The Roles of Carotenoid Consumption and Bioavailability in Cardiovascular Health
Abstract
:1. Introduction
2. Observational Studies on Carotenoids and CVDs
2.1. Lutein, Zeaxanthin and β-Cryptoxanthin
2.2. α-Carotene
2.3. β-Carotene
Carotenoids | Study Design | Subjects | Outcome | Main Results | Reference |
---|---|---|---|---|---|
Lutein, zeaxanthin and β-cryptoxanthin | Prospective cohort study | 73,286 female nurses aged 30–55 | CAD incidences | No significant association was found between the highest quintile of lutein plus zeaxanthin intake and the CAD risk. | [15] |
Prospective cohort study | 26,593 Finnish male smokers aged 50–69 | Stroke incidences | An inverse association was found between lutein plus zeaxanthin intake and the risk of subarachnoid hemorrhage. No significant association was found between lutein plus zeaxanthin intake and the risk of all forms of stroke. | [14] | |
Case–control study | Cases: 760 patients with non-fatal AMI; Control: 682 patients | AMI | No association was found in the adjusted odds of AMI with increasing lutein plus zeaxanthin intake when comparing the highest and the lowest quartile intakes. | [22] | |
Case–control study | Cases: 760 patients with non-fatal AMI; Control: 682 patients | AMI | An inverse association was found in the adjusted odds of AMI with increasing intake of β-cryptoxanthin when comparing the highest and the lowest quartile intakes. | [22] | |
α-carotene | Prospective cohort study | 73,286 female nurses aged 30–55 | CAD incidences | An inverse association was found between the highest quintile of α-carotene intake and the CAD risk. | [15] |
Case–control study | Cases: 760 patients with non-fatal AMI; Control: 682 patients | AMI | An inverse association was found in the adjusted odds of AMI with increasing intake of α-carotene when comparing the highest and the lowest quartile intakes. | [22] | |
β-carotene | Prospective cohort study | 73,286 female nurses aged 30–55 | CAD incidences | An inverse association was found between the highest quintile of β-carotene intake and the CAD risk. | [15] |
Prospective cohort study | 26,593 Finnish male smokers aged 50–69 | Stroke incidences | An inverse association was found between β-carotene intake and the risk of cerebral infarction. | [14] | |
Prospective cohort study | 1,843 middle-aged males | Stroke incidences and mortality | No association was found between β-carotene intake and the risk of stroke when comparing the highest and the lowest quartile intakes. | [25] | |
Case–control study | Cases: 433 females with nonfatal AMI; Control: 869 females in hospital | Non-fatal AMI | An inverse association was found between β-carotene intake and the odds of AMI when comparing the extreme quintiles of intake. | [23] | |
Prospective cohort study | 4,802 Rotterdam residents aged ≥55 | MI | An inverse association was found between β-carotene intake and the risk of MI when comparing extreme tertile intakes. | [24] | |
Cross-sectional study | 1,111 subjects with the average age of 52 | IMT-CCA; Presence of focal plaque | No association was found between β-carotene intake and carotid artery IMT or presence of focal carotid artery plaque. | [26] | |
Case–control study | Cases: 760 patients with non-fatal AMI; Control: 682 patients | AMI | No significant decrease was found in the adjusted odds of AMI with increasing intake of β-carotene when comparing the highest and the lowest quartile intakes. | [22] | |
Prospective cohort study | 1,556 employed middle-aged males | Coronary disease mortality | An increase of 3 mg intake of β-carotene was not associated with a decrease in risk of coronary disease mortality. | [27] | |
Lycopene | Prospective cohort study | 73,286 female nurses aged 30–55 | CAD incidences | No association was found between the highest quintile of lycopene intake and the CAD risk. | [15] |
Prospective cohort study | Not reported | CHD; CVDs; Stroke | An inverse association was found between a 2.7-fold difference in lycopene intake and the CVD risk for the 5th, 6th and 7th examination average, but not for CHD and stroke risk. An inverse association was found between a 2.7-fold difference in lycopene intake and the CHD risk for 5th and 6th examination average, but not for CVD risk and stroke risk. | [16] | |
Prospective cohort study | 26,593 Finnish male smokers aged 50–69 | Stroke incidences | An inverse association was found between lycopene intake and the risk of cerebral infarction and intracerebral hemorrhage, but no association was significant after simultaneous modeling for other antioxidants. | [14] | |
Case–control study | Cases: 760 patients with non-fatal AMI; Control: 682 patients | AMI | No association was found in the adjusted odds of AMI with increasing lycopene intake when comparing the highest and the lowest quartile intakes. | [22] | |
Prospective cohort study | 39,876 middle-aged and older females | Total CVDs; Vascular events; MI; Stroke | No association was found between lycopene intake and the multivariate-adjusted risk of total CVDs, important vascular event, MI and stroke compared to the lowest quintile. | [17] | |
Carotenoids with provitamin A activity | Prospective cohort study | 5,133 Finnish subjects aged 30–69 | CHD mortality | No association was found between the intake of carotenoids with provitamin A activity and the risk of CHD mortality when comparing the highest and lowest tertile intakes. | [28] |
Prospective cohort study | 34,486 postmenopausal females | CHD mortality | No association was found between the risk of CHD mortality and the intake of carotenoids with provitamin A activity when comparing the extreme quintile intakes. | [29] | |
Case–control study | Cases: 760 patients with non-fatal AMI; Control: 682 patients | AMI | No significant decrease was found in the adjusted odds of AMI when comparing the highest and the lowest quartile intakes. | [22] | |
