The Involvement of Oxidative Stress in Psoriasis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Markers of Oxidative Stress in Patients with Psoriasis
Associations of Oxidative Stress Markers with the Duration and Severity of Psoriasis
3.2. Polymorphisms of Genes Encoding Markers or Enzymes of Oxidative Stress in Psoriasis
3.3. The Effect of Anti-Psoriasis Therapy on Oxidative Stress Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, R.; Symmons, D.P.M.; Griffiths, C.E.M.; Ashcroft, D.M.; Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team. Global Epidemiology of Psoriasis: A Systematic Review of Incidence and Prevalence. J. Investig. Dermatol. 2013, 133, 377–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, R.; Chugh, S.; Bansal, S. General measures and quality of life issues in psoriasis. Indian Dermatol. Online J. 2016, 7, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.D.F.S.P.D.; Rocha, B.D.O.; Duarte, G.V. Psoriasis: Classical and emerging comorbidities. An. Bras. Dermatol. 2015, 90, 9–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamiya, K.; Kishimoto, M.; Sugai, J.; Komine, M.; Ohtsuki, M. Risk Factors for the Development of Psoriasis. Int. J. Mol. Sci. 2019, 20, 4347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleńkowska, J.; Gabig-Cimińska, M.; Mozolewski, P. Oxidative Stress as an Important Contributor to the Pathogenesis of Pso-riasis. Int. J. Mol. Sci. 2020, 21, 6206. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Poljšak, B.; Dahmane, R. Free Radicals and Extrinsic Skin Aging. Dermatol. Res. Pract. 2012, 2012, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Rodriguez, H. Free Radical-Induced Damage to DNA: Mechanisms and Measurement. Free Radic. Biol. Med. 2002, 32, 1102–1115. [Google Scholar] [CrossRef]
- Bickers, D.R.; Athar, M. Oxidative Stress in the Pathogenesis of Skin Disease. J. Investig. Dermatol. 2006, 126, 2565–2575. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological Index for Non-Randomized Studies (Minors): Development and Validation of a New Instrument: Methodological Index for Non-Randomized Studies. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.N.; Fàbregues, S.; Bartlett, G.; Boardman, F.; Cargo, M.; Dagenais, P.; Gagnon, M.-P.; Griffiths, F.; Nicolau, B.; O’Cathain, A.; et al. The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. Educ. Inf. 2018, 34, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Kirmit, A.; Kader, S.; Aksoy, M.; Bal, C.; Nural, C.; Aslan, O. Trace elements and oxidative stress status in patients with psoriasis. Adv. Dermatol. Allergol. 2020, 37, 333–339. [Google Scholar] [CrossRef]
- Oszukowska, M.; Kozłowska, M.; Kaszuba, A. Paraoxonase-1 and other factors related to oxidative stress in psoriasis. Adv. Dermatol. Allergol. 2020, 37, 92–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skutnik-Radziszewska, A.; Maciejczyk, M.; Fejfer, K.; Krahel, J.; Flisiak, I.; Kołodziej, U.; Zalewska, A. Salivary Antioxidants and Oxidative Stress in Psoriatic Patients: Can Salivary Total Oxidant Status and Oxidative Status Index Be a Plaque Psoriasis Biomarker? Oxid. Med. Cell. Longev. 2020, 2020, 9086024. [Google Scholar] [CrossRef] [Green Version]
- Hashemy, S.I.; Kiafar, B.; Binabaj, M.M.; Jafarian, A.H.; Khazan, Z. The Relationship between Tissue Thioredoxin Reductase Activity and the Psoriasis Area and Severity Index. Indian J. Dermatol. 2020, 65, 29–32. [Google Scholar] [CrossRef]
- Skoie, I.M.; Dalen, I.; Omdal, R.; Jonsson, G. Malondialdehyde and advanced oxidation protein products are not increased in psoriasis: A controlled study. Arch. Dermatol. Res. 2019, 311, 299–308. [Google Scholar] [CrossRef]
- Kızılyel, O.; Akdeniz, N.; Metin, M.S.; Elmas, Ö.F. Investigation of Oxidant and Antioxidant Levels in Patients with Psoriasis. Turk. J. Med. Sci. 2019, 49, 1085–1088. [Google Scholar] [CrossRef]
- Ergun, T.; Yazici, V.; Yavuz, D.; Seckin-Gencosmanoglu, D.; Ozen, G.; Salman, A.; Direskeneli, H.; Inanc, N. Advanced Gly-cation End Products, a Potential Link between Psoriasis and Cardiovascular Disease: A Case-Control Study. Indian J. Dermatol. 2019, 64, 201–206. [Google Scholar]
- Wójcik, P.; Gęgotek, A.; Wroński, A.; Jastrząb, A.; Żebrowska, A.; Skrzydlewska, E. Effect of redox imbalance on protein modifications in lymphocytes of psoriatic patients. J. Biochem. 2019, 167, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, B.; Mansouri, P.; Doustimotlagh, A.H.; Izad, M. Redox imbalance and IL-17 responses in memory CD4+ T cells from patients with psoriasis. Scand. J. Immunol. 2018, 89, e12730. [Google Scholar] [CrossRef] [PubMed]
- Husni, M.E.; Tang, W.H.W.; Lucke, M.; Chandrasekharan, U.M.; Ms, D.M.B.; Hazen, S.L. Correlation of High-Density Lipoprotein-Associated Paraoxonase 1 Activity with Systemic Inflammation, Disease Activity, and Cardiovascular Risk Factors in Psoriatic Disease. Arthritis Rheumatol. 2018, 70, 1240–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haberka, M.; Bańska-Kisiel, K.; Bergler-Czop, B.; Biedroń, M.; Brzezińska-Wcisło, L.; Okopień, B.; Gąsior, Z. Mild to Moderate Psoriasis Is Associated with Oxidative Stress, Subclinical Atherosclerosis, and Endothelial Dysfunction. Pol. Arch. Intern. Med. 2018, 128, 434–439. [Google Scholar] [PubMed]
