.; Soares, L.A.L. Total phytosterol content in drug materials and extracts from roots of Acanthospermum hispidum by UV-VIS spectrophotometry. Rev. Bras. Farmacogn. 2013, 23, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Nour, V.; Trandafir, I.; Cosmulescu, S. HPLC Determination of Phenolic Acids, Flavonoids and Juglone in Walnut Leaves. J. Chromatogr. Sci. 2012, 51, 883–890. [Google Scholar] [CrossRef]
- Brunet, C.; Casotti, R.; Vantrepotte, V. Phytoplankton diel and vertical variability in photobiological responses at a coastal station in the Mediterranean Sea. J. Plankton Res. 2008, 30, 645–654. [Google Scholar] [CrossRef]
- Lee, K.W.; Lee, H.J.; Surh, Y.-J.; Lee, C.Y. Vitamin C and cancer chemoprevention: Reappraisal. Am. J. Clin. Nutr. 2003, 78, 1074–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilie, P.C.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020, 32, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- Weston, A.L.; Mathesius, U. Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy. J. Chem. Ecol. 2013, 39, 283–297. [Google Scholar] [CrossRef]
- Bacellar Mendes, L.B.; Vermelho, A.B. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol. Biofuels 2013, 6, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Tarkowská, D.; Turečková, V.; Luo, T.; Xin, Y.; Li, J.; Wang, Q.; Jiao, N.; Strnad, M.; Xu, J. Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function. Plant J. 2014, 80, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Tallec, K.; Soudant, P.; Le Grand, F.; Donval, A.; Lambert, C.; Sarthou, G.; Jolley, D.F.; Hégaret, H. Allelochemicals from Alexandrium minutum induce rapid inhibition of metabolism and modify the membranes from Chaetoceros muelleri. Algal Res. 2018, 35, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Menon, M.; Maramag, C.; Malhotra, R.K.; Seethalakshmi, L. Effect of vitamin C on androgen independent prostate cancer cells (PC3 and Mat-Ly-Lu) in vitro: Involvement of reactive oxygen species-effect on cell number, viability and DNA synthesis. Cancer Biochem. Biophys. 1998, 16, 17–30. [Google Scholar]
- Morley, S.; Thakur, V.; Danielpour, D.; Parker, R.; Arai, H.; Atkinson, J.; Barnholtz-Sloan, J.; Klein, E.; Manor, D. Tocopherol transfer protein sensitizes prostate cancer cells to vitamin E. J. Biol. Chem. 2010, 285, 35578–35589. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Trivedi, T.; Cy Lin, R.; Fong-Yee, C.; Nolte, R.; Manibo, J.; Chen, Y.; Hossain, M.; Horas, K.; Dunstan, C.; et al. Loss of the vitamin D receptor in human breast and prostate cancers strongly induces cell apoptosis through downregulation of Wnt/β-catenin signaling. Bone Res. 2017, 5, 17023. [Google Scholar] [CrossRef]
- Cussenot, O.; Berthon, P.; Berger, R.; Mowszowicz, I.; Faille, A.; Hojman, F.; Teillac, P.; Le Duc, A.; Calvo, F. Immortalization of human adult normal prostatic epithelial cells by liposomes containing large T-SV40 gene. J. Urol. 1991, 146, 881–886. [Google Scholar] [CrossRef]
- Sullivan, C.S.; Pipas, J.M. T antigens of simian virus 40: Molecular chaperones for vital replication and tumorigenesis. Microbiol. Mol. Biol. Rev. 2002, 66, 179–202. [Google Scholar] [CrossRef] [Green Version]
- Bettuzzi, S.; Scorcioni, F.; Astancolle, S.; Davalli, P.; Scaltriti, M.; Corti, A. Clusterin (SGP-2) transient overexpression decreases proliferation rate of SV40-immortalized human prostate epithelial cells by slowing down cell cycle progression. Oncogene 2002, 21, 4328–4334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camini, F.C.; da Silva, C.C.; Trindade Almeida, L.; de Brito Magalhães, L. Implications of oxidative stress on viral pathogenesis. Arch. Virol. 2017, 162, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Fiorino, S.; Bacchi-Reggiani, L.; Sabbatani, S.; Grizzi, F.; di Tommaso, L.; Masetti, M.; Fornelli, A.; Bondi, A.; de Biase, D.; Visani, M.; et al. Possible role of tocopherols in the modulation of host microRNA with potential antiviral activity in patients with hepatitis B virus-related persistent infection: A systematic review. Br. J. Nutr. 2014, 112, 1751–1768. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mosaddik, A.; Alam, A.K. Traditional foods with their constituent’s antiviral and immune system modulating properties. Heliyon 2021, 7, e05957. [Google Scholar] [CrossRef]
