Dietary Total Antioxidant Capacity Is Inversely Associated with Prediabetes and Insulin Resistance in Bialystok PLUS Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population
2.3. Dietary Assesment
2.4. Estimation of DTAC and DTPI
2.5. Ascertainment of Prediabetes, Diabetes and HOMA-IR
2.6. Analysis of Confounding Variables
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IDF Diabetes atlas, 9th Edition 2019. Available online: https://www.diabetesatlas.org/en/ (accessed on 17 May 2021).
- Drobek, N.; Sowa, P.; Jankowski, P.; Haberka, M.; Gąsior, Z.; Kosior, D.; Czarnecka, D.; Pająk, A.; Szostak-Janiak, K.; Krzykwa, A.; et al. Undiagnosed diabetes and prediabetes in patients with chronic coronary syndromes—An alarming public health issue. J. Clin. Med. 2021, 10, 1981. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Arós, F.; et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti-Fidanza, A.; Fidanza, F.; Chiuchiu, M.P.; Verducci, G.; Fruttini, D. Dietary studies on two rural Italian population groups of the Seven Countries Study. 3. Trend of food and nutrient intake from 1960 to 1991. Eur. J. Clin. Nutr. 1999, 53, 854–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019, 70, 809–824. [Google Scholar]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi. Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- Williamson, G.; Sheedy, K. Effects of polyphenols on insulin resistance. Nutrients 2020, 12, 3135. [Google Scholar] [CrossRef]
- Valdés-Ramos, R.; Guadarrama-López, A.L.; Martínez-Carrillo, B.E.; Benítez-Arciniega, A.D. Vitamins and type 2 diabetes mellitus. Endocr. Metab. Immune. Disord. Drug Targets 2015, 15, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Na, L.; Shan, R.; Cheng, Y.; Li, Y.; Wu, X.; Sun, C. Dietary vitamin C intake reduces the risk of type 2 diabetes in Chinese adults: HOMA-IR and T-AOC as potential mediators. PLoS ONE 2016, 11, e0163571. [Google Scholar] [CrossRef] [Green Version]
- Montonen, J.; Knekt, P.; Järvinen, R.; Reunanen, A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 2004, 27, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Sluijs, I.; Cadier, E.; Beulens, J.W.; Spijkerman, A.M.; Van der Schouw, Y.T. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Forouhi, N.G.; Sharp, S.J.; González, C.A.; Buijsse, B.; Guevara, M.; van der Schouw, Y.T.; Amiano, P.; Boeing, H.; Bredsdorff, L.; et al. Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J. Nutr. 2014, 144, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Stepaniak, U.; Micek, A.; Kozela, M.; Stefler, D.; Bobak, M.; Pajak, A. Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study. Br. J. Nutr. 2017, 118, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Zujko, M.E.; Witkowska, A.M.; Górska, M.; Wilk, J.; Krętowski, A. Reduced intake of dietary antioxidants can impair antioxidant status in type 2 diabetes patients. Pol. Arch. Intern. Med. 2014, 124, 599–607. [Google Scholar] [CrossRef]
- Zujko, M.E.; Rożniata, M.; Zujko, K. Individual diet modification reduces the metabolic syndrome in patients before pharmacological treatment. Nutrients 2021, 13, 2102. [Google Scholar] [CrossRef]
- Mancini, F.R.; Aurélie Affret, A.; Dow, C.; Balkau, B.; Bonnet, F.; Boutron-Ruault, M.C.; Fagherazzi, G. Dietary antioxidant capacity and risk of type 2 diabetes in the large prospective E3N-EPIC cohort. Diabetologia 2018, 61, 308–316. [Google Scholar] [CrossRef] [Green Version]
