Relationships between Skin Carotenoid Levels and Metabolic Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measurement of Skin Carotenoid Levels
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MetS | metabolic syndrome |
SC | skin carotenoid |
RS | reflection spectroscopy |
BMI | body mass index |
WC | waist circumference |
WBC | white blood count |
Hct | hematocrit |
AST | aspartate aminotransferase |
ALT | alanine aminotransferase |
γ-GTP | γ-glutamyl transpeptidase |
ALP | alkaline phosphatase |
LDH | lactate dehydrogenase |
ChE | cholinesterase |
ZTT | zinc sulfate turbidity test |
Bil | total bilirubin |
TP | total protein |
BUN | blood urea nitrogen |
Cre | creatinine |
eGFR | estimated glomerular filtration rate |
UA | uric acid |
TG | fasting triglyceride |
HDL | high-density lipoprotein |
LDL | low-density lipoprotein |
non-HDL | non-high-density lipoprotein |
HbA1c | hemoglobin A1c |
References
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Ford, E.S.; Mokdad, A.H.; Giles, W.H.; Brown, D.W. The metabolic syndrome and antioxidant concentrations: Findings from the Third National Health and Nutrition Examination Survey. Diabetes 2003, 52, 2346–2352. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey. JAMA 2002, 287, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Shroff, M.R.; Chen, X.; Beydoun, H.A.; Wang, Y.; Zonderman, A.B. Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J. Nutr. 2011, 141, 903–913. [Google Scholar] [CrossRef]
- Young, A.J.; Lowe, G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 2001, 385, 20–27. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Matsumoto, H.; Ando, F.; Shimokata, H.; Yano, M. Associations of serum carotenoid concentrations with the metabolic syndrome: Interaction with smoking. Br. J. Nutr. 2008, 100, 1297–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Ito, Y.; Inoue, T.; Hamajima, N. Inverse association of serum carotenoids with prevalence of metabolic syndrome among Japanese. Clin. Nutr. 2011, 30, 369–375. [Google Scholar] [CrossRef]
- Sluijs, I.; Beulens, J.W.; Grobbee, D.E.; van der Schouw, Y.T. Dietary carotenoid intake is associated with lower prevalence of metabolic syndrome in middle-aged and elderly men. J. Nutr. 2009, 139, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, C.E.; Castenmiller, J.J. Quantification of the "SLAMENGHI" factors for carotenoid bioavailability and bioconversion. Int. J. Vitam. Nutr. Res. 1998, 68, 371–377. [Google Scholar]
- Matsumoto, M.; Suganuma, H.; Shimizu, S.; Hayashi, H.; Sawada, K.; Tokuda, I.; Ihara, K.; Nakaji, S. Skin Carotenoid Level as an Alternative Marker of Serum Total Carotenoid Concentration and Vegetable Intake Correlates with Biomarkers of Circulatory Diseases and Metabolic Syndrome. Nutrients 2020, 12, 1825. [Google Scholar] [CrossRef]
- Kanagasabai, T.; Alkhalaqi, K.; Churilla, J.R.; Ardern, C.I. The Association between Metabolic Syndrome and Serum Concentrations of Micronutrients, Inflammation, and Oxidative Stress Outside of the Clinical Reference Ranges: A Cross-Sectional Study. Metab. Syndr. Relat. Disord. 2019, 17, 29–36. [Google Scholar] [CrossRef]