- Ambrożewicz, E.; Wójcik, P.; Wroński, A.; Łuczaj, W.; Jastrząb, A.; Žarković, N.; Skrzydlewska, E. Pathophysiological Alter-ations of Redox Signaling and Endocannabinoid System in Granulocytes and Plasma of Psoriatic Patients. Cells 2018, 7, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Rifaie, A.-A.A.; Sabry, D.; Doss, R.W.; Kamal, M.A.; El Hassib, D.M.A. Heme oxygenase and iron status in exosomes of psoriasis patients. Arch. Dermatol. Res. 2018, 310, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.; Asha, K.; Sharma, S.B.; Arora, V.K.; Aggarwal, A. Dyslipidaemia & oxidative stress in patients of psoriasis: Emerging cardiovascular risk factors. Indian J. Med. Res. 2017, 146, 708–713. [Google Scholar] [CrossRef]
- Emre, S.; Demirseren, D.D.; Alisik, M.; Aktas, A.; Neselioglu, S.; Erel, O. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis. Cutan. Ocul. Toxicol. 2017, 36, 393–396. [Google Scholar] [CrossRef]
- Papagrigoraki, A.; Giglio, M.; Cosma, C.; Maurelli, M.; Girolomoni, G.; Lapolla, A. Advanced Glycation End Products are Increased in the Skin and Blood of Patients with Severe Psoriasis. Acta Derm. Venereol. 2017, 97, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Shahidi-Dadras, M.; Namazi, N.; Younespour, S. Comparative Analysis of Serum Copper, Iron, Ceruloplasmin, and Trans-ferrin Levels in Mild and Severe Psoriasis Vulgaris in Iranian Patients. Indian Dermatol. Online J. 2017, 8, 250–253. [Google Scholar]
- Bakry, O.A.; El Hefnawy, S.; Mariee, A.H.; El Gendy, Y. Urinary biopyrrins: A new marker of oxidative stress in psoriasis. Indian J. Dermatol. 2016, 61, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Sunitha, S.; Rajappa, M.; Thappa, D.M.; Chandrashekar, L.; Munisamy, M.; Revathy, G. Is the Ratio of Antibodies Against Oxidized LDL to Oxidized LDL an Indicator of Cardiovascular Risk in Psoriasis? Oman Med. J. 2016, 31, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Dilek, N.; Dilek, A.R.; Taşkın, Y.; Erkinüresin, T.; Yalçın, Ö.; Saral, Y. Contribution of myeloperoxidase and inducible nitric oxide synthase to pathogenesis of psoriasis. Adv. Dermatol. Allergol. 2016, 33, 435–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazici, C.; Köse, K.; Utaş, S.; Tanrikulu, E.; Taşlidere, N. A Novel Approach in Psoriasis: First Usage of Known Protein Oxi-dation Markers to Prove Oxidative Stress. Arch. Derm. Res. 2016, 308, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.-X.; Chen, J.-K.; Hong, Y.-Y.; Zhou, R.; Zhou, D.-M.; Sun, L.-Y.; Qin, W.-L.; Wang, T.-C. Relationship between the Serum Total Bilirubin and Inflammation in Patients with Psoriasis Vulgaris: Relationship between the Serum Total Bilirubin and Inflammation. J. Clin. Lab. Anal. 2016, 30, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Makavos, G.; Papadavid, E.; Varoudi, M.; Andreadou, I.; Gravanis, K.; Theodoropoulos, K.; Pavlidis, G.; Tri-antafyllidi, H.; Parissis, J.; et al. Similarities in Coronary Function and Myocardial De-formation between Psoriasis and Coronary Artery Disease: The Role of Oxidative Stress and Inflammation. Can. J. Cardiol. 2015, 31, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Sürücü, H.A.; Aksoy, N.; Ozgöztas, O.; Sezen, H.; Yesilova, Y.; Turan, E. Prolidase Activity in Chronic Plaque Psoriasis Pa-tients. Postepy Dermatol. Alergol. 2015, 32, 82–87. [Google Scholar] [CrossRef]
- Chandrashekar, L.; Kumari, G.R.K.; Rajappa, M.; Revathy, G.; Munisamy, M.; Thappa, D. 25-hydroxy vitamin D and ischaemia-modified albumin levels in psoriasis and their association with disease severity. Br. J. Biomed. Sci. 2015, 72, 56–60. [Google Scholar] [CrossRef]
- Nemati, H.; Khodarahmi, R.; Sadeghi, M.; Ebrahimi, A.; Rezaei, M.; Vaisi-Raygani, A. Antioxidant Status in Patients with Psoriasis: Antioxidant in Patients with Psoriasis. Cell Biochem. Funct. 2014, 32, 268–273. [Google Scholar]
- Pujari, V.M.; Ireddy, S.; Itagi, I.; Kumar, H.S. The Serum Levels of Malondialdehyde, Vitamin e and Erythrocyte Catalase Activity in Psoriasis Patients. J. Clin. Diagn. Res. 2014, 8, CC14-6. [Google Scholar] [CrossRef]
- Balta, S.; Balta, I.; Mikhailidis, D.P.; Ozturk, C.; Demirkol, S.; Celik, T.; Kilic, S.; Demir, M.; Iyisoy, A. Bilirubin Levels and Their Association with Carotid Intima Media Thickness and High-Sensitivity C-reactive Protein in Patients with Psoriasis Vulgaris. Am. J. Clin. Dermatol. 2014, 15, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Meki, A.-R.M.A.; Al-Shobaili, H. Serum Vascular Endothelial Growth Factor, Transforming Growth Factor Β1, and Nitric Oxide Levels in Patients with Psoriasis Vulgaris: Their Correlation to Disease Severity: Biomarkers of Psoriasis Severity. J. Clin. Lab. Anal. 2014, 28, 496–501. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Qin, S.; Dang, L.; Song, G.; Yao, S.; Yang, N.; Li, Y. Psoriasis decreases the anti-oxidation and anti-inflammation properties of high-density lipoprotein. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2014, 1841, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Zilmer, K.; Leping, V.; Zilmer, M. Serum methylglyoxal level and its association with oxidative stress and disease severity in patients with psoriasis. Arch. Dermatol. Res. 2013, 305, 489–494. [Google Scholar] [CrossRef]