- van der Schaft, N.; Schoufour, J.D.; Nano, J.; Kiefte-de Jong, J.C.; Muka, T.; Sijbrands, E.J.G.; Ikram, M.A.; Franco, O.H.; Voortman, T. Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: The Rotterdam Study. Eur. J. Epidemiol. 2019, 34, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Galarregui, C.; Zulet, M.Á.; Cantero, I.; Marín-Alejandre, B.A.; Monreal, J.I.; Elorz, M.; Benito-Boillos, A.; Herrero, J.I.; Tur, J.A.; Abete, I.; et al. Interplay of glycemic index, glycemic load, and dietary antioxidant capacity with insulin resistance in subjects with a cardiometabolic risk profile. Int. J. Mol. Sci. 2018, 19, 3662. [Google Scholar] [CrossRef] [Green Version]
- Okubo, H.; Syddall, H.E.; Phillips, D.I.; Sayer, A.A.; Dennison, E.M.; Cooper, C.; Robinson, S.M. Hertfordshire Cohort Study Group. Dietary total antioxidant capacity is related to glucose tolerance in older people: The Hertfordshire Cohort Study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Sotoudeh, G.; Abshirini, M.; Bagheri, F.; Siassi, F.; Koohdani, F.; Aslany, Z. Higher dietary total antioxidant capacity is inversely related to prediabetes: A case-control study. Nutrition 2018, 46, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Daneshzad, E.; Tehrani, H.; Bellissimo, N.; Azadbakht, L. Dietary total antioxidant capacity and gestational diabetes mellitus: A case-control study. Oxid. Med. Cell. Longev. 2020, 2020, 5471316. [Google Scholar] [CrossRef] [PubMed]
- Chlabicz, M.; Jamiołkowski, J.; Łaguna, W.; Sowa, P.; Paniczko, M.; Łapińska, M.; Szpakowicz, M.; Drobek, N.; Raczkowski, A.; Kamiński, K.A. A similar lifetime CV risk and a similar cardiometabolic profile in the moderate and high cardiovascular risk populations: A population-based study. J. Clin. Med. 2021, 10, 1584. [Google Scholar] [CrossRef] [PubMed]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album of Photographs of Food Products and Dishes; National Food and Nutrition Institute Press: Warsaw, Poland, 2000. [Google Scholar]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Witkowska, A.M. Antioxidant potential and polyphenol content of selected food. Int. J. Food Prop. 2011, 14, 300–308. [Google Scholar] [CrossRef]
- Zujko, M.E.; Witkowska, A.M. Antioxidant potential and polyphenol content of beverages, chocolates, nuts, and seeds. Int. J. Food Prop. 2014, 17, 86–92. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes 2021. Diabetes Care 2021, 44 (Suppl. 1), S15–S33. [Google Scholar] [CrossRef] [PubMed]
- Araszkiewicz, A.; Bandurska-Stankiewicz, E.; Borys, S.; Budzyński, A.; Cyganek, K.; Cypryk, K.; Czech, A.; Czupryniak, L.; Drzewoski, J.; Dzida, L.; et al. 2021 Guidelines on the management of patients with diabetes. A position of Diabetes Poland. Clin. Diabetol. 2021, 10, 1. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymański, F.M.; Barylski, M.; Cybulska, B.; Wożakowska-Kapłon, B.; Zbigniew Krasiński, Z.; Mamcarz, A.; Widecka, K.; Płatek, A.E.; Dudek, D.; Mickiewicz, A.; et al. Recommendation for the management of dyslipidemia in Poland—Third Declaration of Sopot. Interdisciplinary Expert Position Statement endorsed by the Polish Cardiac Society Working Group on Cardiovascular Pharmacotherapy. Cardiol. J. 2018, 25, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; ESC Scientific Document Group; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- WHO. Body Mass Index—BMI. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 11 July 2021).
