Metabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Grafting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Samples Collection
2.2. In Vitro Human Cell Cultures
2.3. Stimulation Assay
2.4. Metabolites Extraction
2.5. Targeted Analysis by Liquid Chromatography and Mass Spectrometry
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Insufficient Oxidative Stress Counteraction during Atherosclerosis Development
4.2. Metabolic Response to Inflammation in Atherosclerosis Development
4.3. Urine and Plasma Metabolites with Diagnostic Potential in Cardiovascular Risk Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spring, B.; Moller, A.C.; Colangelo, L.A.; Siddique, J.; Roehrig, M.; Daviglus, M.L.; Polak, J.F.; Reis, J.P.; Sidney, S.; Liu, K. Healthy lifestyle change and subclinical atherosclerosis in young adults: Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation 2014, 130, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Zethelius, B.; Berglund, L.; Sundström, J.; Ingelsson, E.; Basu, S.; Larsson, A.; Venge, P.; Arnlöv, J. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N. Engl. J. Med. 2008, 358, 2107–2116. [Google Scholar] [CrossRef] [Green Version]
- Iliou, A.; Mikros, E.; Karaman, I.; Elliott, F.; Griffin, J.L.; Tzoulaki, I.; Elliott, P. Metabolic phenotyping and cardiovascular disease: An overview of evidence from epidemiological settings. Heart Br. Card. Soc. 2021, 107, 1123–1129. [Google Scholar]
- Deidda, M.; Noto, A.; Cadeddu Dessalvi, C.; Andreini, D.; Andreotti, F.; Ferrannini, E.; Latini, R.; Maggioni, A.P.; Magnoni, M.; Maseri, A.; et al. Metabolomic correlates of coronary atherosclerosis, cardiovascular risk, both or neither. Results of the 2 × 2 phenotypic CAPIRE study. Int. J. Cardiol. 2021, 336, 14–21. [Google Scholar]
- Yap, I.K.S.; Brown, I.J.; Chan, Q.; Wijeyesekera, A.; Garcia-Perez, I.; Bictash, M.; Loo, R.L.; Chadeau-Hyam, M.; Ebbels, T.; De Iorio, M.; et al. Metabolome-wide association study identifies multiple biomarkers that discriminate north and south Chinese populations at differing risks of cardiovascular disease: INTERMAP study. J. Proteome Res. 2010, 9, 6647–6654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Canela, M.; Hruby, A.; Clish, C.B.; Liang, L.; Martínez-González, M.A.; Hu, F.B. Comprehensive Metabolomic Profiling and Incident Cardiovascular Disease: A Systematic Review. J. Am. Heart Assoc. 2017, 6, e005705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newgard, C.B. Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metab. 2017, 25, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Rizza, S.; Copetti, M.; Rossi, C.; Cianfarani, M.A.; Zucchelli, M.; Luzi, A.; Pecchioli, C.; Porzio, O.; Di Cola, G.; Urbani, A.; et al. Metabolomics signature improves the prediction of cardiovascular events in elderly subjects. Atherosclerosis 2014, 232, 260–264. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, H.; Gao, S.; Liu, Y.; Liu, Y.; Zhang, T.; Cai, X.; Li, Z.; Li, L.; Li, Y.; et al. Identification of coronary heart disease biomarkers with different severities of coronary stenosis in human urine using non-targeted metabolomics based on UPLC-Q-TOF/MS. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 497, 95–103. [Google Scholar] [CrossRef]
- Gonzalez-Calero, L.; Martin-Lorenzo, M.; Martínez, P.J.; Baldan-Martin, M.; Ruiz-Hurtado, G.; Segura, J.; de la Cuesta, F.; Barderas, M.G.; Ruilope, L.M.; Vivanco, F.; et al. Hypertensive patients exhibit an altered metabolism. A specific metabolite signature in urine is able to predict albuminuria progression. Transl. Res. J. Lab. Clin. Med. 2016, 178, 25–37.e7. [Google Scholar]
