Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic and Flavonoid Contents
2.2. Antioxidant Activity
2.3. Effects of Cell Viability
2.4. Identification and Quantification of Phenolic Compounds
3. Materials and Methods
3.1. Materials and Reagents
3.2. Plant Material
3.3. Extraction of Phenolic Compounds
3.4. Determination of Total Phenolic Content (TP)
3.5. Determination of Total Flavonoid Content (TF)
3.6. Determination of Antioxidant Activity
3.6.1. ABTS+ Scavenging Activity
3.6.2. Determination of Copper Ion Reduction (CUPRAC Method)
3.6.3. Chelating Ability of Ferrous Ion (ChA)
3.6.4. Superoxide Radical Scavenging Activity Assay (O2•−)
3.6.5. Hydroxyl Radical Scavenging Activity Assay (OH−)
3.7. MTS Cell Viability Assay
3.8. Determination of Polyphenols Profile by UPLC-Q-TOF-MS
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu Taha, N. Utility and importance of walnut, Juglans regia Linn: A review. Afr. J. Microbiol. Res. 2011, 5, 5796–5805. [Google Scholar] [CrossRef]
- Raja, G.; Shaker, I.A.; Sailaja, I.; Swaminathan, R.; Basha, S.S.; Sureshbabu, K. Study of antioxidant potential in leaves, stems, nuts of Juglans regia L. Int. J. Bioassays 2012, 1, 79. [Google Scholar] [CrossRef] [Green Version]
- Shah, U.N.; Mir, J.I.; Ahmed, N.; Jan, S.; Fazili, K.M. Bioefficacy potential of different genotypes of walnut Juglans regia L. J. Food Sci. Technol. 2018, 55, 605–618. [Google Scholar] [CrossRef]
- Vieira, V.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Coutinho, J.A.P.; Ferreira, I.C.F.R. Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food Chem. Toxicol. 2020, 137, 111189. [Google Scholar] [CrossRef]
- Cheniany, M.; Ebrahimzadeh, H.; Vahdati, K.; Preece, J.E.; Masoudinejad, A.; Mirmasoumi, M. Content of different groups of phenolic compounds in microshoots of Juglans regia cultivars and studies on antioxidant activity. Acta Physiol. Plant. 2013, 35, 443–450. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G.; Jankowska, A. Antioxidant properties, profile of polyphenolic compounds and tocopherol content in various walnut (Juglans regia L.) varieties. Eur. Food Res. Technol. 2019, 245, 607–616. [Google Scholar] [CrossRef]
- Abdallah, I.B.; Tlili, N.; Martinez-Force, E.; Rubio, A.G.P.; Perez-Camino, M.C.; Albouchi, A.; Boukhchina, S. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.-V.N.; Prabhakar, S. Techniques and modeling of polyphenol extraction from food: A review. Environ. Chem. Lett. 2021, 19, 3409–3443. [Google Scholar] [CrossRef]
- Mert, C. Anther and Pollen Morphology and Anatomy in Walnut (Juglans regia L.). HortScience 2010, 45, 757–760. [Google Scholar] [CrossRef] [Green Version]
- Acarsoy Bilgin, N. Morphological Characterization of Pollen in Some Varieties of Walnut (Juglans regia). Int. J. Fruit Sci. 2022, 22, 471–480. [Google Scholar] [CrossRef]
- Milatović, D.; Nikolić, D.; Janković, S.; Janković, D.; Stanković, J. Morphological characteristics of male reproductive organs in some walnut (Juglans regia L.) genotypes. Sci. Hortic. 2020, 272, 109587. [Google Scholar] [CrossRef]