Cross-sectional study | 12,773 subjects with the average age of 54 | Carotid artery wall thickness | No association was found between the intake of carotenoids with provitamin A activity and the odds for carotid artery plaque when comparing extreme quintile intakes. | [30] | |
Total carotenoids | Prospective cohort study | 725 elderly subjects | Mortality from heart disease | No association was found between total carotenoid intake and the heart disease mortality when comparing the extreme quintile intakes. | [31] |
Case–control study | Cases: 760 patients with non-fatal AMI; Control: 682 patients | AMI | No association was found in the odds of AMI with increasing total carotenoid intake when comparing the highest and the lowest quartile intakes. | [22] |
2.4. Lycopene
2.5. Carotenoids with Provitamin A Activity
2.6. Total Carotenoids
2.7. Conflicting Reporting Results
3. Randomized Controlled Trials on Carotenoids and CVDs
3.1. Classical CVD Risk Factors
3.2. Oxidative Stress
3.2.1. LDL Oxidation
3.2.2. Lipid Oxidation/Peroxidation Products
3.2.3. Antioxidant Capability
3.2.4. Antioxidant Enzymes
3.2.5. DNA Damage
3.3. Inflammatory Biomarkers
3.4. Vasular Health
3.4.1. Endothelial Function
3.4.2. Arterial Stiffness
3.4.3. Vascular Structure
Carotenoids | Study Design | Intervention | Outcome | References |
---|---|---|---|---|
Classical CVD Risk Factors | ||||
Lutein | RCT, parallel, double-blinded, Healthy subjects (n = 117) | 10, 20 mg lutein for 12 weeks | ↔ TG, LDL-C, HDL-C | [38] |
RCT, parallel, double-blinded, Early atherosclerosis patients (n = 65) | 20 mg lutein for 12 weeks | ↓ TG, LDL-C ↔HDL | [36] | |
Zeaxanthin | RCT, parallel, Metabolic syndrome patients (n = 50) | 14 g Goji berry for 45 days | ↓ TC, LDL-C, VLDL-C ↑ HDL-C | [37] |
β-cryptoxanthin | RCT, parallel, double-blinded, Healthy subjects (n = 117) | β-cryptoxanthin-rich satsuma mandarin juice for 12 weeks | ↔ LDL-C, HDL-C, TG, SBP, DBP | [39] |
Astaxanthin | Meta-analysis | Astaxanthin | ↔ TC, LDL-C, HDL-C, TG | [42] |
Lycopene | RCT, crossover, double-blinded, Hypertensive subjects (n = 46) | Tomato nutrient complex (equivalent to 5, 15 and 30 mg lycopene) for 8 weeks | ↓ SBP | [45] |
Meta-analysis | Lycopene or lycopene-rich foods | ↓ LDL-C ↔ TC, HDL-C, TG | [41] | |
Meta-analysis | Lycopene | ↓ SBP ↔ DBP, TC, LDL-C, HDL-C, TG | [40] | |
Meta-analysis | Tomato | ↓ LDL-C, ↔ SBP, DBP, TC, HDL-C, TG | [40] | |
Oxidative Stress | ||||
LDL oxidation | ||||
Astaxanthin | RCT, parallel, open labeled, Healthy subjects (n = 24) | 1.8, 3.6, 14.4, 21.6 mg astaxanthin for 2 weeks | ↑ LDL lag-time | [57] |
Lycopene | RCT, parallel, double-blinded, CVD patients (n = 36), Healthy subjects (n = 36) | 7 mg Lycopene for 2 months | ↔ ox-LDL | [52] |
RCT, parallel, single-blinded, Healthy subjects (n = 225) | Tomato or 10 mg lycopene capsules for 12 weeks | ↔ ox-LDL | [53] | |
RCT, parallel, double-blinded, Healthy subjects (n = 77) | 6.5, 15, 30 mg lycopene for 8 weeks | ↔ LDL oxidation rate | [54] | |
Meta-analysis | Lycopene | ↔ LDL lag-time | [55] | |
Carotenoid mixture | RCT, crossover, double-blinded, Healthy subjects (n = 31) | 4.4 mg lutein, 6.0 mg β-carotene, 1.4 mg α-carotene, 4.5 mg lycopene, 11.7 mg bixin and 2.2 mg paprika for 3 weeks | ↑ LDL lag-time | [56] |
Lipid oxidation/peroxidation products | ||||
Lutein | RCT, parallel, double-blinded, Healthy subjects (n = 117) | 10, 20 mg lutein for 12 weeks | ↓ MDA | [38] |
Zeaxanthin | RCT, parallel, Metabolic syndrome patients (n = 50) | 14 g Goji berry for 45 days | ↓ MDA | [37] |
RCT, parallel, double-blinded, Healthy subjects (n = 40) | 15 g Goji berry for 16 weeks | ↓ 8-iso-PGF2α, ↔ MDA | [63] | |
Astaxanthin | RCT, parallel, double-blinded, Healthy subjects (n = 58) | 12 mg astaxanthin for 12 months | ↔ F2-isoPs | [91] |
β-carotene | RCT, parallel, Healthy male workers exposed to lead (n = 82) | 10 mg β-carotene for 12 weeks | ↓ MDA, LHP | [60,62] |
Lycopene | RCT, parallel, double-blinded, Healthy subjects (n = 77) | 6.5, 15, 30 mg lycopene for 8 weeks | ↔ MDA, HNE | [54] |
RCT, parallel, double-blinded, Healthy males (n = 105) | 30 mg lycopene for 3 weeks | ↔ MDA | [61] | |
RCT, parallel, Postmenopausal females (n = 60) | Regular, lycopene-rich tomato juice (equivalent to 30 and 70 mg lycopene), 30 mg lycopene capsules for 6 months | ↓ MDA | [65] | |
RCT, crossover, double-blinded, Healthy subjects (n = 26) | Tomato-based drink for 26 days | ↔ 8-iso-PGF2α | [64] | |
Total antioxidant capability | ||||
Lutein | RCT, parallel, double-blinded, Healthy subjects (n = 117) | 10, 20 mg lutein for 12 weeks | ↑ TAOC | [38] |
Zeaxanthin | RCT, parallel, Metabolic syndrome patients (n = 50) | 14 g Goji berry for 45 days | ↑ TAOC | [37] |
Lycopene | RCT, parallel, Postmenopausal females (n = 60) | Regular juice, lycopene-rich tomato juice (equivalent to 30 and 70 mg lycopene), 30 mg lycopene capsules for 6 months | ↑ TAOC | [65] |
Carotenoid mixture | RCT, crossover, double-blinded, Healthy subjects (n = 31) | 4.4 mg lutein, 6.0 mg β-carotene, 1.4 mg α-carotene, 4.5 mg lycopene, 11.7 mg bixin and 2.2 mg paprika for 3 weeks | ↔ ORAC | [56] |
Antioxidant enzymes | ||||
Lutein | RCT, parallel, double-blinded, Healthy subjects (n = 117) | 10, 20 mg lutein for 12 weeks | ↔ SOD, GPx, CAT | [38] |
Zeaxanthin | RCT, parallel, Metabolic syndrome patients (n = 50) | 14 g Goji berry for 45 days | ↓ SOD ↑ CAT | [37] |
β-carotene | RCT, parallel, Healthy male workers exposed to lead (n = 82) | 10 mg β-carotene for 12 weeks | ↑ SOD, EC-SOD, CAT, G6PD ↓ GPx ↔ GR, GST | [60,62] |
Lycopene | RCT, parallel, Postmenopausal females (n = 60) | Regular, lycopene-rich tomato juice (equivalent to 30 and 70 mg lycopene), 30 mg lycopene capsules for 6 months | ↔ SOD, GPx, CAT | [65] |