- Martin-Lorenzo, M.; Martinez, P.J.; Baldan-Martin, M.; Ruiz-Hurtado, G.; Prado, J.C.; Segura, J.; de la Cuesta, F.; Barderas, M.G.; Vivanco, F.; Ruilope, L.M.; et al. Citric Acid Metabolism in Resistant Hypertension: Underlying Mechanisms and Metabolic Prediction of Treatment Response. Hypertens. Dallas Tex 2017, 70, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Martin-Lorenzo, M.; Zubiri, I.; Maroto, A.S.; Gonzalez-Calero, L.; Posada-Ayala, M.; de la Cuesta, F.; Mourino-Alvarez, L.; Lopez-Almodovar, L.F.; Calvo-Bonacho, E.; Ruilope, L.M.; et al. KLK1 and ZG16B proteins and arginine-proline metabolism identified as novel targets to monitor atherosclerosis, acute coronary syndrome and recovery. Metab. Off. J. Metab. Soc. 2015, 11, 1056–1067. [Google Scholar] [CrossRef] [Green Version]
- Martin-Lorenzo, M.; Gonzalez-Calero, L.; Maroto, A.S.; Martinez, P.J.; Zubiri, I.; de la Cuesta, F.; Mourino-Alvarez, L.; Barderas, M.G.; Heredero, A.; Aldamiz-Echevarría, G.; et al. Cytoskeleton deregulation and impairment in amino acids and energy metabolism in early atherosclerosis at aortic tissue with reflection in plasma. Biochim. Biophys. Acta 2016, 1862, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Callesen, K.T.; Yuste-Montalvo, A.; Poulsen, L.K.; Jensen, B.M.; Esteban, V. In Vitro Investigation of Vascular Permeability in Endothelial Cells from Human Artery, Vein and Lung Microvessels at Steady-State and Anaphylactic Conditions. Biomedicines 2021, 9, 439. [Google Scholar] [CrossRef] [PubMed]
- Martin-Lorenzo, M.; Gonzalez-Calero, L.; Martinez, P.J.; Baldan-Martin, M.; Lopez, J.A.; Ruiz-Hurtado, G.; de la Cuesta, F.; Segura, J.; Vazquez, J.; Vivanco, F.; et al. Immune system deregulation in hypertensive patients chronically RAS suppressed developing albuminuria. Sci. Rep. 2017, 7, 8894. [Google Scholar] [CrossRef]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Li, Y.; Ren, X.; Zhang, X.; Hu, D.; Gao, Y.; Xing, Y.; Shang, H. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front. Physiol. 2017, 8, 600. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, T.; Abdellatif, M.; Schroeder, S.; Primessnig, U.; Stekovic, S.; Pendl, T.; Harger, A.; Schipke, J.; Zimmermann, A.; Schmidt, A.; et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 2016, 22, 1428–1438. [Google Scholar] [CrossRef]
- Krüger, A.; Vowinckel, J.; Mülleder, M.; Grote, P.; Capuano, F.; Bluemlein, K.; Ralser, M. Tpo1-mediated spermine and spermidine export controls cell cycle delay and times antioxidant protein expression during the oxidative stress response. EMBO Rep. 2013, 14, 1113–1119. [Google Scholar] [CrossRef]
- Durante, W. The Emerging Role of l-Glutamine in Cardiovascular Health and Disease. Nutrients 2019, 11, 2092. [Google Scholar] [CrossRef] [Green Version]
- Ellis, A.C.; Patterson, M.; Dudenbostel, T.; Calhoun, D.; Gower, B. Effects of 6-month supplementation with β-hydroxy-β-methylbutyrate, glutamine and arginine on vascular endothelial function of older adults. Eur. J. Clin. Nutr. 2016, 70, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Martinez, P.J.; Agudiez, M.; Molero, D.; Martin-Lorenzo, M.; Baldan-Martin, M.; Santiago-Hernandez, A.; García-Segura, J.M.; Madruga, F.; Cabrera, M.; Calvo, E.; et al. Urinary metabolic signatures reflect cardiovascular risk in the young, middle-aged, and elderly populations. J. Mol. Med. Berl. Ger. 2020, 98, 1603–1613. [Google Scholar] [CrossRef]