- Han, G.-M.; Meza, J.L.; Soliman, G.A.; Islam, K.M.M.; Watanabe-Galloway, S. Higher levels of serum lycopene are associated with reduced mortality in individuals with metabolic syndrome. Nutr. Res. 2016, 36, 402–407. [Google Scholar] [CrossRef]
- Liu, J.; Shi, W.-Q.; Cao, Y.; He, L.-P.; Guan, K.; Ling, W.-H.; Chen, Y.-M. Higher serum carotenoid concentrations associated with a lower prevalence of the metabolic syndrome in middle-aged and elderly Chinese adults. Br. J. Nutr. 2014, 112, 2041–2048. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Yano, M. High serum carotenoids associated with lower risk for the metabolic syndrome and its components among Japanese subjects: Mikkabi cohort study. Br. J. Nutr. 2015, 114, 1674–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermakov, I.V.; Gellermann, W. Optical detection methods for carotenoids in human skin. Arch. Biochem. Biophys. 2015, 572, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, I.V.; Gellermann, W. Dermal carotenoid measurements via pressure mediated reflection spectroscopy. J. Biophotonics 2012, 5, 559–570. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Ermakova, M.; Sharifzadeh, M.; Gorusupudi, A.; Farnsworth, K.; Bernstein, P.S.; Stookey, J.; Evans, J.; Arana, T.; Tao-Lew, L.; et al. Optical assessment of skin carotenoid status as a biomarker of vegetable and fruit intake. Arch. Biochem. Biophys. 2018, 646, 46–54. [Google Scholar] [CrossRef]
- Obana, A.; Gohto, Y.; Gellermann, W.; Ermakov, I.V.; Sasano, H.; Seto, T.; Bernstein, P.S. Skin Carotenoid Index in a large Japanese population sample. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Darvin, M.E.; Fluhr, J.W.; Caspers, P.; van der Pool, A.; Richter, H.; Patzelt, A.; Sterry, W.; Lademann, J. In vivo distribution of carotenoids in different anatomical locations of human skin: Comparative assessment with two different Raman spectroscopy methods. Exp. Dermatol. 2009, 18, 1060–1063. [Google Scholar] [CrossRef]
- Nguyen, L.M.; Scherr, R.E.; Linnell, J.D.; Ermakov, I.V.; Gellermann, W.; Jahns, L.; Keen, C.L.; Miyamoto, S.; Steinberg, F.M.; Young, H.M.; et al. Evaluating the relationship between plasma and skin carotenoids and reported dietary intake in elementary school children to assess fruit and vegetable intake. Arch. Biochem. Biophys. 2015, 572, 73–80. [Google Scholar] [CrossRef]
- Jahns, L.; Johnson, L.K.; Mayne, S.T.; Cartmel, B.; Picklo, M.J.; Sr Ermakov, I.V.; Gellermann, W.; Whigham, L.D. Skin and plasma carotenoid response to a provided intervention diet high in vegetables and fruit: Uptake and depletion kinetics. Am. J. Clin. Nutr. 2014, 100, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, B.S.; Chan, G.; Hoffman, R.O.; Sharifzadeh, M.; Ermakov, I.V.; Gellermann, W.; Bernstein, P.S. Interrelationships between maternal carotenoid status and newborn infant macular pigment optical density and carotenoid status. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5568–5578. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Sharifzadeh, M.; Liu, A.; Ermakov, I.; Nelson, K.; Sheng, X.; Panish, C.; Carlstrom, B.; Hoffman, R.O.; Gellermann, W. Blue-light reflectance imaging of macular pigment in infants and children. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4034–4040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermakov, I.V.; Ermakova, M.R.; Bernstein, P.S.; Chan, G.M.; Gellermann, W. Resonance Raman based skin carotenoid measurements in newborns and infants. J. Biophotonics 2013, 6, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Mayne, S.T.; Cartmel, B.; Scarmo, S.; Jahns, L.; Ermakov, I.V.; Gellermann, W. Resonance Raman spectroscopic evaluation of skin carotenoids as a biomarker of carotenoid status for human studies. Arch. Biochem. Biophys. 2013, 539, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Zidichouski, J.A.; Mastaloudis, A.; Poole, S.J.; Reading, J.C.; Smidt, C.R. Clinical validation of a noninvasive, Raman spectroscopic method to assess carotenoid nutritional status in humans. J. Am. Coll. Nutr. 2009, 28, 687–693. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Sharifzadeh, M.; Ermakova, M.; Gellermann, W. Resonance Raman detection of carotenoid antioxidants in living human tissue. J. Biomed. Opt. 2005, 10, 064028. [Google Scholar] [CrossRef]
- Conrady, C.D.; Bell, J.P.; Besch, B.M.; Gorusupudi, A.; Farnsworth, K.; Ermakov, I.; Sharifzadeh, M.; Ermakova, M.; Gellermann, W.; Bernstein, P.S. Correlations Between Macular, Skin, and Serum Carotenoids. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3616–3627. [Google Scholar] [CrossRef] [Green Version]
- Matsuzawa, Y. Metabolic Syndrome—Definition and Diagnostic Criteria in Japan. J. Atheroscler. Thromb. 2005, 12, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohn, T. Carotenoids and Markers of Oxidative Stress in Human Observational Studies and Intervention Trials: Implications for Chronic Diseases. Antioxidants 2019, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Vona, R.; Gambardella, L.; Cittadini, C.; Straface, E.; Pietraforte, D. Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 8267234. [Google Scholar] [CrossRef] [Green Version]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Shin, M.-J.; Park, E.; Lee, J.H.; Chung, N. Relationship between Insulin Resistance and Lipid Peroxidation and Antioxidant Vitamins in Hypercholesterolemic Patients. Ann. Nutr. Metab. 2006, 50, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Chen, X.; Jha, K.; Beydoun, H.A.; Zonderman, A.B.; Canas, J.A. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. Am. J. Clin. Nutr. 2018, 108, 1069–1091. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Takatorige, T.; Suzuki, K. Cigarette smoking and the risk of the metabolic syndrome in middle-aged Japanese male office workers. Ind. Health 2005, 43, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Ishizaka, N.; Ishizaka, Y.; Toda, E.-I.; Nagai, R.; Yamakado, M. Association between Cigarette Smoking, White Blood Cell Count, and Metabolic Syndrome as Defined by the Japanese Criteria. Intern. Med. 2007, 46, 1167–1170. [Google Scholar] [CrossRef] [Green Version]