- Damasiewicz-Bodzek, A.; Wielkoszyński, T. Advanced Protein Glycation in Psoriasis: Protein Glycation in Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 172–179. [Google Scholar] [CrossRef]
- Emre, S.; Metin, A.; Demirseren, D.D.; Kilic, S.; Isikoglu, S.; Erel, O. The Relationship between Oxidative Stress, Smoking and the Clinical Severity of Psoriasis: Oxidative Stress and Smoking in Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2013, 27, e370–e375. [Google Scholar] [CrossRef]
- Gabr, S.A.; Al-Ghadir, A.H. Role of cellular oxidative stress and cytochrome c in the pathogenesis of psoriasis. Arch. Dermatol. Res. 2012, 304, 451–457. [Google Scholar] [CrossRef]
- Ozdemir, M.; Kiyici, A.; Balevi, A.; Mevlitoğlu, I.; Peru, C. Assessment of Ischaemia-Modified Albumin Level in Patients with Psoriasis: Psoriasis and Ischaemia-Modified Albumin. Clin. Exp. Dermatol. 2012, 37, 610–614. [Google Scholar] [CrossRef]
- Lima, X.T.; Kimball, A.B. Skin Carotenoid Levels in Adult Patients with Psoriasis: Skin Carotenoid Levels in Adult Patients with Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 945–949. [Google Scholar] [CrossRef]
- Usta, M.; Turan, E.; Aral, H.; Inal, B.B.; Gurel, M.S.; Guvenen, G. Serum paraoxonase-1 activities and oxidative status in patients with plaque-type psoriasis with/without metabolic syndrome. J. Clin. Lab. Anal. 2011, 25, 289–295. [Google Scholar] [CrossRef]
- Ferretti, G.; Bacchetti, T.; Campanati, A.; Simonetti, O.; Liberati, G.; Offidani, A. Correlation between Lipoprotein(a) and Lipid Peroxidation in Psoriasis: Role of the Enzyme Paraoxonase-1: Lp(a) and Paraoxonase-1 in Psoriasis. Br. J. Dermatol. 2012, 166, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Sikar Aktürk, A.; Özdoğan, H.K.; Bayramgürler, D.; Çekmen, M.B.; Bilen, N.; Kıran, R. Nitric Oxide and Malondialdehyde Levels in Plasma and Tissue of Psoriasis Patients: Nitric Oxide and Malondialdehyde Levels in Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Basavaraj, K.H.; Vasu Devaraju, P.; Rao, K.S. Studies on Serum 8-Hydroxy Guanosine (8-OHdG) as Reliable Biomarker for Psoriasis: Biomarker in Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 655–657. [Google Scholar] [CrossRef] [PubMed]
- Kadam, D.P.; Suryakar, A.N.; Ankush, R.D.; Kadam, C.Y.; Deshpande, K.H. Role of Oxidative Stress in Various Stages of Psoriasis. Indian J. Clin. Biochem. 2010, 25, 388–392. [Google Scholar] [CrossRef] [Green Version]
- Abeyakirthi, S.; Mowbray, M.; Bredenkamp, N.; van Overloop, L.; Declercq, L.; Davis, P.J.; Matsui, M.S.; Weller, R.B. Arginase Is Overactive in Psoriatic Skin: Arginase Is Overactive in Psoriatic Skin. Br. J. Dermatol. 2010, 163, 193–196. [Google Scholar] [CrossRef]
- Hashemi, M.; Mehrabifar, H.; Daliri, M.; Ghavami, S. Adenosine deaminase activity, trypsin inhibitory capacity and total antioxidant capacity in psoriasis. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 329–334. [Google Scholar] [CrossRef]
- Nakai, K.; Yoneda, K.; Maeda, R.; Munehiro, A.; Fujita, N.; Yokoi, I.; Moriue, J.; Moriue, T.; Kosaka, H.; Kubota, Y. Urinary biomarker of oxidative stress in patients with psoriasis vulgaris and atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1405–1408. [Google Scholar] [CrossRef]
- Toker, A.; Kadı, M.; Yıldırım, A.K.; Aksoy, H.; Akçay, F. Serum lipid profile paraoxonase and arylesterase activities in psoriasis. Cell Biochem. Funct. 2009, 27, 176–180. [Google Scholar] [CrossRef]
- Kaur, S.; Zilmer, K.; Kairane, C.; Kals, M.; Zilmer, M. Clear differences in adiponectin level and glutathione redox status revealed in obese and normal-weight patients with psoriasis. Br. J. Dermatol. 2008, 159, 1364–1367. [Google Scholar] [CrossRef]
- Tekin, N.S.; Tekin, I.O.; Barut, F.; Sipahi, E.Y. Accumulation of Oxidized Low-Density Lipoprotein in Psoriatic Skin and Changes of Plasma Lipid Levels in Psoriatic Patients. Mediat. Inflamm. 2006, 2007, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Karaman, A.; Aliagaoglu, C.; Pirim, I. Sister chromatid exchange analysis in patients with psoriasis. Exp. Dermatol. 2008, 17, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Pereira, P.; Santos-Silva, A.; Rebelo, I.; Figueiredo, A.; Quintanilha, A.; Teixeira, F. The inflammatory response in mild and in severe psoriasis. Br. J. Dermatol. 2004, 150, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Kural, B.V.; Örem, A.; Çimşit, G.; Yandı, Y.E.; Calapoǧlu, M. Evaluation of the atherogenic tendency of lipids and lipoprotein content and their relationships with oxidant–antioxidant system in patients with psoriasis. Clin. Chim. Acta 2003, 328, 71–82. [Google Scholar] [CrossRef]
- Baz, K.; Cimen, M.Y.B.; Kokturk, A.; Yazici, A.C.; Eskandari, G.; Ikizoglu, G.; Api, H.; Atik, U. Oxidant/Antioxidant Status in Patients with Psoriasis. Yonsei Med. J. 2003, 44, 987–990. [Google Scholar] [CrossRef]
- Yildirim, M.; Inaloz, H.S.; Baysal, V.; Delibas, N. The role of oxidants and antioxidants in psoriasis. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Relhan, V.; Gupta, S.K.; Dayal, S.; Pandey, R.; Lal, H. Blood Thiols and Malondialdehyde Levels in Psoriasis. J. Dermatol. 2002, 29, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Collazo, A.A.; Pérez-Méndez, O.; López-Olmos, V.; Delgado-Rizo, V.; Muñoz-Valle, J.F.; Martínez-López, E.; Villanueva-Quintero, D.G.; Domínguez-Díaz, C.; Fafutis-Morris, M.; Alvarado-Navarro, A. Association between rs662 (A > G) and rs854560 (A > T) polymorphisms in PON1 gene and the susceptibility for psoriasis in mestizo population of Western Mexico. Mol. Biol. Rep. 2021, 48, 183–194. [Google Scholar] [CrossRef]