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2013; pp. 256–264. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 27.0; IBM Co.: Armonk, NY, USA, 2020. [Google Scholar]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinsonet, S.; et al. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Assiciation. Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44 (Suppl. 1), S1–S232. [Google Scholar] [CrossRef]
- Rinaldi, L.; Pafundi, P.C.; Galiero, R.; Caturano, A.; Morone, M.V.; Silvestri, C.; Giordano, M.; Salvatore, T.; Sasso, F.C. Mechanisms of non-alcoholic fatty liver disease in the metabolic syndrome. A narrative review. Antioxidants 2021, 10, 270. [Google Scholar] [CrossRef]
- Sygnowska, E.; Waśkiewicz, A. Alcohol intake and cardiovascular risk factor profile in men participating in the WOBASZ study. Kardiol. Pol. 2013, 71, 359–365. [Google Scholar]
- Polakowska, M.; Kaleta, D.; Piotrowski, W.; Topór Mądry, R.; Puch Walczak, A.; Niklas, A.; Bielecki, W.; Kozakiewicz, K.; Pająk, A.; Tykarski, A.; et al. Tobacco smoking in Poland in the years from 2003 to 2014. Pol. Arch. Intern. Med. 2017, 127, 91–99. [Google Scholar]
- Stepaniak, U.; Micek, A.; Waśkiewicz, A.; Bielecki, W.; Drygas, W.; Janion, M.; Kozakiewicz, K.; Niklas, A.; Puch-Walczak, A.; Pająk, A. Prevalence of general and abdominal obesity and overweight among adults in Poland. Pol. Arch. Intern. Med. 2016, 126, 662–671. [Google Scholar]
- Zujko, M.E.; Waśkiewicz, A.; Drygas, W.; Cicha-Mikołajczyk, A.; Zujko, K.; Szcześniewska, D.; Kozakiewicz, K.; Witkowska, A.M. Dietary habits and dietary antioxidant intake are related to socioeconomic status in Polish adults: A nationwide study. Nutrients 2020, 12, 518. [Google Scholar] [CrossRef] [Green Version]
- Papamichou, D.; Panagiotakos, D.B.; Itsiopoulos, C. Dietary patterns and management of type 2 diabetes: A systematic review of randomised clinical trials. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Puchau, B.; Zulet, M.A.; de Echávarri, A.G.; Hermsdorff, H.H.; Martínez, J.A. Dietary total antioxidant capacity: A novel indicator of diet quality in healthy young adults. J. Am. Coll. Nutr. 2009, 28, 648–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zujko, M.E.; Waśkiewicz, A.; Witkowska, A.M.; Szcześniewska, D.; Zdrojewski, T.; Kozakiewicz, K.; Drygas, W. Dietary total antioxidant capacity and dietary polyphenol intake and prevalence of metabolic syndrome in Polish adults: A nationwide study. Oxid. Med. Cell. Longev. 2018, 2018, 7487816. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Witkowska, A.M.; Waśkiewicz, A.; Piotrowski, W.; Terlikowska, K.M. Dietary antioxidant capacity of the patients with cardiovascular disease in a cross-sectional study. Nutr. J. 2015, 14, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, S.A.; Lund, A.C.; Veierød, M.B.; Carlsen, M.H.; Blomhoff, R.; Andersen, L.F.; Ursin, G. Food items contributing most to variation in antioxidant intake; a cross-sectional study among Norwegian women. BMC Public Health 2014, 14, 45. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Chung, S.; Chung, C.; Kim, D.; Song, W.; Koo, S.; Chun, O. Estimation of total antioxidant capacity from diet and supplements in US adults. Br. J. Nutr. 2011, 106, 254–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koloverou, E.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Georgousopoulou, E.N.; Laskaris, A.; Stefanadis, C.; The ATTICA Study group. The evaluation of inflammatory and oxidative stress biomarkers on coffee–diabetes association: Results from the 10-year follow-up of the ATTICA Study (2002–2012). Eur. J. Clin. Nutr. 2015, 69, 1220–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akash, M.S.; Rehman, K.; Chen, S. Effects of coffee on type 2 diabetes mellitus. Nutrition 2014, 30, 755–763. [Google Scholar] [CrossRef]
- Micek, A.; Godos, J.; Cernigliaro, A.; Cincione, R.I.; Buscemi, S.; Libra, M.; Galvano, F.; Grosso, G. Polyphenol-rich and alcoholic beverages and metabolic status in adults living in Sicily, Southern Italy. Foods 2021, 10, 383. [Google Scholar] [CrossRef]
- Li, M.; Fan, Y.; Zhang, X.; Hou, W.; Tang, Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open 2014, 4, e005497. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Mao, Q.X.; Xu, H.X.; Ma, X.; Zeng, C.Y. Tea consumption and risk of type 2 diabetes mellitus: A systematic review and meta-analysis update. BMJ Open 2014, 4, e005632. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Tomás, N.; Paz-Graniel, I.; Hernández-Alonso, P.; Jenkins, D.J.A.; Kendall, C.W.C.; Sievenpiper, J.L.; Salas-Salvadó, J. Nut consumption and type 2 diabetes risk: A systematic review and meta-analysis of observational studies. Am. J. Clin. Nutr. 2021, 113, 960–971. [Google Scholar] [CrossRef] [PubMed]
- Meccariello, R.; D’Angelo, S. Impact of polyphenolic-food on longevity: An elixir of life. An overview. Antioxidants 2021, 10, 507. [Google Scholar] [CrossRef] [PubMed]
Variables | Quartiles of Dietary Total Antioxidant Capacity (mmol/Day) | p | |||
---|---|---|---|---|---|
Q1 (≤8.37) n = 104 | Q2 (8.38–11.27) n = 103 | Q3 (11.2–14.50) n = 103 | Q4 (≥14.51) n = 103 | ||
Age (years), mean ± SD | 49.12 ± 9.43 | 50.81 ± 9.54 | 50.13 ± 9.62 | 49.34 ± 9.41 | 0.595 |
Sex, n (%) | |||||
Male | 46 (44.23) | 44 (42.72) | 41 (39.81) | 35 (33.98) | 0.119 |
Female | 58 (55.77) | 59 (57.28) | 62 (60.19) | 68 (66.02) | |
Family history of diabetes, n (%) | |||||
No | 67 (64.43) | 67 (65.05) | 64 (62.14) | 68 (66.02) | 0.821 |
Yes | 37 (35.57) | 36 (34.96) | 39 (37.86) | 35 (34.98) | |
Educational level, n (%) | |||||
Bellow middle | 25 (24.04) | 18 (17.48) | 14 (13.59) | 11 (10.68) | 0.016 |
Middle | 27 (25.96) | 38 (36.89) | 32 (31.07) | 32 (31.07) | |
Higher | 52 (50.00) | 47 (45.63) | 57 (55.34) | 60 (58.25) | |
Smoking status, n (%) | |||||