- Böhm, V.; Lietz, G.; Olmedilla-Alonso, B.; Phelan, D.; Reboul, E.; Bánati, D.; Borel, P.; Corte-Real, J.; De Lera, A.R.; Desmarchelier, C.; et al. From carotenoid intake to carotenoid blood and tissue concentrations—Implications for dietary intake recommendations. Nutr. Rev. 2020, 79, 544–573. [Google Scholar] [CrossRef]
- Wang, W.; Connor, S.L.; Johnson, E.J.; Klein, M.L.; Hughes, S.; Connor, W.E. Effect of dietary lutein and zeaxanthin on plasma carotenoids and their transport in lipoproteins in age-related macular degeneration. Am. J. Clin. Nutr. 2007, 85, 762–769. [Google Scholar] [CrossRef]
- Clevidence, B.A.; Bieri, J.G. Association of carotenoids with human plasma lipoproteins. Methods Enzymol. 1993, 214, 33–46. [Google Scholar] [PubMed]
- Connor, W.E.; Duell, P.B.; Kean, R.; Wang, Y. The Prime Role of HDL to Transport Lutein into the Retina: Evidence from HDL-Deficient WHAM Chicks Having a Mutant ABCA1 Transporter. Investig. Opthalmol. Vis. Sci. 2007, 48, 4226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leermakers, E.T.; Darweesh, S.K.; Baena, C.P.; Moreira, E.M.; Melo Van Lent, D.; Tielemans, M.J.; Muka, T.; Vitezova, A.; Chowdhury, R.; Bramer, W.M.; et al. The effects of lutein on cardiometabolic health across the life course: A systematic review and meta-analysis1,2. Am. J. Clin. Nutr. 2016, 103, 481–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Metabolic Syndrome | Non-Metabolic Syndrome | p-Value | |
---|---|---|---|
N | 151 | 1661 | |
Age (years) | |||
Mean ± SD | 62.0 ± 8.5 | 57.4 ± 11.1 | <0.0001 ** |
range | 40.0, 80.0 | 22.0, 90.0 | |
Sex | |||
Men, n (%) | 120 (79.5) | 739 (44.5) | <0.0001 ** |
Women, n (%) | 31 (20.5) | 922 (55.5) | |
Smoking habit | |||
Yes, n (%) | 11 (7.3) | 60 (3.6) | 0.0438 * |
No, n (%) | 140 (92.7) | 1601 (96.4) | |
Antihypertensive agents | |||
Yes, n (%) | 101 (66.9) | 233 (14.0) | <0.0001 ** |
No, n (%) | 50 (33.1) | 1428 (86.0) | |
Hypolipidemic agents | |||
Yes, n (%) | 83 (55.0) | 219 (13.2) | <0.0001 ** |
No, n (%) | 68 (45.0) | 1442 (86.8) | |
Oral diabetes drugs/Insulin usage | |||
Yes, n (%) | 21 (13.9) | 47 (2.8) | <0.0001 ** |
No, n (%) | 130 (86.1) | 1614 (97.2) | |
BMI (kg/m2) | |||
Mean ± SD | 26.8 ± 3.3 | 22.2 ± 3.0 | <0.0001 ** |
range | 22.0, 42.0 | 14.0, 44.0 | |
Body fat percentage (%) | |||
Mean ± SD | 28.8 ± 7.0 | 24.1 ± 6.5 | <0.0001 ** |
range | 17.0, 50.0 | 8.0, 58.0 | |
Waist circumference (cm) | |||
Mean ± SD | 94.3 ± 7.1 | 80.0 ± 8.4 | <0.0001 ** |
range | 85.0, 132.0 | 59.0, 120.0 | |
Systolic Blood pressure (mmHg) | |||
Mean ± SD | 127.7 ± 12.4 | 116.3 ± 15.1 | <0.0001 ** |
range | 90.0, 160.0 | 80.0, 194.0 | |
Diastolic blood pressure (mmHg) | |||
Mean ± SD | 78.2 ± 9.8 | 71.5 ± 9.8 | <0.0001 ** |
range | 56.0, 110.0 | 42.0, 110.0 | |
Heart rate (bpm) | |||
Mean ± SD | 64.0 ± 10.2 | 62.7 ± 9.7 | 0.1219 |
range | 41.0, 92.0 | 38.0, 125.0 | |
Skin carotenoid | |||
Mean ± SD | 340.7 ± 112.5 | 377.3 ± 122.8 | 0.0004 ** |