RCT, parallel, double-blinded, Healthy males (n = 126) | 6, 15 mg lycopene for 8 weeks | ↑ SOD | [71] | |
DNA damage | ||||
Lutein | RCT, crossover, Healthy subjects (n = 8) | 15 mg lutein for 1 week | ↔ DNA tail intensity | [75] |
RCT, parallel, double-blinded, Postmenopausal females (n = 37) | 12 mg lutein for 56 days | ↓ DNA tail length | [74] | |
β-carotene | RCT, parallel, double-blinded, Postmenopausal females (n = 37) | 12 mg β-carotene for 56 days | ↓ DNA tail length | [74] |
RCT, crossover, Healthy subjects (n = 8) | 15 mg β-carotene for 1 week | ↓ DNA tail intensity | [75] | |
Lycopene | RCT, parallel, double-blinded, Postmenopausal females (n = 37) | 12 mg lycopene for 56 days | ↓ DNA tail length | [74] |
RCT, crossover, Healthy subjects (n = 8) | 15 mg lycopene for 1 week | ↓ DNA tail intensity | [75] | |
RCT, parallel, double-blinded, Healthy males (n = 105) | 30 mg lycopene for 3 weeks | ↔ 8-OHdG | [61] | |
Meta-analysis | Lycopene | ↓ DNA tail length | [55] | |
Carotenoid mixture | RCT, parallel, double-blinded, Postmenopausal females (n = 37) | 4 mg lutein, 4 mg β-carotene and 4 mg lycopene for 56 days | ↓ DNA tail length | [74] |
RCT, crossover, double-blinded, Healthy subjects (n = 31) | 4.4 mg lutein, 6.0 mg β-carotene, 1.4 mg α-carotene, 4.5 mg lycopene, 11.7 mg bixin and 2.2 mg paprika for 3 weeks | ↓ 8-OHdG: creatinine | [56] | |
Inflammatory Markers | ||||
Lutein/zeaxanthin | Meta-analysis | Lutein/zeaxanthin | ↓ CRP ↔ IL-6, TNF-α | [80] |
Astaxanthin | Meta-analysis | Astaxanthin | ↓ CRP ↔ IL-6, TNF-α | [80] |
β-cryptoxanthin | Meta-analysis | β-cryptoxanthin | ↓ CRP ↔ IL-6, TNF-α | [80] |
β-carotene | Meta-analysis | β-carotene | ↔ CRP, IL-6 | [80] |
Lycopene | Meta-analysis | Lycopene | ↓ IL-6 ↔ CRP, TNF-α | [80] |
Crocin | Meta-analysis | Crocin | ↔ CRP, IL-6, TNF-α | [80] |
Overall carotenoids | Meta-analysis | Overall carotenoids | ↓ CRP, IL-6 ↔ TNF-α | [80] |
Vascular Health Markers | ||||
Endothelial function | ||||
Zeaxanthin | RCT, parallel, double-blinded, Healthy subjects (n = 40) | 15 g Goji berry for 16 weeks | ↔ FMD | [85] |
Lycopene | Meta-analysis | Tomato | ↑ FMD | [40] |
RCT, parallel, double-blinded, Healthy males (n = 126) | 6, 15 mg lycopene for 8 weeks | ↑ RH-PAT | [71] | |
Arterial stiffness | ||||
β-cryptoxanthin | RCT, parallel, double-blinded, Healthy subjects (n = 117) | β-cryptoxanthin–rich satsuma mandarin juice for 12 weeks | ↔ PWV | [39] |
Astaxanthin | RCT, parallel, double-blinded, Healthy subjects (n = 58) | 12 mg astaxanthin for 12 months | ↔ PWV, AI | [91] |
Lycopene | RCT, parallel, double-blinded, CVD patients (n = 36), Healthy subjects (n = 36) | 7 mg lycopene for 2 months | ↔ PWV, AI | [52] |
RCT, parallel, single-blinded, Healthy subjects (n = 225) | Tomato or 10 mg lycopene capsules for 12 weeks | ↔ PWV | [53] | |
Vascular structure | ||||
Lutein | RCT, parallel, double-blinded, Subjects with subclinical atherosclerosis (n = 144) | 20 mg lutein for 12 months | ↓ IMT | [94] |
Zeaxanthin | RCT, parallel, double-blinded, Healthy subjects (n = 40) | 15 g Goji berry for 16 weeks | ↔ IMT | [85] |
Astaxanthin | RCT, parallel, double-blinded, Healthy subjects (n = 58) | 12 mg astaxanthin for 12 months | ↔ IMT | [91] |
Carotenoid mixture | RCT, parallel, double-blinded, Subjects with subclinical atherosclerosis (n = 144) | 20 mg lutein and 20 mg lycopene for 12 months | ↓ IMT | [94] |
3.5. Conflicting Reporting Results
4. Association between Circulating or Adipose Carotenoid Levels and CVDs
Carotenoids | Study Design | Subjects | Outcome | Main Results | References |
---|---|---|---|---|---|
α-carotene | Nested case–control study | Cases: 297 males with ischemic stroke; Control: 297 paired males | Ischemic stroke | An inverse association from the second to fifth quintile was found between the plasma α-carotene concentrations and the risk of ischemic stroke. | [18] |
Prospective cohort study | 5133 Japanese subjects aged 39–80 | CVD mortality | Higher serum concentrations of α-carotene were associated with lower risk of CVDs. | [95] | |
Prospective cohort study | 13,293 US subjects | CVD mortality | Higher serum concentrations of α-carotene were associated with lower risk of CVDs. | [96] | |
β-carotene | Prospective cohort study | 5133 Japanese subjects aged 39–80 | CVD mortality | Higher serum concentrations of β-carotene were associated with lower risk of CVDs. | [95] |
Nested case–control study | Cases: 123 subjects with MI; Control: 123 paired subjects | MI | An inverse association was found between the serum β-carotene concentrations and the risk of MI. | [98] | |
Case–control study | Cases: 662 subjects with acute MI; Control: 717 subjects | Acute MI | An inverse association was found between the concentrations of β-carotene in adipose tissue and the risk of acute MI when comparing the highest and the lowest quintiles. | [99] | |
Carotenes | Prospective cohort study | 2974 Basel working males | IHD mortality | Lower plasma concentrations of the carotenes were associated with higher risk of IHD. | [19] |
Lycopene | Prospective cohort study | 5133 Japanese subjects aged 39–80 | CVD mortality | Higher serum concentrations of lycopene were associated with lower risk of CVDs. | [95] |
Case–control study | Cases: 662 subjects with acute MI; Control: 717 subjects | Acute MI | Higher concentrations of lycopene in adipose tissue was associated with lower risk of acute MI. | [99] | |
Carotenoids | Prospective cohort study | 1899 males with hyperlipidemia, aged 40–59 | CHD | An inverse association was found between the serum carotenoid concentrations and the risk of CHD when comparing the highest and the lowest quartiles. | [97] |
5. Dietary Strategies for the Improvement of Carotenoid Bioavailability
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases (CVDs). 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 25 August 2021).