- Okatan, V.; Bulduk, I.; Kaki, B.; Gundesli, M.A.; Usanmaz, S.; Alas, T.; Hajizadeh, H.S. Identification and quantification of biochemical composition and antioxidant activity of walnut pollens. Pak. J. Bot. 2021, 53, 1–10. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Chemical Composition and Antioxidant Activity of Walnut Pollen Samples. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, R.; Dehganiasl, M.; Heidari, R.; Rezaee, R.; Darvishzadeh, R. Genotype impact on antioxidant potential of hull and kernel in Persian walnut (Juglans regia L.). Int. Food Res. J. 2018, 25, 35–42. [Google Scholar]
- Jabli, M.; Sebeia, N.; Boulares, M.; Faidi, K. Chemical analysis of the characteristics of Tunisian Juglans regia L. fractions: Antibacterial potential, gas chromatography–mass spectroscopy and a full investigation of their dyeing properties. Ind. Crops Prod. 2017, 108, 690–699. [Google Scholar] [CrossRef]
- Ogunmoyole, T. In vitro antioxidant properties of aqueous and ethanolic extracts of walnut (Juglans regia). J. Med. Plants Res. 2011, 5, 6839–6848. [Google Scholar] [CrossRef]
- Ghasemi, K.; Ghasemi, Y.; Ehteshamnia, A.; Nabavi, S.M.; Nabavi, S.F.; Ebrahimzadeh, M.; Pourmorad, F. Influence of environmental factors on antioxidant activity, phenol and flavonoids contents of walnut (Juglans regia L.) green husks. J. Med. Plants Res. 2011, 5, 1128–1133. [Google Scholar]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules 2019, 24, 2133. [Google Scholar] [CrossRef] [Green Version]
- Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap–Orbitrap mass spectrometry. Food Chem. 2014, 152, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Rywaniak, J.; Luzak, B.; Podsedek, A.; Dudzinska, D.; Rozalski, M.; Watala, C. Comparison of cytotoxic and anti-platelet activities of polyphenolic extracts from Arnica montana flowers and Juglans regia husks. Platelets 2015, 26, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Agulló, A.; Castro-Iglesias, A.; Freire, M.S.; González-Álvarez, J. Optimization of the Extraction of Bioactive Compounds from Walnut (Juglans major 209 x Juglans regia) Leaves: Antioxidant Capacity and Phenolic Profile. Antioxidants 2019, 9, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Chen, C.; Zhao, S.; Ge, F.; Liu, D. Effect of Solvents on the Antioxidant Activity of Walnut (Juglans regia L.) Shell Extracts. J. Food Nutr. Res. 2014, 2, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Żurek, N.; Pawłowska, A.; Pycia, K.; Grabek-Lejko, D.; Kapusta, I.T. Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. Molecules 2022, 27, 2762. [Google Scholar] [CrossRef]
- Salimi, M.; Majd, A.; Sepahdar, Z.; Azadmanesh, K.; Irian, S.; Ardestaniyan, M.H.; Rastkari, N. Cytotoxicity effects of various Juglans regia (walnut) leaf extracts in human cancer cell lines. Pharm. Biol. 2012, 50, 1416–1422. [Google Scholar] [CrossRef]
- Negi, A.S.; Luqman, S.; Srivastava, S.; Krishna, V.; Gupta, N.; Darokar, M.P. Antiproliferative and antioxidant activities of Juglans regia fruit extracts. Pharm. Biol. 2011, 49, 669–673. [Google Scholar] [CrossRef]