No | 76 (73.08) | 81 (78.64) | 85 (82.53) | 87 (84.47) | 0.041 |
Yes | 28 (26.92) | 22 (21.36) | 18 (17.47) | 16 (15.53) | |
Physical activity, n (%) | |||||
Low | 75 (72.12) | 74 (71.85) | 64 (62.14) | 65 (63.11) | 0.075 |
Medium | 29 (27.88) | 29 (28.15) | 39 (37.86) | 38 (36.89) | |
High | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Dyslipidemia, n (%) | 68 (65.39) | 62 (60.19) | 71 (68.93) | 65 (63.11) | 0.345 |
Hypertension, n (%) | 24 (23.08) | 20 (19.42) | 25 (24.27) | 23 (22.33) | 0.312 |
BMI (kg/m2), mean ± SD | 27.92 ± 5.13 | 27.31 ± 4.74 | 26.63 ±4.61 | 26.33 ± 5.44 | 0.043 |
WC (cm), mean ± SD | 88.81 ± 14.32 | 88.75 ± 13.23 | 87.12 ± 13.11 | 85.94 ± 13.75 | 0.191 |
Alcohol consumption (g/day) 1 | 2.74 (0.5, 6.6) | 3.21 (0.7, 9.3) | 5.82 (0.6, 16.3) | 5.01 (0.3, 10.7) | 0.358 |
Energy (kcal/day), mean ± SD | 1771.1 ± 514.5 | 1824.2 ± 588.6 | 2031.5 ± 607.4 | 2107.1 ± 567.3 | 0.001 |
Variables | Quartiles of Dietary Total Antioxidant Capacity (mmol/Day) | |||
---|---|---|---|---|
Q1 (Ref.) (≤8.37) | Q2 (8.38–11.27) | Q3 (11.2–14.50) | Q4 (≥14.51) | |
FG = 100–125 mg/dL | ||||
Crude OR (95% CI) | 1 | 0.525 (0.302–0.913) * | 0.591 (0.340–0.915) * | 0.595 (0.342–0.975) * |
Adjusted OR (95% CI) 1 | 1 | 0.397 (0.214–0.735) * | 0.469 (0.247–0.890) * | 0.526 (0.273–1.003) |
Adjusted OR (95% CI) 2 | 1 | 0.482 (0.263–0.884) * | 0.583 (0.309–0.945) * | 0.580 (0.303–1.007) |
FG ≥ 126 mg/dL | ||||
Crude OR (95% CI) | 1 | 0.867 (0.407–1.345) | 0.416 (0.104–1.654) | 0.274 (0.056–1.354) |
Adjusted OR (95% CI) 1 | 1 | 0.841 (0.365–1.566) | 0.426 (0.098–1.853) | 0.317 (0.058–1.741) |
Adjusted OR (95% CI) 2 | 1 | 0.875 (0.465–1.683) | 0.512 (0.112–1.337) | 0.237 (0.037–1.516) |
2h-G = 140–199 mg/dL | ||||
Crude OR (95% CI) | 1 | 0.643 (0.339–1.017) | 0.601 (0.363–1.015) | 0.653 (0.392–1.018) |
Adjusted OR (95% CI) 1 | 1 | 0.529 (0.368–1.042) | 0.597 (0.293–1.017) | 0.672 (0.328–1.077) |
Adjusted OR (95% CI) 2 | 1 | 0.738 (0.511–1.105) | 0.730 (0.440–1.167) | 0.730 (0.482–1.202) |
2h-G ≥ 200 mg/dL | ||||
Crude OR (95% CI) | 1 | 0.855 (0.267–1.316) | 0.715 (0.286–1.350) | 0.454 (0.167–1.471) |
Adjusted OR (95% CI) 1 | 1 | 0.811 (0.234–1.452) | 0.721 (0.269–1.081) | 0.505 (0.169–1.374) |
Adjusted OR (95% CI) 2 | 1 | 0.966 (0.287–1.559) | 0.630 (0.236–1.519) | 0.523 (0.174–1.406) |
HbA1C = 5.7–6.4% | ||||
Crude OR (95% CI) | 1 | 0.841 (0.598–1.413) | 0.959 (0.607–1.645) | 0.960 (0.550–1.476) |
Adjusted OR (95% CI) 1 | 1 | 0.899 (0.484–1.572) | 0.991 (0.519–1.694) | 0.987 (0.507–1.519) |
Adjusted OR (95% CI) 2 | 1 | 0.977 (0.635–1.581) | 0.927 (0.742–1.542) | 0.965 (0.748–1.568) |
HbA1C ≥ 6.5% | ||||
Crude OR (95% CI) | 1 | 0.792 (0.207–2.037) | 0.194 (0.022–1.691) | 0.000 (0.000–0.000) |
Adjusted OR (95% CI) 1 | 1 | 0.834 (0.202–2.444) | 0.243 (0.025–2.313) | 0.000 (0.000–0.000) |
Adjusted OR (95% CI) 2 | 1 | 1.011 (0.234–2.380) | 0.283 (0.028–2.495) | 0.000 (0.000–0.000) |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