- Guarneri, F.; Sapienza, D.; Papaianni, V.; Marafioti, I.; Guarneri, C.; Mondello, C.; Roccuzzo, S.; Asmundo, A.; Cannavò, S.P. Association between Genetic Polymorphisms of Glutathione S-Transferase M1/T1 and Psoriasis in a Population from the Area of the Strict of Messina (Southern Italy). Free Radic. Res. 2020, 54, 57–63. [Google Scholar] [CrossRef]
- Solak, B.; Karkucak, M.; Turan, H.; Ocakoğlu, G.; Şebnem Özemri, S.; Uslu, E.; Yakut, T.; Erdem, T. Glutathione S-Transferase M1 and T1 Gene Polymorphisms in Patients with Chronic Plaque-Type Psoriasis: A Case-Control Study. Med. Princ. Pract. 2015, 25, 155–158. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Wu, W.-M.; Huang, Y.-H.; Hung, S.-I.; Tsai, H.-Y.; Hsu, L.-A. The (CCTTT) n pentanucleotide repeat polymorphism in the inducible nitric oxide synthase gene promoter and the risk of psoriasis in Taiwanese. Arch. Dermatol. Res. 2015, 307, 425–432. [Google Scholar] [CrossRef]
- Asefi, M.; Vaisi-Raygani, A.; Khodarahmi, R.; Nemati, H.; Rahimi, Z.; Tavilani, H.; Pourmotabbed, T. Methylentetrahydrofolatereductase (rs1801133) polymorphism and psoriasis: Contribution to oxidative stress, lipid peroxidation and correlation with vascular adhesion protein 1, preliminary report. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1192–1198. [Google Scholar] [CrossRef]
- Asefi, M.; Vaisi-Raygani, A.; Bahrehmand, F.; Kiani, A.; Rahimi, Z.; Nomani, H.; Ebrahimi, A.; Tavilani, H.; Pourmotabbed, T. Paraoxonase 1 (PON1) 55 Polymorphism, Lipid Profiles and Psoriasis: Paraoxonase 55 Polymorphism and Psoriasis. Br. J. Dermatol. 2012, 167, 1279–1286. [Google Scholar] [CrossRef]
- Schnorr, O.; Schuier, M.; Kagemann, G.; Wolf, R.; Walz, M.; Ruzicka, T.; Mayatepek, E.; Laryea, M.; Suschek, C.V.; Kolb-Bachofen, V.; et al. Arginase-1 overexpression induces cationic amino acid transporter-1 in psoriasis. Free Radic. Biol. Med. 2005, 38, 1073–1079. [Google Scholar] [CrossRef]
- Vasku, V.; Kankova, K.; Vasku, A.; Muzik, J.; Hollá, L.I.; Semrádová, V.; Vácha, J. Gene polymorphisms (G82S, 1704G/T, 2184A/G and 2245G/A) of the receptor of advanced glycation end products (RAGE) in plaque psoriasis. Arch. Dermatol. Res. 2002, 294, 127–130. [Google Scholar] [CrossRef]
- Akbulak, O.; Karadag, A.S.; Akdeniz, N.; Ozkanli, S.; Ozlu, E.; Zemheri, E.; Oguztuzun, S. Evaluation of Oxidative Stress via Protein Expression of Glutathione S-Transferase and Cytochrome P450 (CYP450) Isoenzymes in Psoriasis Vulgaris Patients Treated with Methotrexate. Cutan. Ocul. Toxicol. 2018, 37, 180–185. [Google Scholar] [CrossRef]
- Elango, T.; Dayalan, H.; Gnanaraj, P.; Malligarjunan, H.; Subramanian, S. Impact of methotrexate on oxidative stress and apoptosis markers in psoriatic patients. Clin. Exp. Med. 2014, 14, 431–437. [Google Scholar] [CrossRef]
- Kılıc, S.; Emre, S.; Metin, A.; Isıkoglu, S.; Erel, O. Effect of the systemic use of methotrexate on the oxidative stress and paraoxonase enzyme in psoriasis patients. Arch. Dermatol. Res. 2013, 305, 495–500. [Google Scholar] [CrossRef]
- Nilgun Solak, T.; Nilsel, I.; Banu, S.; Muge Guler, O.; Mehmet Ali, G. Nitric Oxide Levels in Patients with Psoriasis Treated with Methotrexate. Mediat. Inflamm. 2006, 2006, 16043. [Google Scholar]
- Darlenski, R.; Deliyska, R.; Al-Sadek, L.T.; Hristakieva, E.; Fluhr, J.W. Epidermal carotenoid levels in vivo of patients with plaque psoriasis: Effects of narrow-band UVB phototherapy. Photodermatol. Photoimmunol. Photomed. 2021, 37, 111–114. [Google Scholar] [CrossRef]
- Darlenski, R.; Hristakieva, E.; Aydin, U.; Gancheva, D.; Gancheva, T.; Zheleva, A.; Gadjeva, V.; Fluhr, J.W. Epidermal barrier and oxidative stress parameters improve during in 311 nm narrow band UVB phototherapy of plaque type psoriasis. J. Dermatol. Sci. 2018, 91, 28–34. [Google Scholar] [CrossRef]
- Wacewicz, M.; Socha, K.; Soroczyńska, J.; Niczyporuk, M.; Aleksiejczuk, P.; Ostrowska, J.; Borawska, M.H. Concentration of Selenium, Zinc, Copper, Cu/Zn Ratio, Total Antioxidant Status and c-Reactive Protein in the Serum of Patients with Psoriasis Treated by Narrow-Band Ultraviolet B Phototherapy: A Case-Control Study. J. Trace Elem. Med. Biol. 2017, 44, 109–114. [Google Scholar] [CrossRef]
- Karadag, A.S.; Uzunçakmak, T.K.; Ozkanli, S.; Oguztuzun, S.; Moran, B.; Akbulak, O.; Ozlu, E.; Zemheri, I.E.; Bilgili, S.G.; Akdeniz, N. An investigation of cytochrome p450 (CYP) and glutathioneS-transferase (GST) isoenzyme protein expression and related interactions with phototherapy in patients with psoriasis vulgaris. Int. J. Dermatol. 2016, 56, 225–231. [Google Scholar] [CrossRef]
- Pektas, S.; Akoglu, G.; Metin, A.; Neselioglu, S.; Erel, O. Evaluation of systemic oxidant/antioxidant status and paraoxonase 1 enzyme activities in psoriatic patients treated by narrow band ultraviolet B phototherapy. Redox Rep. 2013, 18, 200–204. [Google Scholar] [CrossRef]