- Bloom, D.E.; Cafiero, E.; Jané-Llopis, E.; Abrahams-Gessel, S.; Bloom, L.R.; Fathima, S.; Feigl, A.B.; Gaziano, T.; Hamandi, A.; Mowafi, M. The Global Economic Burden of Noncommunicable Diseases; World Economic Forum: Cologny, Switzerland, 2011. [Google Scholar]
- Riccioni, G. Carotenoids and cardiovascular disease. Curr. Atheroscler. Rep. 2009, 11, 434–439. [Google Scholar] [CrossRef] [PubMed]
- D’Oria, R.; Schipani, R.; Leonardini, A.; Natalicchio, A.; Perrini, S.; Cignarelli, A.; Laviola, L.; Giorgino, F. The role of oxidative stress in cardiac disease: From physiological response to injury factor. Oxidative Med. Cell Longev. 2020, 2020, 5732956. [Google Scholar] [CrossRef]
- Heller, F.R.; Descamps, O.; Hondekijn, J.-C. LDL oxidation: Therapeutic perspectives. Atherosclerosis 1998, 137, S25–S31. [Google Scholar] [CrossRef]
- Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006, 83, 456S–460S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Houston Miller, N.; Hubbard, V.S.; Lee, I.-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2960–2984. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B. Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation 2006, 114, 82–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaulmann, A.; Bohn, T. Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 2014, 34, 907–929. [Google Scholar] [CrossRef] [PubMed]
- Mueller, L.; Boehm, V. Antioxidant Activity of β-Carotene Compounds in Different in Vitro Assays. Molecules 2011, 16, 1055–1069. [Google Scholar] [CrossRef] [Green Version]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Bohn, T. Bioavailability of non-provitamin A carotenoids. Curr. Nutr. Food Sci. 2008, 4, 240–258. [Google Scholar] [CrossRef]
- Seifried, H.E.; Anderson, D.E.; Fisher, E.I.; Milner, J.A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 2007, 18, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, T.; Virtamo, J.; Korhonen, P.; Albanes, D.; Pietinen, P. Intake of flavonoids, carotenoids, vitamins C and E, and risk of stroke in male smokers. Stroke 2000, 31, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Osganian, S.K.; Stampfer, M.J.; Rimm, E.; Spiegelman, D.; Manson, J.E.; Willett, W.C. Dietary carotenoids and risk of coronary artery disease in women. Am. J. Clin. Nutr. 2003, 77, 1390–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacques, P.F.; Lyass, A.; Massaro, J.M.; Vasan, R.S.; D’Agostino Sr, R.B. Relationship of lycopene intake and consumption of tomato products to incident CVD. Br. J. Nutr. 2013, 110, 545–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sesso, H.D.; Liu, S.; Gaziano, J.M.; Buring, J.E. Dietary Lycopene, Tomato-Based Food Products and Cardiovascular Disease in Women. J. Nutr. 2003, 133, 2336–2341. [Google Scholar] [CrossRef] [Green Version]
- Hak, A.E.; Ma, J.; Powell, C.B.; Campos, H.; Gaziano, J.M.; Willett, W.C.; Stampfer, M.J. Prospective study of plasma carotenoids and tocopherols in relation to risk of ischemic stroke. Stroke 2004, 35, 1584–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gey, K.; Stähelin, H.; Eichholzer, M. Poor plasma status of carotene and vitamin C is associated with higher mortality from ischemic heart disease and stroke Basel prospective study. Clin. Investig. 1993, 71, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, T.H.; Voutilainen, S.; NyyssoÈnen, K.; Lakka, T.A.; Sivenius, J.; Salonen, R.; Kaplan, G.A.; Salonen, J.T. Low serum lycopene concentration is associated with an excess incidence of acute coronary events and stroke: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2001, 85, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Sesso, H.D.; Buring, J.E.; Norkus, E.P.; Gaziano, J.M. Plasma lycopene, other carotenoids, and retinol and the risk of cardiovascular disease in women. Am. J. Clin. Nutr. 2004, 79, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Tavani, A.; Gallus, S.; Negri, E.; Parpinel, M.; La Vecchia, C. Dietary intake of carotenoids and retinol and the risk of acute myocardial infarction in Italy. Free Radic. Res. 2006, 40, 659–664. [Google Scholar] [CrossRef]
- Tavani, A.; Negri, E.; D’avanzo, B.; La Vecchia, C. Beta-carotene intake and risk of nonfatal acute myocardial infarction in women. Eur. J. Epidemiol. 1997, 13, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Klipstein-Grobusch, K.; Geleijnse, J.M.; den Breeijen, J.H.; Boeing, H.; Hofman, A.; Grobbee, D.E.; Witteman, J.C. Dietary antioxidants and risk of myocardial infarction in the elderly: The Rotterdam Study. Am. J. Clin. Nutr. 1999, 69, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daviglus, M.L.; Orencia, A.J.; Dyer, A.R.; Liu, K.; Morris, D.K.; Persky, V.; Chavez, N.; Goldberg, J.; Drum, M.; Shekelle, R.B.; et al. Dietary Vitamin C, Beta-Carotene and 30-Year Risk of Stroke: Results from the Western Electric Study. Neuroepidemiology 1997, 16, 69–77. [Google Scholar] [CrossRef]
- McQuillan, B.M.; Hung, J.; Beilby, J.P.; Nidorf, M.; Thompson, P.L. Antioxidant vitamins and the risk of carotid atherosclerosis: The perth carotid ultrasound disease assessment study (CUDAS). J. Am. Coll. Cardiol. 2001, 38, 1788–1794. [Google Scholar] [CrossRef] [Green Version]
- Pandey, D.K.; Shekelle, R.; Selwyn, B.J.; Tangney, C.; Stamler, J. Dietary vitamin C and beta-carotene and risk of death in middle-aged men. The Western Electric Study. Am. J. Epidemiol. 1995, 142, 1269–1278. [Google Scholar] [CrossRef]
- Knekt, P.; Reunanen, A.; Jävinen, R.; Seppänen, R.; Heliövaara, M.; Aromaa, A. Antioxidant Vitamin Intake and Coronary Mortality in a Longitudinal Population Study. Am. J. Epidemiol. 1994, 139, 1180–1189. [Google Scholar] [CrossRef]
- Kushi, L.H.; Folsom, A.R.; Prineas, R.J.; Mink, P.J.; Wu, Y.; Bostick, R.M. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N. Engl. J. Med. 1996, 334, 1156–1162. [Google Scholar] [CrossRef]