- Sobue, S.; Mizutani, N.; Aoyama, Y.; Kawamoto, Y.; Suzuki, M.; Nozawa, Y.; Ichihara, M.; Murate, T. Mechanism of paclitaxel resistance in a human prostate cancer cell line, PC3-PR, and its sensitization by cabazitaxel. Biochem. Biophys. Res. Commun. 2016, 479, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Wissing, M.D.; Dadon, T.; Kim, E.; Piontek, K.B.; Shim, J.S.; Kaelber, N.S.; Liu, J.O.; Kachhap, S.K.; Nelkin, B.D. Small-molecule screening of PC3 prostate cancer cell identifies tilorone dihydrochloride to selectively inhibit cell growth based on cyclin-dependent kinase 5 expression. Oncol. Rep. 2014, 32, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Méndez-López, L.F.; Caboni, P.; Arredondo-Espinoza, E.; Carrizales-Castillo, J.J.J.; Balderas-Rentería, I.; Camacho-Corona, M.d.R. Bioassay-guided identification of the antiproliferative compounds of Cissus trifoliate and the transcriptomic effect of resveratrol in prostate cancer PC3 cells. Molecules 2021, 26, 2200. [Google Scholar] [CrossRef]
- Ferdous, U.T.; Yusof, Z.N.B. Medicinal prospect of antioxidants from algal sources in cancer therapy. Front. Pharmacol. 2021. [Google Scholar] [CrossRef]
Cell Concentration (Cells mL−1) | Growth Rate (d−1) | Integrated GR (d−1) | DW (mg L−1) | |
---|---|---|---|---|
S.m. | 5.73 × 105 ± 1.2 × 104 | 0.91 ± 0.18 | 0.82 ± 0.10 | 97.63 ± 34.17 |
C.c. | 1.77 × 105 ± 5.2 × 104 | 0.58 ± 0.07 | 0.36 ± 0.03 | 76.20 ± 28.39 |
N.o. | 2.31 × 106 ± 1.5 × 105 | 0.55 ± 0.02 | 0.54 ± 0.06 | 36.44 ± 2.04 |
S.m. | 2.48 × 105 ± 4.7 × 104 (S.m.: 57.2% | 0.72 ± 0.19 | 0.59 ± 0.04 | 122.99 ± 15.59 |
+ | ||||
C.c. | 1.86 × 105 ± 3.5 × 104 (C.c.: 42.8%) | 0.39 ± 0.12 | 0.58 ± 0.04 | (S.m. 34.2%; C.c. 65.8%) |
C.c. | 1.80 × 105 ± 3.0 × 104 (C.c.: 36.5%) | 0.20 ± 0.10 | 0.39 ± 0.03 | 81.87 ± 25.12 |
+ | ||||
N.o. | 3.21 × 105 ± 1.0 × 105 (N.o.: 63.5%) | 0.17 ± 0.06 | 0.25 ± 0.02 | (C.c. 93.9%; N.o. 6.1%) |
S.m. | 4.23 × 105 ± 7.7 × 104 (S.m.: 36.8%) | 0.45 ± 0.04 | 0.44 ± 0.03 | 86.24 ± 14.50 |
+ | ||||
N.o. | 7.23 × 105 ± 8.9 × 104 (N.o.: 63.2%) | 0.26 ± 0.02 | 0.35 ± 0.02 | (S.m. 85.6%; N.o. 14.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pistelli, L.; Mondo, A.D.; Smerilli, A.; Corato, F.; Piscitelli, C.; Pellone, P.; Carbone, D.A.; Sansone, C.; Brunet, C. Microalgal Co-Cultivation Prospecting to Modulate Vitamin and Bioactive Compounds Production. Antioxidants 2021, 10, 1360. https://doi.org/10.3390/antiox10091360
Pistelli L, Mondo AD, Smerilli A, Corato F, Piscitelli C, Pellone P, Carbone DA, Sansone C, Brunet C. Microalgal Co-Cultivation Prospecting to Modulate Vitamin and Bioactive Compounds Production. Antioxidants. 2021; 10(9):1360. https://doi.org/10.3390/antiox10091360
Chicago/Turabian StylePistelli, Luigi, Angelo Del Mondo, Arianna Smerilli, Federico Corato, Concetta Piscitelli, Paola Pellone, Dora Allegra Carbone, Clementina Sansone, and Christophe Brunet. 2021. "Microalgal Co-Cultivation Prospecting to Modulate Vitamin and Bioactive Compounds Production" Antioxidants 10, no. 9: 1360. https://doi.org/10.3390/antiox10091360
APA StylePistelli, L., Mondo, A. D., Smerilli, A., Corato, F., Piscitelli, C., Pellone, P., Carbone, D. A., Sansone, C., & Brunet, C. (2021). Microalgal Co-Cultivation Prospecting to Modulate Vitamin and Bioactive Compounds Production. Antioxidants, 10(9), 1360. https://doi.org/10.3390/antiox10091360