range | 167.0, 772.0 | 83.0, 974.0 |
Metabolic Syndrome | Non-Metabolic Syndrome | ||||
---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | p-Value | |
N | 151 | 1661 | |||
RBC (104/μL) | 479.6 ± 40.8 | 378, 598 | 453.8 ± 42.6 | 272, 631 | <0.0001 ** |
WBC (/μL) | 5797.2 ± 1394.2 | 2880, 11,310 | 4934.4 ± 1239.8 | 2280, 13,210 | <0.0001 ** |
Hb (g/dL) | 14.9 ± 1.2 | 11.5, 17.5 | 13.9 ± 1.4 | 5.3, 18.4 | <0.0001 ** |
Hct (%) | 43.8 ± 3.3 | 35.0, 51.8 | 41.5 ± 3.7 | 20.4, 53.9 | <0.0001 ** |
AST (IU/L) | 27.4 ± 14.9 | 13, 146 | 21.3 ± 11.0 | 7, 388 | <0.0001 ** |
ALT (IU/L) | 34.7 ± 26.2 | 10, 191 | 19.7 ± 12.4 | 6, 232 | <0.0001 ** |
γ-GTP (IU/L) | 50.8 ± 48.7 | 8, 345 | 28.1 ± 29.0 | 6, 450 | <0.0001 ** |
ALP (IU/L) | 220.2 ± 58.7 | 109, 444 | 204.4 ± 58.2 | 65, 638 | 0.0015 ** |
LDH (IU/L) | 188.7 ± 33.0 | 126, 349 | 179.5 ± 37.0 | 69, 1069 | 0.0032 * |
ChE (IU/L) | 373.2 ± 60.0 | 230, 549 | 333.2 ± 71.7 | 134, 1029 | <0.0001 ** |
ZTT (KU) | 7.6 ± 3.3 | 1, 16 | 8.0 ± 3.4 | 1, 28 | 0.2040 |
Bil (mg/dL) | 0.99 ± 0.4 | 0.4, 3.4 | 0.93 ± 0.34 | 0.3, 3.5 | 0.0235 * |
TP (g/dL) | 7.3 ± 0.4 | 6.4, 8.6 | 7.2 ± 0.4 | 6.0, 8.7 | 0.0009 ** |
Albumin (g/dL) | 4.3 ± 0.2 | 3.7, 5.0 | 4.3 ± 0.2 | 3.2, 5.3 | 0.2289 |
BUN (mg/dL) | 15.8 ± 4.3 | 8, 30 | 14.6 ± 3.6 | 6, 33 | <0.0001 ** |
Cre (mg/dL) | 0.9 ± 0.3 | 0.52, 2.34 | 0.7 ± 0.2 | 0.33, 1.48 | <0.0001 ** |
eGFR (mL/min/1.73 m3) | 65.8 ± 14.3 | 24.2, 98.7 | 73.8 ± 13.6 | 30.9, 145.5 | <0.0001 ** |
UA (mg/dL) | 6.0 ± 1.3 | 3.0, 9.3 | 5.2 ± 1.2 | 0.5, 9.3 | <0.0001 ** |
T-Chol (mg/dL) | 206.3 ± 37.0 | 116, 324 | 214.6 ± 33.2 | 87, 327 | 0.0034 ** |
Fasting TG (mg/dL) | 162.2 ± 146.3 | 43, 1670 | 91.9 ± 58.9 | 19, 1037 | <0.0001 ** |
HDL (mg/dL) | 57.3 ± 13.1 | 29, 107 | 73.1 ± 18.9 | 30, 158 | <0.0001 ** |
LDL (mg/dL) | 124.2 ± 30.7 | 43, 225 | 127.0 ± 29.3 | 35, 239 | 0.2559 |
non-HDL (mg/dL) | 149.0 ± 36.5 | 78, 259 | 141.6 ± 32.1 | 38, 267 | 0.0074 ** |
Fasting BG (mg/dL) | 112.4 ± 20.3 | 81, 217 | 94.3 ± 11.7 | 57, 184 | <0.0001 ** |
HbA1c (%) | 6.2 ± 0.7 | 5.1, 8.2 | 8.7 ± 0.4 | 4.7, 8.7 | <0.0001 ** |
Amylase (IU/L) | 83.6 ± 33.6 | 30, 218 | 85.0 ± 28.3 | 28, 318 | 0.6365 |
Lipase (IU/L) | 32.5 ± 11.5 | 8, 85 | 34.0 ± 12.2 | 8.0, 249.0 | 0.1376 |
CRP (mg/dL) | 0.16 ± 0.20 | 0.01, 1.27 | 0.10 ± 0.51 | 0.0, 17.4 | 0.1701 |
OR | Inverse of OR | 95%CI | p-Value | |
---|---|---|---|---|
Entire model | <0.0001 ** | |||
Age (/years) | 1.0550 | 0.9478 | 1.0356, 1.0749 | <0.0001 ** |
Sex (male/female) | 2.9514 | 0.3388 | 1.8572, 4.6902 | <0.0001 ** |
Smoking habit (yes/no) | 1.1390 | 0.8779 | 0.5497, 2.3602 | 0.7262 |
WBC (/units) | 1.0004 | 0.9996 | 1.0000, 1.0003 | <0.0001 ** |
UA (/units) | 1.2275 | 0.8147 | 1.0443, 1.4428 | 0.0129 * |
LDL (/units) | 0.9976 | 1.0024 | 0.9915, 1.0037 | 0.4455 |
Skin carotenoid (/units) | 0.9973 | 1.0026 | 0.9973, 0.9956 | 0.0023 ** |
r | Lower 95% CI | Upper 95% CI | p-Value | |
---|---|---|---|---|
Age | 0.2212 | 0.1770 | 0.2646 | <0.0001 ** |
Waist circumference | −0.1957 | −0.2396 | −0.1510 | <0.0001 ** |