- Kritchevsky, S.B.; Tell, G.S.; Shimakawa, T.; Dennis, B.; Li, R.; Kohlmeier, L.; Steere, E.; Heiss, G. Provitamin A carotenoid intake and carotid artery plaques: The Atherosclerosis Risk in Communities Study. Am. J. Clin. Nutr. 1998, 68, 726–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahyoun, N.R.; Jacques, P.F.; Russell, R.M. Carotenoids, Vitamins C and E, and Mortality in an Eiderly Population. Am. J. Epidemiol. 1996, 144, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Itoh, H.; Kiriyama, H.; Kamon, T.; Fujiu, K.; Morita, K.; Michihata, N.; Jo, T.; Takeda, N.; Morita, H.; et al. Lipid Profile and Subsequent Cardiovascular Disease among Young Adults Aged <50 Years. Am. J. Cardiol. 2021, 142, 59–65. [Google Scholar]
- Orozco-Beltran, D.; Gil-Guillen, V.F.; Redon, J.; Martin-Moreno, J.M.; Pallares-Carratala, V.; Navarro-Perez, J.; Valls-Roca, F.; Sanchis-Domenech, C.; Fernandez-Gimenez, A.; Perez-Navarro, A. Lipid profile, cardiovascular disease and mortality in a Mediterranean high-risk population: The ESCARVAL-RISK study. PLoS ONE 2017, 12, e0186196. [Google Scholar]
- Dayimu, A.; Wang, C.; Li, J.; Fan, B.; Ji, X.; Zhang, T.; Xue, F. Trajectories of lipids profile and incident cardiovascular disease risk: A longitudinal cohort study. J. Am. Heart Assoc. 2019, 8, e013479. [Google Scholar] [CrossRef]
- Marston, N.A.; Giugliano, R.P.; Im, K.; Silverman, M.G.; O’Donoghue, M.L.; Wiviott, S.D.; Ference, B.A.; Sabatine, M.S. Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: A systematic review and meta-regression analysis of randomized controlled trials. Circulation 2019, 140, 1308–1317. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-R.; Zou, Z.-Y.; Xiao, X.; Huang, Y.-M.; Wang, X.; Lin, X.-M. Effects of lutein supplement on serum inflammatory cytokines, ApoE and lipid profiles in early atherosclerosis population. J. Atheroscler. Thromb. 2013, 20, 170–177. [Google Scholar] [CrossRef] [Green Version]
- De Souza Zanchet, M.Z.; Nardi, G.M.; de Oliveira Souza Bratti, L.; Filippin-Monteiro, F.B.; Locatelli, C. Lycium barbarum reduces abdominal fat and improves lipid profile and antioxidant status in patients with metabolic syndrome. Oxid. Med. Cell Longev. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-X.; Jiao, J.-H.; Li, Z.-Y.; Liu, R.-R.; Shi, Q.; Ma, L. Lutein supplementation reduces plasma lipid peroxidation and C-reactive protein in healthy nonsmokers. Atherosclerosis 2013, 227, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Sugiura, M.; Shibata, Y.; Ojima, T. Effect of β-cryptoxanthin–rich Satsuma mandarin juice supplementation on pulse wave velocity: A randomized controlled trial. J. Nutr. Intermed. Metab. 2017, 8, 8–13. [Google Scholar] [CrossRef]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.; Siervo, M.; Lara, J. Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis. Atherosclerosis 2017, 257, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Ried, K.; Fakler, P. Protective effect of lycopene on serum cholesterol and blood pressure: Meta-analyses of intervention trials. Maturitas 2011, 68, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Ursoniu, S.; Sahebkar, A.; Serban, M.-C.; Banach, M. Lipid profile and glucose changes after supplementation with astaxanthin: A systematic review and meta-analysis of randomized controlled trials. Arch. Med. Sci. 2015, 11, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reboldi, G.; Gentile, G.; Angeli, F.; Ambrosio, G.; Mancia, G.; Verdecchia, P. Effects of intensive blood pressure reduction on myocardial infarction and stroke in diabetes: A meta-analysis in 73 913 patients. J. Hypertens. 2011, 29, 1253–1269. [Google Scholar] [CrossRef] [PubMed]
- Wolak, T.; Sharoni, Y.; Levy, J.; Linnewiel-Hermoni, K.; Stepensky, D.; Paran, E. Effect of tomato nutrient complex on blood pressure: A double blind, randomized dose–response study. Nutrients 2019, 11, 950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Panth, N.; Paudel, K.R.; Parajuli, K. Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease. Adv. Med. 2016, 2016, 9152732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulthe, J.; Fagerberg, B.R. Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study). Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1162–1167. [Google Scholar] [CrossRef] [Green Version]
- Meisinger, C.; Baumert, J.; Khuseyinova, N.; Loewel, H.; Koenig, W. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation 2005, 112, 651–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holvoet, P.; Kritchevsky, S.B.; Tracy, R.P.; Mertens, A.; Rubin, S.M.; Butler, J.; Goodpaster, B.; Harris, T.B. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes 2004, 53, 1068–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, K.; Mokuno, H.; Matsunaga, E.; Miyazaki, T.; Sumiyoshi, K.; Miyauchi, K.; Daida, H. Circulating oxidized low-density lipoprotein is an independent predictor for cardiac event in patients with coronary artery disease. Atherosclerosis 2004, 174, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Gajendragadkar, P.R.; Hubsch, A.; Mäki-Petäjä, K.M.; Serg, M.; Wilkinson, I.B.; Cheriyan, J. Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: A randomised controlled trial. PLoS ONE 2014, 9, e99070. [Google Scholar] [CrossRef]
- Thies, F.; Masson, L.F.; Rudd, A.; Vaughan, N.; Tsang, C.; Brittenden, J.; Simpson, W.G.; Duthie, S.; Horgan, G.W.; Duthie, G. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 95, 1013–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaraj, S.; Mathur, S.; Basu, A.; Aung, H.H.; Vasu, V.T.; Meyers, S.; Jialal, I. A dose-response study on the effects of purified lycopene supplementation on biomarkers of oxidative stress. J. Am. Coll. Nutr. 2008, 27, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Song, Y.; Zhang, L. Effect of lycopene supplementation on oxidative stress: An exploratory systematic review and meta-analysis of randomized controlled trials. J. Med. Food. 2013, 16, 361–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiokias, S.; Gordon, M.H. Dietary supplementation with a natural carotenoid mixture decreases oxidative stress. Eur. J. Clin. Nutr. 2003, 57, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, T.; Hosoda, K.; Hirano, R.; Kurata, H.; Matsumoto, A.; Miki, W.; Kamiyama, M.; Itakura, H.; Yamamoto, S.; Kondo, K. Inhibition of low-density lipoprotein oxidation by astaxanthin. J. Atheroscler. Thromb. 2000, 7, 216–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishimoto, Y.; Yoshida, H.; Kondo, K. Potential anti-atherosclerotic properties of astaxanthin. Mar. Drugs. 2016, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Gaweł, S.; Wardas, M.; Niedworok, E.; Wardas, P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek. 2004, 57, 453–455. [Google Scholar] [PubMed]
