The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems
Abstract
:1. Introduction
2. Chemical Structure and Biological Activity of Curcumin
3. Antibacterial Activity of Curcumin
4. Mechanisms of the Antibacterial Action of Curcumin
4.1. Cell Membrane Disruption
4.2. Inhibition of Bacterial Quorum Sensing System and Biofilm Formation
4.3. Inhibition of Cell Division
4.4. Induction of Oxidative Stress and Programmed Cell Death
4.5. Phototoxicity
4.6. Curcumin Perturbs Bacterial Cell Metabolism
4.7. Curcumin Regulates Intracellular Bacterial Proliferation
5. Synergistic Antibacterial Effects of Curcumin with Antibacterial or Non-Antibacterial Agents
5.1. Synergistic Effect between Curcumin and Antibacterial Agents
5.1.1. Curcumin and Polypeptide Antibacterial Drugs
5.1.2. Curcumin and β- Lactam Antibacterial Drugs
5.1.3. Curcumin and Aminoglycoside Antibacterial Drugs
5.1.4. Curcumin and Macrolide Antibacterial Drugs
5.1.5. Curcumin and Quinolone Antibacterial Drugs
5.2. Curcumin and Natural Products
5.2.1. Curcumin and Berberine
5.2.2. Curcumin and Epigallocatechin Gallate
5.3. Curcumin and Metals
6. Safety of Curcumin
7. Nano-Formulations of Curcumin
Type (or Name Present in Published Literatures) | Preparation and Characterizations | Improvement in Antibacterial Activity (Accessed by MICs or Biofilm Formation) | Reference |
---|---|---|---|
Curcumin nanoparticles (curc-np) | Curcumin was encapsulated into a silane-hydrogel nanoparticle vehicle. Average hydrodynamic diameter at the range of 222 ± 14 nm. | In vitro, curc-np significantly inhibited the growth of MRSA and P. aeruginosa isolates compared to native curcumin. In a mouse model: significantly reduced bacterial burden in MRSA-infected burn wounds compared to native curcumin administration. | [29] |
Nanoparticles of curcumin (nanocurcumin) | A wet-milling technique was used to make the particle size of curcumin 2–40 nm, and nanocurcumin was freely dispersible in water. | The MICs of nanocurcumin in water were 100 μg/mL, 75 μg/mL, 250 μg/mL, 200 μg/mL, 350 μg/mL against S. aureus, B. subtilis, E. coli, P. aeruginosa, A. niger, much higher than native curcumin in DMSO (the corresponding MICs were 150, 100, 300, 250 and 400 μg/mL). | [28,130] |
Microcapsule curcumin | Microcapsule curcumin could be prepared with gelatin and porous starch as a wall system by a spray-drying method. The size was not reported. | The MICs were 250, 250, 62.5, 125, 125, 15,7, 31.3 and 31.3 μg/mL against E.coli, Yersinia enterocolitica, S. aureus, B. subtilis, B. cereus, A. niger, P. notatum, and S. cerevisiae. There was no comparation with native curcumin. | [135] |
Sodium carboxylmethyl cellulose silver nanocomposite films-curcumin (SCMC-SNCF-CM) | SCMC-SNCF were developed from sodium carboxylmethyl cellulose (SCMC), N, N1-methylenebisacrylamide (MBA), and silver nitrate solution. Curcumin loading into SCMC–SNCF was achieved by a diffusion mechanism. The size was not reported. | SCMC-SNCF-CM composite showed 86% inhibition growth against E. coli. There was no comparation with native curcumin. | [136] |
Curcumin Quantum Dots (CurQDs) | A newer two-step, bottom-up wet milling approach was used to prepare curcumin quantum dots (CurQDs), and acetone was used as a primary solvent. Average size was about 2.5 nm | The MIC of CurQDs significantly decreased to the range of 1.96–15.65 μg/mL from 175–300 μg/mL for native curcumin against all tested bacteria, including S. aureus, MRSA, E. faecalis, K. Pneumoniae, and P. aeruginosa | [137] |
Poly-(lactic-co-glycolic acid) Curcumin nanocapsules(PLGA-CUR-NCs) | Curcumin (CUR) nanocapsules (NCs) were prepared by the solvent displacement method with some modifications. The detailed information has been described in a published paper. The solubility in water increased to 591–928 μg/mL, and its solubility could be regulated by changes in the oil and water ratio. The sizes were in the range of 100–1000 nm, dependent on the ratio of glucose. | The MICs of PLGA-CUR-NCs against E. coli, Salmonella, and P. aeruginosa decreased from 300 μg/mL to 100 μg/mL, and against S. aureus, B. sonorensis, and B. licheniformis decreased from 100 μg/mL to 75 μg/mL. | [138] |
Nano-sized particles of curcumin | Colloids of curcumin nanoparticles with an average diameter of 20–40 nm were prepared in accordance with the method (a wet-milling technique). | Nano-curcumin could enhance the inhibition of biofilm formation in P. aeruginosa. | [139] |
Cur/PVA/collagen composite films (CPCF) | A composite film (CPCF) containing curcumin nanoparticles, collagen, and polyvinyl alcohol (PVA). The diameter and polydispersity of the Cur/poly(ε-caprolactone)-poly (ethylene glycol)-poly(ε-caprolactone) PCEC nanoparticles were 43.63 ± 13.22 nm and 0.334 ± 0.403 nm, respectively. | There was no marked change in the MICs. The cytotoxicity of CPCF significantly decreased in human skin fibroblasts compared to native curcumin. | [140] |
Curcumin-chitosan-zinc oxide (CCZ) | Curcumin and chitosan were layered on a hexagonal ZnO, and the particles were sized to about 48 ± 2 nm. | Increased antibacterial activity of the CCZ against MRSA and E. coli compared to native curcumin or ZnO. | [141] |