- Carvalho, M.; Ferreira, P.J.; Mendes, V.S.; Silva, R.; Pereira, J.A.; Jerónimo, C.; Silva, B.M. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem. Toxicol. 2010, 48, 441–447. [Google Scholar] [CrossRef]
- Catanzaro, E.; Greco, G.; Potenza, L.; Calcabrini, C.; Fimognari, C. Natural Products to Fight Cancer: A Focus on Juglans regia. Toxins 2018, 10, 469. [Google Scholar] [CrossRef] [Green Version]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The systematic identification of flavonoids. J. Mol. Struct. 1971, 10, 320. [Google Scholar] [CrossRef]
- Fraisse, D.; Degerine-Roussel, A.; Bred, A.; Ndoye, S.; Vivier, M.; Felgines, C.; Senejoux, F. A Novel HPLC Method for Direct Detection of Nitric Oxide Scavengers from Complex Plant Matrices and Its Application to Aloysia triphylla Leaves. Molecules 2018, 23, 1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-G.; Kan, H.; Chen, S.-X.; Thakur, K.; Wang, S.; Zhang, J.-G.; Wei, Z.-J. Comparison of phenolic compounds extracted from Diaphragma juglandis fructus, walnut pellicle, and flowers of Juglans regia using methanol, ultrasonic wave, and enzyme assisted-extraction. Food Chem. 2020, 321, 126672. [Google Scholar] [CrossRef] [PubMed]
- Meurer, B.; Wray, V.; Grotjahn, L.; Wiermann, R.; Strack, D. Hydroxycinnamic acid spermidine amides from pollen of Corylus avellana L. Phytochemistry 1986, 25, 433–435. [Google Scholar] [CrossRef]
- Pawlowska, A.M.; Oleszek, W.; Braca, A. Quali-quantitative Analyses of Flavonoids of Morus nigra L. and Morus alba L. (Moraceae) Fruits. J. Agric. Food Chem. 2008, 56, 3377–3380. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 2019, 24, 2936. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferreira, I.C.F.R.; Estevinho, L. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol. 2007, 45, 2287–2295. [Google Scholar] [CrossRef]
- Stampar, F.; Solar, A.; Hudina, M.; Veberic, R.; Colaric, M. Traditional walnut liqueur—Cocktail of phenolics. Food Chem. 2006, 95, 627–631. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 2020, 10, 3. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Robak, J.; Gryglewski, R.J. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 1988, 37, 837–841. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C.; Aruoma, O.I. The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar] [CrossRef]
- Żurek, N.; Karatsai, O.; Rędowicz, M.J.; Kapusta, I.T. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021, 26, 2656. [Google Scholar] [CrossRef]
TP | TF | |
---|---|---|
(mg GAE/g dw) | (mg QE/g dw) | |
Pollen of J. regia flowers | 138.40 ± 0.27 | 198.77 ± 0.20 |
ABTS | CUPRAC | ChA | O2•− | OH− | |
---|---|---|---|---|---|
(mmol TE/g dw) | IC50 (µg/mL) | ||||
Pollen of J. regia flowers | 3.35 ± 0.03 | 0.32 ± 0.01 | 335.01 ± 5.28 | 459.31 ± 7.26 | 92.89 ± 0.04 |
No. | Cell Line | IC50 (µg/mL) | ||
---|---|---|---|---|
Time | ||||
24 h | 48 h | 72 h | ||
1 | MCF-7 | 156.73 ± 1.25 | 140.98 ± 4.05 | 174.13 ± 0.65 |
2 | DLD-1 | 158.61 ± 2.49 | 146.54 ± 0.78 | 140.65 ± 3.38 |
3 | Caco-2 | 222.25 ± 0.98 | 213.64 ± 0.56 | 249.76 ± 4.01 |
4 | U87MG | 232.31 ± 3.03 | 225.58 ± 1.30 | 242.12 ± 4.23 |