β (95% CI) | p | R2 | β (95% CI) | p | R2 | β (95% CI) | p | R2 | |
HOMA-IR | −0.52 (−0.78–−0.28) | 0.012 | 0.05 | −0.47 (−0.75–−0.26) | 0.014 | 0.06 | −0.39 (−0.75–−0.14) | 0.024 | 0.07 |
Variable | Dietary Total Antioxidant Capacity (mmol/Day) | |
---|---|---|
r | p | |
Dietary Total Polyphenol Intake (mg/day) | 0.867 | <0.001 |
Vitamin C (mg/day) | 0.363 | 0.011 |
β-carotene (μg/day) | 0.182 | 0.012 |
Vitamin E (mg/day) | 0.348 | 0.008 |
Iron (mg) | 0.442 | <0.001 |
Zinc (mg) | 0.321 | 0.009 |
Copper (mg) | 0.468 | <0.001 |
Manganese (mg) | 0.431 | <0.001 |
Food Contribution | % Contribution to DTAC |
---|---|
Fruits and juices (mainly: apples, bananas, mandarin, oranges) | 16.7 |
Vegetables without potatoes (mainly: tomatoes, pepper, cucumber) | 8.2 |
Potatoes | 3.2 |
Legumes (mainly: soybeans, beans, peas) | 0.5 |
Milk and milk products | 0.6 |
Meat and meat products | 0.8 |
Fish, fish products and sea fruits | 0.1 |
Wheat cereal products (mainly: bread, rolls, pasta) | 2.3 |
Wholegrain cereal products (mainly: bread, pasta, groats) | 1.5 |
Tea infusion (mainly: black tea and green tea) | 12.2 |
Coffee infusion (ground coffee and instant coffee) | 33.8 |
Nuts and seeds (mainly: peanuts, walnuts, hazelnuts) | 8.6 |
Cookies, cakes, sweets | 1.1 |
Chocolates and cacao (mainly: milk and dark chocolate) | 3.6 |
Alcohol (mainly: red wine, bear) | 2.3 |
Oils (mainly: rape oil, sunflower oil) | 0.6 |
Others | 3.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cyuńczyk, M.; Zujko, M.E.; Jamiołkowski, J.; Zujko, K.; Łapińska, M.; Zalewska, M.; Kondraciuk, M.; Witkowska, A.M.; Kamiński, K.A. Dietary Total Antioxidant Capacity Is Inversely Associated with Prediabetes and Insulin Resistance in Bialystok PLUS Population. Antioxidants 2022, 11, 283. https://doi.org/10.3390/antiox11020283
Cyuńczyk M, Zujko ME, Jamiołkowski J, Zujko K, Łapińska M, Zalewska M, Kondraciuk M, Witkowska AM, Kamiński KA. Dietary Total Antioxidant Capacity Is Inversely Associated with Prediabetes and Insulin Resistance in Bialystok PLUS Population. Antioxidants. 2022; 11(2):283. https://doi.org/10.3390/antiox11020283
Chicago/Turabian StyleCyuńczyk, Monika, Małgorzata Elżbieta Zujko, Jacek Jamiołkowski, Kinga Zujko, Magda Łapińska, Magdalena Zalewska, Marcin Kondraciuk, Anna Maria Witkowska, and Karol Adam Kamiński. 2022. "Dietary Total Antioxidant Capacity Is Inversely Associated with Prediabetes and Insulin Resistance in Bialystok PLUS Population" Antioxidants 11, no. 2: 283. https://doi.org/10.3390/antiox11020283
APA StyleCyuńczyk, M., Zujko, M. E., Jamiołkowski, J., Zujko, K., Łapińska, M., Zalewska, M., Kondraciuk, M., Witkowska, A. M., & Kamiński, K. A. (2022). Dietary Total Antioxidant Capacity Is Inversely Associated with Prediabetes and Insulin Resistance in Bialystok PLUS Population. Antioxidants, 11(2), 283. https://doi.org/10.3390/antiox11020283