- Kasperczyk, S.; Dobrakowski, M.; Kasperczyk, J.; Ostałowska, A.; Zalejska-Fiolka, J.; Birkner, E. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers. Toxicol. Appl. Pharmacol. 2014, 280, 36–41. [Google Scholar] [CrossRef]
- Van Breemen, R.B.; Sharifi, R.; Viana, M.; Pajkovic, N.; Zhu, D.; Yuan, L.; Yang, Y.; Bowen, P.E.; Stacewicz-Sapuntzakis, M. Antioxidant effects of lycopene in African American men with prostate cancer or benign prostate hyperplasia: A randomized, controlled trial. Cancer Prev. Res. 2011, 4, 711–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasperczyk, S.; Dobrakowski, M.; Kasperczyk, J.; Romuk, E.; Prokopowicz, A.; Birkner, E. The influence of β-carotene on homocysteine level and oxidative stress in lead-exposed workers. Med. Pr. 2014, 65, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toh, D.W.K.; Lee, W.Y.; Zhou, H.; Sutanto, C.N.; Lee, D.P.S.; Tan, D.; Kim, J.E. Wolfberry (Lycium barbarum) Consumption with a Healthy Dietary Pattern Lowers Oxidative Stress in Middle-Aged and Older Adults: A Randomized Controlled Trial. Antioxidants 2021, 10, 567. [Google Scholar] [CrossRef]
- Riso, P.; Visioli, F.; Grande, S.; Guarnieri, S.; Gardana, C.; Simonetti, P.; Porrini, M. Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J. Agric. Food Chem. 2006, 54, 2563–2566. [Google Scholar] [CrossRef] [PubMed]
- Mackinnon, E.; Rao, A.; Josse, R.; Rao, L. Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos. Int. 2011, 22, 1091–1101. [Google Scholar] [CrossRef]
- Doshi, S.B.; Agarwal, A. The role of oxidative stress in menopause. J. Midlife Health 2013, 4, 140–146. [Google Scholar] [PubMed]
- Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic. Biol. Med. 2000, 29, 1106–1114. [Google Scholar] [CrossRef]
- Fenkci, V.; Fenkci, S.; Yilmazer, M.; Serteser, M. Decreased total antioxidant status and increased oxidative stress in women with polycystic ovary syndrome may contribute to the risk of cardiovascular disease. Fertil. Steril. 2003, 80, 123–127. [Google Scholar] [CrossRef]
- Masi, S.; D’Aiuto, F.; Cooper, J.; Salpea, K.; Stephens, J.W.; Hurel, S.J.; Deanfield, J.E.; Humphries, S.E. Telomere length, antioxidant status and incidence of ischaemic heart disease in type 2 diabetes. Int. J. Cardiol. 2016, 216, 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, J.W.; Gable, D.R.; Hurel, S.J.; Miller, G.J.; Cooper, J.A.; Humphries, S.E. Increased plasma markers of oxidative stress are associated with coronary heart disease in males with diabetes mellitus and with 10-year risk in a prospective sample of males. Clin. Chem. 2006, 52, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Paik, J.K.; Kim, O.Y.; Park, H.W.; Lee, J.H.; Jang, Y.; Lee, J.H. Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men. Atherosclerosis 2011, 215, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Sunjog, K.; Kolarević, S.; Héberger, K.; Gačić, Z.; Knežević-Vukčević, J.; Vuković-Gačić, B.; Lenhardt, M. Comparison of comet assay parameters for estimation of genotoxicity by sum of ranking differences. Anal. Bioanal. Chem. 2013, 405, 4879–4885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, H.; Unoda, K.-I.; Ito, T.; Kitaoka, H.; Kimura, F.; Hanafusa, T. The Relation of Urinary 8-OHdG, A Marker of Oxidative Stress to DNA, and Clinical Outcomes for Ischemic Stroke. Open Neurol. J. 2012, 6, 51–57. [Google Scholar] [CrossRef]
- Zhao, X.; Aldini, G.; Johnson, E.J.; Rasmussen, H.; Kraemer, K.; Woolf, H.; Musaeus, N.; Krinsky, N.I.; Russell, R.M.; Yeum, K.-J. Modification of lymphocyte DNA damage by carotenoid supplementation in postmenopausal women. Am. J. Clin. Nutr. 2006, 83, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Torbergsen, A.C.; Collins, A.R. Recovery of human lymphocytes from oxidative DNA damage; the apparent enhancement of DNA repair by carotenoids is probably simply an antioxidant effect. Eur. J. Nutr. 2000, 39, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, S.M.; Naga Prasad, S.V. Tumor Necrosis Factor-α in Heart Failure: An Updated Review. Curr. Cardiol. Rep. 2018, 20, 117. [Google Scholar] [CrossRef] [PubMed]
- Popa, C.; Netea, M.G.; van Riel, P.L.C.M.; van der Meer, J.W.M.; Stalenhoef, A.F.H. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid. Res. 2007, 48, 751–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, C.C.; Smith, A.E.; Yarnell, J.W.; Rumley, A.; Ben-Shlomo, Y.; Lowe, G.D. The associations of interleukin-6 (IL-6) and downstream inflammatory markers with risk of cardiovascular disease: The Caerphilly Study. Atherosclerosis 2010, 209, 551–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ferranti, S.; Rifai, N. C-reactive protein and cardiovascular disease: A review of risk prediction and interventions. Clin. Chim. Acta 2002, 317, 1–15. [Google Scholar] [CrossRef]
- Hajizadeh-Sharafabad, F.; Zahabi, E.S.; Malekahmadi, M.; Zarrin, R.; Alizadeh, M. Carotenoids supplementation and inflammation: A systematic review and meta-analysis of randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2021, 1–17. [Google Scholar] [CrossRef]
- Sun, H.-J.; Wu, Z.-Y.; Nie, X.-W.; Bian, J.-S. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front. Pharmacol. 2020, 10, 1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, I.; Khan, G.A. Endothelial Dysfunction in Cardiovascular Diseases. In Basic and Clinical Understanding of Microcirculation; Intech Open: London, UK, 2020; Volume 10. [Google Scholar] [CrossRef] [Green Version]