- Coimbra, S.; Oliveira, H.; Reis, F.; Belo, L.; Rocha, S.; Quintanilha, A.; Figueiredo, A.; Teixeira, F.; Castro, E.; Rocha-Pereira, P.; et al. Erythroid Disturbances before and after Treatment of Portuguese Psoriasis Vulgaris Patients: A Cross-Sectional and Longitudinal Study: A Cross-Sectional and Longitudinal Study. Am. J. Clin. Dermatol. 2012, 13, 37–47. [Google Scholar] [CrossRef]
- Karaarslan, I.K.; Sagin, F.G.; Ertam, I.; Alper, S.; Öztürk, G.; Sozmen, E.Y. Broad-band ultraviolet B phototherapy is associated with elevated serum thiobarbituric acid reactive substance and nitrite-nitrate levels in psoriatic patients. J. Eur. Acad. Dermatol. Venereol. 2006, 20, 1226–1231. [Google Scholar] [CrossRef]
- Barygina, V.; Becatti, M.; Soldi, G.; Prignano, F.; Lotti, T.; Nassi, P.; Wright, D.; Taddei, N.; Fiorillo, C. Altered redox status in the blood of psoriatic patients: Involvement of NADPH oxidase and role of anti-TNF-α therapy. Redox Rep. 2013, 18, 100–106. [Google Scholar] [CrossRef]
- Wolk, R.; Armstrong, E.J.; Hansen, P.R.; Thiers, B.; Lan, S.; Tallman, A.M.; Kaur, M.; Tatulych, S. Effect of tofacitinib on lipid levels and lipid-related parameters in patients with moderate to severe psoriasis. J. Clin. Lipidol. 2017, 11, 1243–1256. [Google Scholar] [CrossRef] [Green Version]
- Pastore, S.; Mariani, V.; Lulli, D.; Gubinelli, E.; Raskovic, D.; Mariani, S.; Stancato, A.; De Luca, C.; Pecorelli, A.; Valacchi, G.; et al. Glutathione peroxidase activity in the blood cells of psoriatic patients correlates with their responsiveness to Efalizumab. Free Radic. Res. 2011, 45, 585–599. [Google Scholar] [CrossRef]
- Campanati, A.; Orciani, M.; Gorbi, S.; Regoli, F.; Di Primio, R.; Offidani, A. Effect of Biologic Therapies Targeting Tumour Necrosis Factor-α on Cutaneous Mesenchymal Stem Cells in Psoriasis: Modifications of MSCs in Psoriatic Patients Receiving TNF-α Inhibitors. Br. J. Dermatol. 2012, 167, 68–76. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; DELLA-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Noeman, S.A.; Hamooda, H.E.; Baalash, A.A. Biochemical Study of Oxidative Stress Markers in the Liver, Kidney and Heart of High Fat Diet Induced Obesity in Rats. Diabetol. Metab. Syndr. 2011, 3, 17–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snezhkina, A.V.; Kudryavtseva, A.V.; Kardymon, O.L.; Savvateeva, M.V.; Melnikova, N.V.; Krasnov, G.S.; Dmitriev, A.A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid. Med. Cell. Longev. 2019, 2019, 6175804. [Google Scholar] [CrossRef] [PubMed]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid. Med. Cell. Longev. 2017, 2017, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.S.; Steinauer, K.K.; Hornung, B.; Irish, J.; Lecane, P.; Birrell, G.; Peehl, D.M.; Knox, S.J. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ. 2002, 9, 252–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors and Year | Country | Type of Study | Sample Size (Psoriasis/Controls) | Mean Disease Duration (Years) | Mean Age (Years) | Sample | Measured Parameters | Main Results (Psoriasis Versus Control Group) | |
---|---|---|---|---|---|---|---|---|---|
1. | Kirmit et al. 2020 [14] | Turkey | Case–control study | 147 (87/60) | 7 (0–37) | 32.8 ± 15.6 | Venous blood | CRP, CAT, MPO, FOX, IMA | ↑CAT, FOX, IMA (p < 0.001), CRP (p = 0.04) ↑MPO (p = 0.123) |
2. | Oszukawska et al. 2020 [15] | Poland | Case–control study | 96 (66/30) | 21–73 years | Venous blood | PON-1, alpha-tocopherol, uric acid, homocysteine | ↑Uric acid, homocysteine ↓PON-1 (p < 0.001), alpha tocopherol (p < 0.05) | |
3. | Skutnik-Radziszewska et al. 2020 [16] | Poland | Case–control study | 80 (40/40) | 12.7 ± 9 | 45.6 ± 20.2 | Venous blood, stimulated/unstimulated saliva | Px, CAT, SOD (saliva), TOS, OSI, AGE, AOPP, MDA, LOOH (blood and saliva) | ↑TOS, OSI, AGE, AOPP, MDA, LOOH (p < 0.001) (venous blood and saliva) ↑ROS (p < 0.001) (saliva) |
4. | Kiafar et al. 2020 [17] | Iran | Observational study | 20 (20/0) | - | 38.9 ± 12.6 | Skin biopsy samples | TrxR | ↓TrxR (p < 0.01) |
5. | Skoie et al. 2019 [18] | Norway | Case–control study | 168 (84/84) | 14 (8–24) | 45 | Venous blood | AOPP, MDA, CRP | AOPP unmodified ↓MDA (p = 0.03) |
6. | Kizilyel et al. 2019 [19] | Turkey | Case–control study | 95 (50/45) | 8.8 ± 6.9 | 32.5 ± 14.5 | Venous blood | TOS, TAS, MDA, 8H2D | ↑TOS (p < 0.001) |
7. | Ergun et al. 2019 [20] | Turkey | Case–control stody | 72 (50/20) | - | - | None (non-invasive measurements) | AGE | ↑AGE (p = 0.05) |
8. | Wojcik et al. 2019 [21] | Poland | Case–control study | 48 (32/16) | - | 35 (Ps) 37(PsA) | Venous blood | NADPH oxidase, Xanthine oxidase, ROS, CAT, GSH-Px, GSH | ↑NADPH, xanthine oxidase, ROS (PsA > Ps) (p < 0.05) ↓CAT, GSH (p < 0.05) |
9. | Esmaeili et al. 2019 [22] | Iran | Case–control study | 20 (10/10) | 18.5 ± 3.1 (mild Ps), 13.5 ± 7.8 (moderate/severe Ps) | 37 (mild Ps) 27 (moderate/severe Ps) | Venous blood | GSH, ROS, TAS, FRAP | ↑ROS (p = 0.04) ↓CAT (p = 0.02) |
10. | Elaine Husni et al. 2018 [23] | USA | Cross sectional study | 688 (343 (198PsA, 143 Ps)/345) | 15.5 ± 13.2 (Ps), 21.1 ± 14.9 (PsA) | 45.7 ± 15.3 (Ps), 50.4 ± 11.8 (PsA) | Venous blood | PON-1, AS | ↓AS (p < 0.001), similar PON-1 levels |
11. | Haberka et al. 2018 [24] | Poland | Case–control study | 119 (80/39) | 15.3 ± 11.2 | 43 ± 13.5 | Venous blood | Visfatin, Nesfatin, AOPP | ↑AOPP, visfatin |