- Vieira-Alves, I.; Coimbra-Campos, L.M.C.; Sancho, M.; da Silva, R.F.; Cortes, S.F.; Lemos, V.S. Role of the α7 Nicotinic Acetylcholine Receptor in the Pathophysiology of Atherosclerosis. Front. Physiol. 2020, 11, 621769. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-J.; Fu, H.; Tong, J.; Li, Y.-H.; Qu, L.-F.; Wang, P.; Shen, F.-M. Cholinergic anti-inflammatory pathway inhibits neointimal hyperplasia by suppressing inflammation and oxidative stress. Redox Biol. 2018, 15, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Seldin, M.M.; Meng, Y.; Qi, H.; Zhu, W.; Wang, Z.; Hazen, S.L.; Lusis, A.J.; Shih, D.M. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J. Am. Heart Assoc. 2016, 5, e002767. [Google Scholar] [CrossRef] [Green Version]
- Würtz, P.; Havulinna, A.S.; Soininen, P.; Tynkkynen, T.; Prieto-Merino, D.; Tillin, T.; Ghorbani, A.; Artati, A.; Wang, Q.; Tiainen, M.; et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation 2015, 131, 774–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavus, E.; Karakas, M.; Ojeda, F.M.; Kontto, J.; Veronesi, G.; Ferrario, M.M.; Linneberg, A.; Jørgensen, T.; Meisinger, C.; Thorand, B.; et al. Association of Circulating Metabolites With Risk of Coronary Heart Disease in a European Population: Results From the Biomarkers for Cardiovascular Risk Assessment in Europe (BiomarCaRE) Consortium. JAMA Cardiol 2019, 4, 1270–1279. [Google Scholar] [CrossRef]
CVrisk | |
---|---|
Age | 68 ± 9 |
Sex, male (%) | 52 |
Diabetes mellitus (%) | 26 |
Arterial hypertension (%) | 89 |
Smoking habits (%) | 26 |
Estimated glomerular filtration rate (mL/min/1.73 m2) | 66 ± 21 |
AUC | CI (95%) | |
---|---|---|
Individual metabolites urine | ||
Arabitol | 0.763 | (0.671–0.860) |
Glutamine | 0.528 | (0.419–0.639) |
Pantothenate | 0.686 | (0.590–0.800) |
Spermidine | 0.679 | (0.573–0.785) |
TMAO | 0.720 | (0.612–0.816) |
Individual metabolites plasma | ||
Acetylcholine | 0.682 | (0.575–0.772) |
Choline | 0.740 | (0.635–0.829) |
Glutamine | 0.748 | (0.656–0.836) |
Pyruvate | 0.723 | (0.627–0.811) |
TMAO | 0.741 | (0.641–0.832) |
Valine | 0.617 | (0.488–0.724) |
Combined metabolites | ||
Urine | 0.889 | (0.778–0.980) |
Plasma | 0.902 | (0.823–0.983) |
Glutamine (urine and plasma) | 0.743 | (0.602–0.855) |
TMAO (urine and plasma) | 0.779 | (0.656–0.909) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago-Hernandez, A.; Martinez, P.J.; Agudiez, M.; Heredero, A.; Gonzalez-Calero, L.; Yuste-Montalvo, A.; Esteban, V.; Aldamiz-Echevarria, G.; Martin-Lorenzo, M.; Alvarez-Llamas, G. Metabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Grafting. Antioxidants 2021, 10, 1369. https://doi.org/10.3390/antiox10091369
Santiago-Hernandez A, Martinez PJ, Agudiez M, Heredero A, Gonzalez-Calero L, Yuste-Montalvo A, Esteban V, Aldamiz-Echevarria G, Martin-Lorenzo M, Alvarez-Llamas G. Metabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Grafting. Antioxidants. 2021; 10(9):1369. https://doi.org/10.3390/antiox10091369
Chicago/Turabian StyleSantiago-Hernandez, Aranzazu, Paula J. Martinez, Marta Agudiez, Angeles Heredero, Laura Gonzalez-Calero, Alma Yuste-Montalvo, Vanesa Esteban, Gonzalo Aldamiz-Echevarria, Marta Martin-Lorenzo, and Gloria Alvarez-Llamas. 2021. "Metabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Grafting" Antioxidants 10, no. 9: 1369. https://doi.org/10.3390/antiox10091369
APA StyleSantiago-Hernandez, A., Martinez, P. J., Agudiez, M., Heredero, A., Gonzalez-Calero, L., Yuste-Montalvo, A., Esteban, V., Aldamiz-Echevarria, G., Martin-Lorenzo, M., & Alvarez-Llamas, G. (2021). Metabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Grafting. Antioxidants, 10(9), 1369. https://doi.org/10.3390/antiox10091369