- Kato, T. Which is the best method in clinical practice for assessing improvement in vascular endothelial function after successful smoking cessation—Flow-mediated dilation (FMD) or reactive hyperemic peripheral arterial tonometry (RH-PAT)? Hypertens. Res. 2021, 44, 120–121. [Google Scholar] [CrossRef]
- Xu, Y.; Arora, R.C.; Hiebert, B.M.; Lerner, B.; Szwajcer, A.; McDonald, K.; Rigatto, C.; Komenda, P.; Sood, M.M.; Tangri, N. Non-invasive endothelial function testing and the risk of adverse outcomes: A systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 736–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toh, D.W.K.; Xia, X.; Sutanto, C.N.; Low, J.H.M.; Poh, K.K.; Wang, J.-W.; Foo, R.S.-Y.; Kim, J.E. Enhancing the cardiovascular protective effects of a healthy dietary pattern with wolfberry (Lycium barbarum): A randomized controlled trial. Am. J. Clin. Nutr. 2021, 114, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Celermajer, D.S.; Sorensen, K.E.; Gooch, V.M.; Spiegelhalter, D.; Miller, O.; Sullivan, I.; Lloyd, J.; Deanfield, J. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992, 340, 1111–1115. [Google Scholar] [CrossRef]
- Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F. Recommendations for improving and standardizing vascular research on arterial stiffness: A scientific statement from the American Heart Association. Hypertension 2015, 66, 698–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, J.J.; Webb, D.J. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler. Thromb. Vasc.Biol. 2003, 23, 554–566. [Google Scholar] [CrossRef] [Green Version]
- Dijk, J.; Van Der Graaf, Y.; Grobbee, D.; Banga, J.; Bots, M. Increased arterial stiffness is independently related to cerebrovascular disease and aneurysms of the abdominal aorta: The Second Manifestations of Arterial Disease (SMART) Study. Stroke 2004, 35, 1642–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonarjee, V.V. Arterial stiffness: A prognostic marker in coronary heart disease. available methods and clinical application. Front. Cardiovasc. Med. 2018, 5, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coombes, J.S.; Sharman, J.E.; Fassett, R.G. Astaxanthin has no effect on arterial stiffness, oxidative stress, or inflammation in renal transplant recipients: A randomized controlled trial (the XANTHIN trial). Am. J. Clin. Nutr. 2016, 103, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Polak, J.F.; Pencina, M.J.; Pencina, K.M.; O’Donnell, C.J.; Wolf, P.A.; D’Agostino, R.B., Sr. Carotid-wall intima-media thickness and cardiovascular events. N. Engl. J. Med. 2011, 365, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, M.W.; Markus, H.S.; Bots, M.L.; Rosvall, M.; Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis. Circulation 2007, 115, 459–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Z.-Y.; Xu, X.-R.; Lin, X.-M.; Zhang, H.-B.; Xiao, X.; Ouyang, L.; Huang, Y.-M.; Wang, X.; Liu, Y.-Q. Effects of lutein and lycopene on carotid intima–media thickness in Chinese subjects with subclinical atherosclerosis: A randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 2014, 111, 474–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, Y.; Kurata, M.; Suzuki, K.; Hamajima, N.; Hishida, H.; Aoki, K. Cardiovascular disease mortality and serum carotenoid levels: A Japanese population-based follow-up study. J. Epidemiol. 2006, 16, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shardell, M.D.; Alley, D.E.; Hicks, G.E.; El-Kamary, S.S.; Miller, R.R.; Semba, R.D.; Ferrucci, L. Low-serum carotenoid concentrations and carotenoid interactions predict mortality in US adults: The Third National Health and Nutrition Examination Survey. Nutr. Res. 2011, 31, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.L.; Kritchevsky, S.B.; Davis, C.E. Serum Carotenoids and Coronary Heart Disease: The Lipid Research Clinics Coronary Primary Prevention Trial and Follow-up Study. JAMA 1994, 272, 1439–1441. [Google Scholar] [CrossRef]
- Street, D.A.; Comstock, G.W.; Salkeld, R.M.; Schüep, W.; Klag, M.J. Serum antioxidants and myocardial infarction. Are low levels of carotenoids and alpha-tocopherol risk factors for myocardial infarction? Circulation 1994, 90, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Kohlmeier, L.; Kark, J.D.; Gomez-Gracia, E.; Martin, B.C.; Steck, S.E.; Kardinaal, A.F.; Ringstad, J.; Thamm, M.; Masaev, V.; Riemersma, R. Lycopene and myocardial infarction risk in the EURAMIC Study. Am. J. Epidemiol. 1997, 146, 618–626. [Google Scholar] [CrossRef]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. Am. J. Clin. Nutr. 2018, 108, 1069–1091. [Google Scholar] [CrossRef]
- Desmarchelier, C.; Borel, P. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends Food Sci. Technol. 2017, 69, 270–280. [Google Scholar] [CrossRef] [Green Version]
- West, C.; Castenmiller, J. Quantification of the" SLAMENGHI" factors for carotenoid bioavailability and bioconversion. Int. J. Vitam. Nutr. 1998, 68, 371–377. [Google Scholar]
- Jeffery, J.L.; Turner, N.D.; King, S.R. Carotenoid bioaccessibility from nine raw carotenoid-storing fruits and vegetables using an in vitro model. J. Sci. Food Agric. 2012, 92, 2603–2610. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Roque, M.J.; de Ancos, B.; Sánchez-Vega, R.; Sánchez-Moreno, C.; Cano, M.P.; Elez-Martínez, P.; Martín-Belloso, O. Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages. Food Funct. 2016, 7, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, L.; Van Buggenhout, S.; Van Loey, A.M.; Hendrickx, M.E. Particle size reduction leading to cell wall rupture is more important for the β-carotene bioaccessibility of raw compared to thermally processed carrots. J. Agric. Food Chem. 2010, 58, 12769–12776. [Google Scholar] [CrossRef] [PubMed]
- Sentandreu, E.; Stinco, C.M.; Vicario, I.M.; Mapelli-Brahm, P.; Navarro, J.L.; Meléndez-Martínez, A.J. High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids. J. Clean Prod. 2020, 262, 121325. [Google Scholar] [CrossRef]