5 | U251MG | 568.32 ± 3.41 | 612.50 ± 1.11 | 710.51 ± 2.05 |
6 | SK-Mel-29 | 570.51 ± 0.76 | 682.67 ± 0.93 | 689.65 ± 2.84 |
7 | CCD841 CoN | 549.13 ± 2.40 | 566.51 ± 3.09 | 572.12 ± 0.40 |
No. | Compound | tR | λmax | [M-H]− m/z | Amount | |
---|---|---|---|---|---|---|
min | nm | MS | MS/MS | mg/100 g dw | ||
1 | Quercetin 3-O-rutinoside-7-O-glucoside | 2.83 | 255, 350 | 771 | 609, 301 | 0.17 ± 0.00 a |
2 | Chlorogenic acid * | 3.03 | 299 sh, 327 | 353 | 191, 179 | 0.30 ± 0.01 a |
3 | Juglanoside B | 3.43 | 257, 317 | 339 | 175 | 1.58 ± 0.03 abc |
4 | 6′-O-acetyl Juglanoside D | 3.60 | 258, 348 | 401 | 355, 175 | 0.66 ± 0.01 ab |
5 | 6′-O-acetyl Juglanoside A | 3.70 | 258, 338 | 369 | 323 | 0.82 ± 0.03 ab |
6 | Juglanoside D | 3.76 | 262, 355 | 355 | 175 | 0.65 ± 0.03 ab |
7 | Quercetin 3,7-O-diglucoside | 3.84 | 254, 345 | 625 | 463, 301 | 7.36 ± 0.09 f |
8 | Quercetin 3-O-sophoroside * | 3.89 | 255, 352 | 625 | 301 | 278.8 ± 1.26 j |
9 | Quercetin 3-O-glucoside-xyloside | 4.25 | 255, 352 | 595 | 301 | 4.95 ± 0.22 e |
10 | N-caffeoyl-N-coumaroyl spermidine | 4.30 | 299 sh, 312 | 452 | 289, 135 | 6.80 ± 0.27 f |
11 | Kaempferol 3-O-sophoroside * | 4.36 | 264, 347 | 609 | 285 | 26.43 ± 1.00 i |
12 | Kaempferol 3,7-O-diglucoside | 4.49 | 262, 338 | 609 | 447, 285 | 0.94 ± 0.01 ab |
13 | N,N-dicaffeoyl spermidine | 4.58 | 299 sh, 312 | 451 | 271 | 1.91 ± 0.03 bc |
14 | Quercetin 3-O-glucoside * | 4.64 | 255, 353 | 463 | 301 | 19.78 ± 0.31 h |
15 | 4′,5,7-Trihydroxy-3,6-dimethoxyflavone-7-O-beta-D-glucoside | 4.79 | 262, 331 | 491 | 329 | 27.37 ± 1.73 i |
16 | Quercetin 3-O-pentoside | 5.05 | 255, 353 | 433 | 301 | 1.13 ± 0.03 ab |
17 | N,N-dicoumarylo spermidine | 5.10 | 297 | 463 | 273 | 7.49 ± 0.70 f |
18 | Quercetin 3-O-pentoside | 5.16 | 255, 353 | 433 | 301 | 4.09 ± 0.32 d |
19 | Kaempferol 3-O-glucoside * | 5.18 | 262, 350 | 447 | 285 | 2.85 ± 0.22 cd |
20 | Quercetin 3-O-pentoside | 5.22 | 255, 355 | 433 | 301 | 1.22 ± 0.02 ab |
21 | Quercetin 3-O-rhamnoside * | 5.41 | 255, 348 | 447 | 301 | 11.91 ± 0.39 g |
22 | Kaempferol 3-O-rhamnoside | 6.12 | 262, 350 | 431 | 285 | 0.28 ± 0.00 a |
23 | Unidentified caffeic derivative | 6.34 | 299 sh, 321 | 501 | 179 | 0.61 ± 0.02 ab |
24 | Kaempferol 3-O-acetyl-glucoside | 6.43 | 262, 338 | 489 | 447, 285 | 0.18 ± 0.01 a |
Total | 408.3 ± 7.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żurek, N.; Pycia, K.; Pawłowska, A.; Kapusta, I.T. Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen. Antioxidants 2022, 11, 2046. https://doi.org/10.3390/antiox11102046
Żurek N, Pycia K, Pawłowska A, Kapusta IT. Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen. Antioxidants. 2022; 11(10):2046. https://doi.org/10.3390/antiox11102046
Chicago/Turabian StyleŻurek, Natalia, Karolina Pycia, Agata Pawłowska, and Ireneusz Tomasz Kapusta. 2022. "Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen" Antioxidants 11, no. 10: 2046. https://doi.org/10.3390/antiox11102046
APA StyleŻurek, N., Pycia, K., Pawłowska, A., & Kapusta, I. T. (2022). Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen. Antioxidants, 11(10), 2046. https://doi.org/10.3390/antiox11102046