12. | Ambrozewicz et al. 2018 [25] | Poland | Case–control study | 102 (68/34) | - | 38.2 | Venous blood | NADPH oxidase, Xanthine oxidase, GSH-Px, GSH-R, SOD, TrxR, GSH, Vitamin C | ↑NADPH oxidase, xanthine oxidase (Ps and PsA), SOD (only in Ps) (p < 0.05) ↓Trx, TrxR, GSH, Vitamin C (Ps and PsA), GSH-Px (only in PsA) (p < 0.05) |
13. | El-Rifaie et al. 2018 [26] | Egypt | Case–control study | 101 (51/50) | - | 45.6 ± 15.1 | Venous blood | HO | ↑HO (p < 0.001) |
14. | Asha et al. 2017 [27] | India | Case–control study | 300 (150/150) | - | 39.6 ± 11.9 | Venous blood | OxLDL, GSH, FRAP, MDA | ↑OxLDL, OxLDL/LDL (p < 0.01), MDA(p < 0.001) ↓GSH |
15. | Emre et al. 2017 [28] | Turkey | Case–control study | 166 (90/76) | - | 36.0 | Venous blood | Native SH, Total SH, SS | ↑Native SH (p = 0.013), Total SH (p = 0.04) |
16. | Papagrigoraki et al. 2017 [29] | Italy | Cross sectional study | 160 (120 (80 Ps, 40 eczema)/40) | - | 48 ± 8 (severe Ps). 47 ± 11 (mild Ps) | Venous blood | AGE(s) AGE(p) | ↑AGE(s) (p = 0.01) AGE(p) (p = 0.01) |
17. | Shahidi-Dadras et al. 2017 [30] | Iran | Case–control study | 80 (40/40) | 10.1 ± 8.3 | 36.7 ± 14.8 | Venous blood | Cu, Fe, Trf, Cp | ↓Fe, Trf (p < 0.01) ↑Cp (p = 0.02) |
18. | Bakry et al. 2016 [31] | India | Case–control study | 115 (85/30) | 0.3 ± 0.2 | 39.8 ± 18.1 | Urine | Urinary biopyrrins | ↑Urinary biopyrrins (p < 0.001) |
19. | Sunitha et al. 2016 [32] | India | Cross sectional study | 90 (45/45) | 3.7 ± 5.1 | 44.9 ± 14.3 | Venous blood | AuAb-oxLDL, oxLDL | ↑AuAb-oxLDL, OxLDL (p < 0.001) |
20. | Dilek et al. 2016 [33] | Turkey | Case–control study | 75 (50/25) | - | 36.8 ± 8.2 | Venous blood, skin biopsy samples | iNOS, MPO | ↑MPO (p < 0.05) |
21. | Yazici et al. 2016 [34] | Turkey | Case–control study | 43 (29/14) | 11.4 ± 9.3 | 39.1 ± 12.4 | Venous blood | MPO, PCC, AOPP, LOOH, PP | ↑MPO, PCC, AOPP, LOOH, PP (p < 0.05) |
22. | Zhou et al. 2015 [35] | China | Case–control study | 379 (214/165) | - | 41.0 ± 12.6 | Venous blood | TB, CRP | ↓TB (p < 0.001) ↑CRP (p < 0.001) |
23. | Ikonomidis et al. 2015 [36] | Greece | Cross sectional study | 158 (118 (59 Ps, 59 CAD)/40) | - | 51 ± 12.2 | Venous blood | MDA, IL-6 | ↑MDA, IL-6 (p < 0.05) |
24. | Surucu et al. 2015 [37] | Turkey | Case–control study | 87 (40/47) | 10.1 ± 7.7 | 37.9 ± 10.8 | Venous blood | Prolidase, TOS, TAS, OSI | ↓TAS (p = 0.01) ↑Prolidase, TOS (p = 0.01), OSI (p < 0.001) |
25. | Chandrashekar et al. 2015 [38] | India | Cross sectional study | 86 (43/43) | 4.1 ± 4 | 44.6 ± 12.0 | Venous blood | 25-OH-vitD, CRP, IMA | ↓25-OH-vitD (p = 0.004) ↑CRP (p = 0.002), IMA (p < 0.001) |
26. | Nemati et al. 2014 [39] | Iran | Case–control study | 200 (100/100) | 4.5 ± 2.4 | 35.7 ± 10 | Venous blood | PON-1, SOD, CAT, MDA | ↓PON-1, SOD, CAT (p < 0.05) ↑MDA |
27. | Pujari et al. 2014 [40] | India | Case–control study | 180 (90/90) | - | 20–60 | Venous blood | MDA, vitamin E, CAT | ↓Vitamin E, CAT (p < 0.001) ↑MDA (p < 0.001) |
28. | Balta et al. 2014 [41] | Turkey | Case–control study | 115 (60/55) | 7.5 ± 9.1 | 36.8 ± 12.8 | Venous blood | TB, DB, IB, CRP | ↓TB (p < 0.08), DB (p < 0.001) ↑IB (p < 0.05), CRP (p < 0.001) |
29. | Meki et Shobaili, 2014 [42] | Saudi Arabia | Case–control study | 80 (60/22) | 10.3 ± 0.9 | 30.2 ± 1.4 | Venous blood | NO | ↑NO (p < 0.001) |
30. | He et al. 2014 [43] | China | Cross sectional study | 50 (25/25) | - | 43.04 ± 11.15 | Venous blood | MDA, PON-1 | ↓PON-1 (p < 0.01) ↑MDA (p < 0.05) |
31. | Kaur et al. 2013 [44] | Estonia | Case–control study | 107 (60/47) | 18.6 ± 11.0 | 43.2 ± 12.4 | Venous blood | TPX, TAS, OSI, Methylglycoxal | ↓TAS (p < 0.001) ↑TPX, OSI (p < 0.001), Methylglycoxal (p = 0.01) |
32. | Damasiewicz-Bodzek et Wielkoszynski, 2012 [45] | Poland | Case–control study | 160 (80/80) | 10.2 ± 8.1 | 37.1 ± 10.8 | Venous blood | AGE, Ab anti CEL, Ab anti CML | ↑AGE, Ab anti CEL, Ab anti CML (p < 0.05) |
33. | Emre et al. 2012 [46] | Turkey | Case–control study | 116 (54 (28 smokers, 26 non-smokers)/62) | 9.51 ± 7,19 (non-smokers), 9.715 ± 7.84 (smokers) | 39.9 ± 11.1 (non-smokers), 39.6 ± 12.9 (smokers) | Venous blood | TOS, TAS, AS, OSI | ↓TAS (p < 0.01), PON-1 (p = 0.01—in smokers) ↑TOS, OSI (p < 0.01) |
34. | Gabr and Al-Ghadir, 2012 [47] | Egypt | Case–control study | 75 (55/20) | 4.72 ± 1.7 | 29 ± 13.6 | Venous blood | MDA, NO, SOD, CAT, TAS | ↓TAS, SOD, CAT (p < 0.001) ↑MDA, NO (p < 0.001) |
35. | Ozdemir et al. 2012 [48] | Turkey | Case–control study | 52 (26/26) | 6.6 ± 5.8 | 38.9 ± 11.5 | Venous blood | IMA | ↑IMA (p = 0.001) |
36. | Lima et Kimball, 2011 [49] | USA | Cross sectional study | 116 (42/72) | - | 49.4 | None (non-invasive measurements) | Skin Carotenoid level | ↓Skin carotenoid level (p = 0.003) |
37. | Usta et al. 2011 [50] | Turkey | Cross sectional study | 77 (52 (27 without MS, 25 with MS)/25) | 10 (without MS), 10 (with MS) | - | Venous blood | TAS, TOS, PON-1, AS | ↓PON-1, AS |
38. | Ferretti et al. 2011 [51] | Italy | Case–control study | 48 (23/25) | - | 47.5 ± 13.5 | Venous blood | PON-1, AS, LOOH | ↓PON-1, AS ↑LOOH (p < 0.001) |
39. | Sikar Akturk et al. 2011 [52] | Turkey | Case–control study | 46 (23/23) | - | 42.8 ± 16.5 | Venous blood, skin biopsy samples | NO, MDA | ↑NO, MDA (p < 0.001) |