- González-Casado, S.; Martín-Belloso, O.; Elez-Martínez, P.; Soliva-Fortuny, R. Application of pulsed electric fields to tomato fruit for enhancing the bioaccessibility of carotenoids in derived products. Food Funct. 2018, 9, 2282–2289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumuhimbise, G.A.; Namutebi, A.; Muyonga, J.H. Microstructure and in vitro beta carotene bioaccessibility of heat processed orange fleshed sweet potato. Plant Foods Hum. Nutr. 2009, 64, 312–318. [Google Scholar] [CrossRef]
- Bengtsson, A.; Brackmann, C.; Enejder, A.; Alminger, M.L.; Svanberg, U. Effects of thermal processing on the in vitro bioaccessibility and microstructure of β-carotene in orange-fleshed sweet potato. J. Agric. Food Chem. 2010, 58, 11090–11096. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, L.; Colle, I.; Van Buggenhout, S.; Palmero, P.; Van Loey, A.; Hendrickx, M. Carotenoid bioaccessibility in fruit-and vegetable-based food products as affected by product (micro) structural characteristics and the presence of lipids: A review. Trends Food Sci. Technol. 2014, 38, 125–135. [Google Scholar] [CrossRef]
- Pan, Z.; Sun, Y.; Zhang, F.; Guo, X.; Liao, Z. Effect of thermal processing on carotenoids and folate changes in six varieties of sweet potato (Ipomoes batata L.). Foods 2019, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Palmero, P.; Lemmens, L.; Hendrickx, M.; Van Loey, A. Role of carotenoid type on the effect of thermal processing on bioaccessibility. Food Chem. 2014, 157, 275–282. [Google Scholar] [CrossRef]
- Colle, I.; Van Buggenhout, S.; Van Loey, A.; Hendrickx, M. High pressure homogenization followed by thermal processing of tomato pulp: Influence on microstructure and lycopene in vitro bioaccessibility. Food Res. Int. 2010, 43, 2193–2200. [Google Scholar] [CrossRef]
- Panozzo, A.; Lemmens, L.; Van Loey, A.; Manzocco, L.; Nicoli, M.C.; Hendrickx, M. Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: A case study on differently coloured tomatoes. Food Chem. 2013, 141, 4094–4100. [Google Scholar] [CrossRef]
- Lyu, Y.; Bi, J.; Chen, Q.; Wu, X.; Qiao, Y.; Hou, H.; Zhang, X. Bioaccessibility of carotenoids and antioxidant capacity of seed-used pumpkin byproducts powders as affected by particle size and corn oil during in vitro digestion process. Food Chem. 2021, 343, 128541. [Google Scholar] [CrossRef] [PubMed]
- Knockaert, G.; Lemmens, L.; Van Buggenhout, S.; Hendrickx, M.; Van Loey, A. Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. Food Chem. 2012, 133, 60–67. [Google Scholar] [CrossRef]
- González-Casado, S.; Martín-Belloso, O.; Elez-Martínez, P.; Soliva-Fortuny, R. In vitro bioaccessibility of colored carotenoids in tomato derivatives as affected by ripeness stage and the addition of different types of oil. J. Food Sci. 2018, 83, 1404–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, A.; Larsson Alminger, M.; Svanberg, U. In vitro bioaccessibility of β-carotene from heat-processed orange-fleshed sweet potato. J. Agric. Food Chem. 2009, 57, 9693–9698. [Google Scholar] [CrossRef]
- Yi, J.; Zhong, F.; Zhang, Y.; Yokoyama, W.; Zhao, L. Effects of lipids on in vitro release and cellular uptake of β-carotene in nanoemulsion-based delivery systems. J. Agric. Food Chem. 2015, 63, 10831–10837. [Google Scholar] [CrossRef] [PubMed]
- Failla, M.L.; Chitchumronchokchai, C.; Ferruzzi, M.G.; Goltz, S.R.; Campbell, W.W. Unsaturated fatty acids promote bioaccessibility and basolateral secretion of carotenoids and α-tocopherol by Caco-2 cells. Food Funct. 2014, 5, 1101–1112. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chem. 2012, 135, 1440–1447. [Google Scholar] [CrossRef]
- Arranz, S.; Martínez-Huélamo, M.; Vallverdu-Queralt, A.; Valderas-Martinez, P.; Illán, M.; Sacanella, E.; Escribano, E.; Estruch, R.; Lamuela-Raventos, R.M. Influence of olive oil on carotenoid absorption from tomato juice and effects on postprandial lipemia. Food Chem. 2015, 168, 203–210. [Google Scholar] [CrossRef]
- Brown, M.J.; Ferruzzi, M.G.; Nguyen, M.L.; Cooper, D.A.; Eldridge, A.L.; Schwartz, S.J.; White, W.S. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 2004, 80, 396–403. [Google Scholar] [CrossRef]
- White, W.S.; Zhou, Y.; Crane, A.; Dixon, P.; Quadt, F.; Flendrig, L.M. Modeling the dose effects of soybean oil in salad dressing on carotenoid and fat-soluble vitamin bioavailability in salad vegetables. Am. J. Clin. Nutr. 2017, 106, 1041–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goltz, S.R.; Campbell, W.W.; Chitchumroonchokchai, C.; Failla, M.L.; Ferruzzi, M.G. Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans. Mol. Nutr. Food Res. 2012, 56, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Gordon, S.L.; Ferruzzi, M.G.; Campbell, W.W. Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables. Am. J. Clin. Nutr. 2015, 102, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopec, R.E.; Cooperstone, J.L.; Schweiggert, R.M.; Young, G.S.; Harrison, E.H.; Francis, D.M.; Clinton, S.K.; Schwartz, S.J. Avocado consumption enhances human postprandial provitamin A absorption and conversion from a novel high–β-carotene tomato sauce and from carrots. J. Nutr. 2014, 144, 1158–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Goh, H.M.; Kim, J.E. The Roles of Carotenoid Consumption and Bioavailability in Cardiovascular Health. Antioxidants 2021, 10, 1978. https://doi.org/10.3390/antiox10121978
Yao Y, Goh HM, Kim JE. The Roles of Carotenoid Consumption and Bioavailability in Cardiovascular Health. Antioxidants. 2021; 10(12):1978. https://doi.org/10.3390/antiox10121978
Chicago/Turabian StyleYao, Yuanhang, Hongyi Manfred Goh, and Jung Eun Kim. 2021. "The Roles of Carotenoid Consumption and Bioavailability in Cardiovascular Health" Antioxidants 10, no. 12: 1978. https://doi.org/10.3390/antiox10121978
APA StyleYao, Y., Goh, H. M., & Kim, J. E. (2021). The Roles of Carotenoid Consumption and Bioavailability in Cardiovascular Health. Antioxidants, 10(12), 1978. https://doi.org/10.3390/antiox10121978