Systolic Blood pressure | −0.0271 | −0.0730 | 0.0190 | 0.2491 |
Heart rate | 0.0254 | −0.0207 | 0.0714 | 0.2801 |
RBC | −0.0872 | −0.1327 | −0.0413 | 0.0002 ** |
WBC | −0.1003 | −0.1456 | −0.0545 | <0.0001 ** |
Hct | −0.0676 | −0.1133 | −0.0216 | 0.0040 ** |
AST | −0.0149 | −0.0609 | 0.0312 | 0.5272 |
ALT | −0.1007 | −0.1461 | −0.0549 | <0.0001 ** |
γ-GTP | −0.1438 | −0.1886 | −0.0984 | <0.0001 ** |
ALP | 0.0086 | −0.0375 | 0.0546 | 0.715 |
LDH | 0.0804 | 0.0345 | 0.1260 | 0.0006 ** |
ChE | −0.0841 | −0.1297 | −0.0382 | 0.0003 ** |
ZTT | −0.0222 | −0.0784 | 0.0341 | 0.4392 |
Bil | 0.1198 | 0.0741 | 0.1650 | <0.0001 ** |
TP | 0.0393 | −0.0067 | 0.0852 | 0.0941 |
Albumin | 0.0236 | −0.0225 | 0.0695 | 0.3161 |
BUN | 0.1120 | 0.0663 | 0.1572 | <0.0001 ** |
Cre | −0.0884 | −0.1339 | −0.0425 | 0.0002 ** |
UA | −0.1296 | −0.1747 | −0.0841 | <0.0001 ** |
T-Chol | 0.0605 | 0.0145 | 0.1063 | 0.0100 ** |
TG | −0.1039 | −0.1493 | −0.0581 | <0.0001 ** |
HDL | 0.1259 | 0.0803 | 0.1710 | <0.0001 ** |
LDL | 0.0237 | −0.0223 | 0.0697 | 0.3128 |
non-HDL | −0.0108 | −0.0568 | 0.0353 | 0.6460 |
Fasting BG | −0.0491 | −0.0950 | −0.0030 | 0.0367 * |
HbA1c | 0.0344 | −0.0117 | 0.0803 | 0.1431 |
Amylase | 0.1348 | 0.0792 | 0.1896 | <0.0001 ** |
Lipase | 0.1593 | 0.1140 | 0.2039 | <0.0001 ** |
CRP | −0.0243 | −0.0703 | 0.0218 | 0.3009 |
N | Mean ± SD | Range | p-Value | |
---|---|---|---|---|
Sex | ||||
Male | 859 | 354.6 ± 118.0 | 132.0, 925.0 | <0.0001 ** |
Female | 953 | 391.9 ± 123.5 | 83.0, 974.0 | |
Smoking habit | ||||
Yes | 71 | 287.9 ± 77.4 | 175.0, 650.0 | <0.0001 ** |
No | 1741 | 377.7 ± 122.5 | 83.0, 974.0 | |
Antihypertensive agents | ||||
Yes | 334 | 377.4 ± 128.7 | 137.0, 847.0 | 0.5991 |
No | 1478 | 373.5 ± 120.9 | 83.0, 974.0 | |
Hypolipidemic agents | ||||
Yes | 302 | 387.9 ± 123.8 | 137.0, 834.0 | 0.0340 * |
No | 1510 | 371.5 ± 121.3 | 83.0, 974.0 | |
Insulin usage | ||||
Yes | 68 | 367.0 ± 134.1 | 132.0, 784.0 | 0.6177 |
No | 1744 | 374.5 ± 121.9 | 83.0, 974.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takayanagi, Y.; Obana, A.; Muto, S.; Asaoka, R.; Tanito, M.; Ermakov, I.V.; Bernstein, P.S.; Gellermann, W. Relationships between Skin Carotenoid Levels and Metabolic Syndrome. Antioxidants 2022, 11, 14. https://doi.org/10.3390/antiox11010014
Takayanagi Y, Obana A, Muto S, Asaoka R, Tanito M, Ermakov IV, Bernstein PS, Gellermann W. Relationships between Skin Carotenoid Levels and Metabolic Syndrome. Antioxidants. 2022; 11(1):14. https://doi.org/10.3390/antiox11010014
Chicago/Turabian StyleTakayanagi, Yuji, Akira Obana, Shigeki Muto, Ryo Asaoka, Masaki Tanito, Igor V. Ermakov, Paul S. Bernstein, and Werner Gellermann. 2022. "Relationships between Skin Carotenoid Levels and Metabolic Syndrome" Antioxidants 11, no. 1: 14. https://doi.org/10.3390/antiox11010014
APA StyleTakayanagi, Y., Obana, A., Muto, S., Asaoka, R., Tanito, M., Ermakov, I. V., Bernstein, P. S., & Gellermann, W. (2022). Relationships between Skin Carotenoid Levels and Metabolic Syndrome. Antioxidants, 11(1), 14. https://doi.org/10.3390/antiox11010014