40. | Basavaraj et al. 2011 [53] | India | Case–control study | 40 (30/10) | - | 25–45 | Venous blood | 8-OHdG, TAS | ↑8-OHdG (p < 0.05) |
41. | Kadam et al. 2010 [54] | India | Case–control study | 120 (90/30) | - | - | Venous blood | MDA, NO, SOD, CAT, TAS | ↓TAS, SOD, CAT (p < 0.01) ↑MDA, NO (p < 0.01) |
42. | Abeyakirthi et al. 2010 [55] | Scotland | Case–control study | 16 (8/8) | - | 21–50 | Skin tape strips | Ornithine, Arginine | ↑Ornithine (p < 0.001) ↓Arginine (p = 0.005) |
43. | Hashemi et al. 2009 [56] | Iran | Case–control study | 86 (40/46) | - | 30.6 (8–80) | Venous blood | ADA, s-TIC, TAS | ↓TAS (p = 0.02) ↑ADA (p < 0.001), s-TIC (p < 0.001) |
44. | Nakai et al. 2009 [57] | Japan | Case–control study | 70 (49 (29 Ps, 21 AD)/20) | - | 55 (21–76) | Urine | Nitrate, 8-OHdG, MDA | ↑Nitrate (p = 0.03), 8-OHdG (p = 0.03) (Ps versus control) |
45. | Toker et al. 2009 [58] | Turkey | Case–control study | 53 (30/23) | 7.2 | 30.4 ± 10.6 | Venous blood | MDA, TAS, PON-1, AS | ↑PON-1, sodium stimulated PON-1 (p < 0.05), AS (p < 0.01) |
46. | Kaur et al. 2008 [59] | Estonia | Case–control study | 44 (22/22) | - | 48 | Venous blood | Adiponectin, GSH, GSSG | ↑GSSG/GSH |
47. | Tekin et al. 2007 [60] | Turkey | Case–control study | 124 (84/40) | - | 39 (17–58) | Skin biopsy samples | Ox-LDL | ↑Ox-LDL |
48. | Karaman et al. 2007 [61] | Turkey | Case–control study | 66 (36/30) | 7.08 ± 4.52 | 39.3 ± 13.4 | Venous blood | SOD, GSH-Px(e), CAT | ↓SOD (p < 0.001), CAT (p < 0.05) ↑GSH-Px(e) (p < 0.05) |
49. | Rocha-Pereira et al. 2004 [62] | Portugal | Case–control study | 100 (60/40) | 0.5–50 | 46 ± 12 | Venous blood | TBA, TAS, Transferrin, Ceruloplasmin, CRP | ↓TAS (p < 0.001) |
50. | Kural et al. 2003 [63] | Turkey | Case–control study | 70 (35/35) | - | 27–43 | Venous blood | AuAb-oxLDL, CRP, MDA, LOOH, TAS, SOD, GSH-Px, GSH-R, CAT | ↓CAT(e)(p = 0.001), SOD (e-p = 0.01, p-p = 0.003), GSH-Px(e) (p = 0.02), TAS(p) (p = 0.03) ↑AuAb-oxLDL (p = 0.002), MDA (from LDL p = 0.018, from oxLDL-p < 0.001, from e-p < 0.001), LOOH (p = 0.001) |
51. | Baz et al. 2003 [64] | Turkey | Case–control study | 59 (35/24) | 7.83 ± 8.14 | 42.5 ± 13.7 | Venous blood | MDA, SOD, TAS | ↓TAS (p = 0.001) ↑SOD (p = 0.01), MDA (p = 0.005) |
52. | Yldirim et al. 2003 [65] | Turkey | Case–control study | 44 (22/22) | 10 | 37 | Venous blood, skin biopsy samples | SOD(e), GSH-Px(e), CAT(p), MDA(p and skin) | ↓SOD (e) (p < 0.05) ↑CAT(p) (p < 0.05), MDA skin (p < 0.01) |
53. | Relhan et al. 2002 [66] | India | Case–control study | 80 (40/40) | 5.6 | - | Venous blood | MDA, Thiols | ↓Thiols (p < 0.001) ↑MDA (p < 0.001) |
Author/Year | Country | Sample (Psoriasis/Controls) | Mean Age of the Group (Years) | Disease Duration (Years) | Samples | Biomarkers Assessed | Genetic Polymorphisms | Results |
---|---|---|---|---|---|---|---|---|
Hernandez-Collazo et al. 2020 [67] | Mexico | 228 (104/124) | 48.1 ± 16.0 | 10 ± 1.7 | Venous blood | TC, TG, LDL, HDL, VLDL, AI | PON-1 rs662 (A>G) and rs854560 (A>G) | ↓PON-1 and AS activity ↑G allele of rs662 (A > G): risk for psoriasis, T allele of rs854560 (A > T): susceptibility to psoriasis ↑AG haplotype: more frequent in psoriasis (p < 0.05) The AA and AG genotypes of rs662 (A > G) and TT and AA genotypes of rs854560 (A > T): ↓PON-1 and AS activity |
Guarneri et al. 2019 [68] | Italy | 296 (148/148) | 53.7 ± 14.9 | - | Bucal swabs samples | GST | GSTM1/GSTT1 | GSTT1 null (OR = 3.73) and GSTM1/GSTT1 “double null” (OR = 5.94) |
Solak et al. 2016 [69] | Turkey | 207 (105/102) | 44.5 ± 13.2 | - | Venous blood | GSTT1, GSTM1 | GST | ↑GSTT1 similar in psoriasis and controls, but more frequent in the former (p = 0.06) |
Chang et al. 2015 [70] | Taiwan | 792 (280/512) | 48 ± 17 | - | Buccal swabs, venous blood | iNOS | (CCTTT) n pentanucleotide polymorphisms in promoter region of iNOS gene | Psoriasis less likely in LL genotype carriers versus non-carriers (p = 0.03) |
Asefi et al. 2014 [71] | Iran | 200 (100/100) | 35.3 ± 10.9 | 10.2 ± 5.8 | Blood | MDA, lipids, apolipoproteins VAP-1 | MTHFR 677-T | Dominant/recessive model (CC + CT/TT) and T allele of MTHFR-677 alleles increased risk of psoriasis (7.45 and 1.76 times) ↑MTHFR-677-T (C/T + T/T) allele: serum MDA, VAP-1, APOB, APOB/APOA1 MTHFR-677-T allele frequencies in psoriasis patients were significantly higher |
Asefi et al. 2012 [72] | Iran | 200 (100/100) | 35.3 ± 10.9 | - | Venous blood | AS, MDA, APOB ⁄APOA1, APOB, LP(a) | PON-1 55 Met | PON-1 55 M allele—associated with psoriasis (OR = 1.96, p = 0.01) Psoriasis + PON-1 M (M⁄L + M⁄M) allele—higher MDA levels, apolipoprotein B, APOB, lower AS activity |
Schnorr et al. 2005 [73] | Germany | 20 (10/10) | 47 ± 12 | - | Skin biopsy samples | - | CATs (CAT-1, CAT-2A, CAT-2B) | CAT-1: upregulated in psoriasis (p < 0.05) CAT-2A, CAT-2B: unaltered in psoriatic skin |
Vašků et al. 2002 [74] | Czech Republic | 272 (130/142) | 44 ± 15 years | - | Venous blood | RAGE | G82S, 1704G/T, 2184A/G, 2245G/A | 2184A/G allele: more frequent in psoriasis (p = 0.001)—G82S, 1704G/T and 2245A/G9 polymorphisms not associated with psoriasis |
Author/Year | Country | Intervention | Treatment Duration | Measured Parameters | Samples | Study Group (Psoriasis/Controls) | Mean Age of Patients | Effect on the Measured Parameters | |
---|---|---|---|---|---|---|---|---|---|
1 | Akbulak et al. 2017 [75] | Turkey | MTX 10–15 mg/week | ≥12 weeks | expression of GST and CYP enzymes | Skin biopsy samples | 43 (21/22) | 42.5 ± 10.9 | ↑GSTK1, GSTM1, GSTT1, CYP1B1, CYP2E1: in the psoriasis tissues (p < 0.05); No significant decrease after MTX treatment |
2 | Elango et al. 2013 [76] | India | MTX 7.5 mg/week | 12 weeks | ROS, MDA, nitrate, SOD, CAT, TAS | Venous blood, skin biopsy samples | 103 (58/45) | 46.4 ± 14.1 | ↑ROS (lesional skin), MDA (serum) After 6 and 12 weeks of treatment (p < 0.001) ↓Serum nitrite, SOD, TAS, CAT (p < 0.001) (versus controls) (no difference after therapy) |
3 | Kılıc et al. 2013 [77] | Turkey | MTX | 8 weeks | TAS, TOS, OSI, PON-1 | Venous blood | 26 (26/0) | 45.3 ± 11.7 | No significant differences pre and post-treatment |
4 | Tekin et al. 2006 [78] | Turkey | MTX 20 mg/week | Until the disappearance of the lesions | Nitrite-nitrate | Venous blood | 43 (22/21) | 35.0 ± 11.8 | ↓Nitrite-nitrate (p < 0.05) |
5 | Darlenski et al. 2021 [79] | Bulgaria | NB-UVB 311 nm | 10 sessions | PASI, DLQI, skin carotenoid levels | Non-invasive | 29 (20/9) | 48.9 | ↓PASI, DLQI (p < 0.001), carotenoid levels (p > 0.05) |
6 | Darlenski et al. 2018 [80] | Bulgaria | NB-UVB 311 nm | 14 sessions | MDA, ROS, Asc, CAT | Venous blood | 47 (22/25) | 50.9 | ↓ROS, Asc, MDA, CAT (p < 0.001) |
7 | Wacewicz et al. 2017 [81] | Poland | NB-UVB | 20 sessions | Se, Zn, Cu, Cu/Zn, CRP, TAS | Venous blood | 118 (60/58) | 41.2 ± 12.5 | ↓Se and TAS (p < 0.05) Cu/Zn ratio, Cu, Zn—no changes after NB-UVB |
8 | Karadag et al. 2016 [82] | Turkey | NB-UVB 311 nm | 20–36 sessions | GST, CYP | Skin biopsy samples | 54 (32/22) | 37.2 ± 14.8 | GST1K1, GST1M1, GST1O1, GST1T1, CYP1A1, CYP1B1, CYP2E1: no differences pre and post-treatment |
9 | Pektas et al. 2013 [83] | Turkey | NB-UVB 310–315 nm | 30 sessions | hsCRP, TAS, TOS, OSI, PON-1, ARE | Venous blood | 24 (24/0) | 37.9 ± 12.3 | ↓PASI (p = 0.001) ↑TOS, OSI (p < 0.001) |
10 | Coimbra et al. 2012 [84] | Portugal | NB-UVB: 17 pts; PUVA: 20 pts; calcipotriol: 10 pts | 12 weeks | TB, MBH, MPB3, TAS, TBA, elastase, lactoferrin, CRP | Venous blood | 113 (73/40) | 45 ± 15 | PUVA: ↓leukocytes, neutrophils, elastase, lactoferrin, CRP, TBA, TBA/TAS NB-UVB:↓elastase, lactoferrin, CRP, TBA, ↑TBA/TAS; MPB3 monomers PUVA + NB-UVB: changed MPB3 profile |
11 | Karaarslan et al. 2006 [85] | Turkey | BB-UVB | 21 weeks | TBARS, nitrite-nitrate | Venous blood | 52 (32/20) | 42.0 ± 11.1 | ↑TBARS (p < 0.05), nitrite-nitrate levels (p < 0.01) negative correlation total nitrite—TBARS levels post-treatment (r = −0.58, p = 0.03) |
12 | Barygina et al. 2013 [86] | Italy | infliximab 5 mg/kg every 8 weeks | 6 months | ROS, GSH, NADPH oxidase, PCO, MDA, TAS, TBARS (lipid peroxidation) | Venous blood | 47 (29/18) | 47 ± 8 | ↓PCO, TBARS, TBARS, ROS (p < 0.05) ↑TAS (p < 0.05) |
13 | Wolk et al. 2017 [87] | USA | tofacitinib 5 mg/10 mg twice daily | 16 weeks | HDL, LDL, PON-1, LCAT, SA-A, hsCRP | Venous blood | 161 (70 tofacitinib 5 mg, 71 tofacitinib 10 mg, 50 placebo) | 42.3–50.9 | ↑LDL, HDL (p < 0.05); TC/HDL: remained constant; PON-1, LCAT (p < 0.05) compared with placebo; ↓SA-A, hsCRP (p < 0.05) compared with placebo. |
14 | Pastore et al. 2011 [88] | Italy | efalizumab 1 mg/kg/week | 12 weeks | Nitrites-nitrates, MDA, TBARS, SOD, Cu, Zn, GST, CAT, acrolein-protein adducts, 9.4-HNE, SF, GF, PUFA. | Venous blood | 50 (26/24) | 42.9 | pro-inflammatory cytokines, PUFAs esterified in phospholipids of RBC membranes were not affected. ↓Nitrites–nitrates, MDA levels, CAT (in non-responders) ↑GPx, GST (in non-responders) |
15 | Campanati et al. 2012 [89] | Italy | etanercept or adalimumab | 12 weeks | iNOS, TNF-alpha, VEGF, NO, SOD, CAT, GST, GSH | Skin biopsy samples | 12 (6/6) | 51 ± 5.8 and 52 ± 6.9 | ↓VEGF (p < 0.05, regardless of the treatment) NO (p < 0.05, regardless of the treatment) CAT (p < 0.05, for adalimumab in non lesional and perilesional skin and for etanercept in non lesional skin) GST (p < 0.05, regardless of the treatment for perilesional skin) ↑SOD (p < 0.05, for adalimumab in perilesional and lesional skin) GSH (p < 0.05, for adalimumab in non lesional skin) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrică, E.-C.; Cozma, M.-A.; Găman, M.-A.; Voiculescu, V.-M.; Găman, A.M. The Involvement of Oxidative Stress in Psoriasis: A Systematic Review. Antioxidants 2022, 11, 282. https://doi.org/10.3390/antiox11020282
Dobrică E-C, Cozma M-A, Găman M-A, Voiculescu V-M, Găman AM. The Involvement of Oxidative Stress in Psoriasis: A Systematic Review. Antioxidants. 2022; 11(2):282. https://doi.org/10.3390/antiox11020282
Chicago/Turabian StyleDobrică, Elena-Codruța, Matei-Alexandru Cozma, Mihnea-Alexandru Găman, Vlad-Mihai Voiculescu, and Amelia Maria Găman. 2022. "The Involvement of Oxidative Stress in Psoriasis: A Systematic Review" Antioxidants 11, no. 2: 282. https://doi.org/10.3390/antiox11020282
APA StyleDobrică, E. -C., Cozma, M. -A., Găman, M. -A., Voiculescu, V. -M., & Găman, A. M. (2022). The Involvement of Oxidative Stress in Psoriasis: A Systematic Review. Antioxidants, 11(2), 282. https://doi.org/10.3390/antiox11020282