Pectin/curcumin/sulfur nanoparticles films | pH-responsive pectin-based functional films were prepared by incorporating curcumin and sulfur nanoparticles (SNP). Curcumin and SNP were uniformly dispersed in the pectin to form a composite film. | The composite film exhibited enhanced inhibitory effect against E. coli and L. monocytogenes, with enhanced strong antioxidant activity. | [131] |
8. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlen, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 2020, 18, 275–285. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31745331 (accessed on 3 February 2022). [CrossRef] [PubMed] [Green Version]
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, R.P. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, M.W. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Liu, Y.; Li, T.; Liu, X.; Hao, Z.; Ding, S.; Panichayupakaranant, P.; Zhu, K.; Shen, J. Plant natural flavonoids against multidrug resistant pathogens. Adv. Sci. 2021, 8, 2100749. Available online: https://www.ncbi.nlm.nih.gov/pubmed/34041861 (accessed on 3 February 2022). [CrossRef]
- Kocaadam, B.; Sanlier, N. Curcumin, an active component of turmeric (curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26528921 (accessed on 3 February 2022). [CrossRef] [PubMed]
- Liu, M.; Lu, Y.; Gao, P.; Xie, X.; Li, D.; Yu, D.; Yu, M. Effect of curcumin on laying performance, egg quality, endocrine hormones, and immune activity in heat-stressed hens. Poult. Sci. 2020, 99, 2196–2202. [Google Scholar] [CrossRef]
- Praditya, D.; Kirchhoff, L.; Bruning, J.; Rachmawati, H.; Steinmann, J.; Steinmann, E. Anti-infective properties of the golden spice curcumin. Front. Microbiol. 2019, 10, 912. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31130924 (accessed on 3 February 2022). [CrossRef] [Green Version]
- Yasbolaghi Sharahi, J.; Aliakbar Ahovan, Z.; Taghizadeh Maleki, D.; Riahi Rad, Z.; Riahi Rad, Z.; Goudarzi, M.; Shariati, A.; Bostanghadiri, N.; Abbasi, E.; Hashemi, A. In vitro antibacterial activity of curcumin-meropenem combination against extensively drug-resistant (xdr) bacteria isolated from burn wound infections. Avicenna J. Phytomed. 2020, 10, 3–10. [Google Scholar]
- Sundaramoorthy, N.S.; Sivasubramanian, A.; Nagarajan, S. Simultaneous inhibition of marr by salicylate and efflux pumps by curcumin sensitizes colistin resistant clinical isolates of enterobacteriaceae. Microb. Pathog. 2020, 148, 104445. [Google Scholar] [CrossRef]
- Taghavifar, S.; Afroughi, F.; Saadati Keyvan, M. Curcumin nanoparticles improved diabetic wounds infected with methicillin-resistant staphylococcus aureus sensitized with hamlet. Int. J. Low. Extrem. Wounds 2020. [Google Scholar] [CrossRef]
- Zhou, Z.; Pan, C.; Lu, Y.; Gao, Y.; Liu, W.; Yin, P.; Yu, X. Combination of erythromycin and curcumin alleviates staphylococcus aureus induced osteomyelitis in rats. Front. Cell. Infect. Microbiol. 2017, 7, 379. [Google Scholar] [CrossRef]
- Itzia Azucena, R.C.; José Roberto, C.L.; Martin, Z.R.; Rafael, C.Z.; Leonardo, H.H.; Gabriela, T.P.; Araceli, R.C. Drug susceptibility testing and synergistic antibacterial activity of curcumin with antibiotics against enterotoxigenic escherichia coli. Antibiotics 2019, 8, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marulasiddeshwara, R.; Jyothi, M.S.; Soontarapa, K.; Keri, R.S.; Velmurugan, R. Nonwoven fabric supported, chitosan membrane anchored with curcumin/TiO2 complex: Scaffolds for mrsa infected wound skin reconstruction. Int. J. Biol. Macromol. 2020, 144, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Fazlolahzadeh, O.; Atkin, S.L.; Majeed, M.; Butler, A.E.; Johnston, T.P.; Sahebkar, A. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J. Cell Physiol. 2019, 234, 1165–1178. [Google Scholar] [CrossRef] [PubMed]
- Altundağ, E.M.; Toprak, K.; Şanlıtürk, G.; Güran, M.; Özbilenler, C.; Kerküklü, N.R.; Yılmaz, A.M.; Yalçın, S.A. Synergistic combination of histone deacetylase inhibitor suberoylanilide hydroxamic acid and natural flavonoid curcumin exhibits anticancer and antibacterial activity. Anticancer Agents Med. Chem. 2021, 21, 1301–1308. [Google Scholar] [CrossRef]
- Lampe, V.; Milobedzka, J. Studien über curcumin. Berichte der deutschen chemischen Gesellschaft 1913, 46, 2235–2240. Available online: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cber.191304602149 (accessed on 3 February 2022). [CrossRef]
- Srinivasan, K.R. A chromatographic study of the curcuminoids in Curcuma longa, L. J. Pharm. Pharmacol. 1953, 5, 448–457. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J. Control. Release 2019, 316, 359–380. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31682912 (accessed on 3 February 2022). [CrossRef]
- Seidi Damyeh, M.; Mereddy, R.; Netzel, M.E.; Sultanbawa, Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1727–1759. [Google Scholar] [CrossRef]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol. Adv. 2014, 32, 1053–1064. [Google Scholar] [CrossRef]
- Dai, C.; Xiao, X.; Zhang, Y.; Xiang, B.; Hoyer, D.; Shen, J.; Velkov, T.; Tang, S. Curcumin attenuates colistin-induced peripheral neurotoxicity in mice. ACS Infect. Dis. 2020, 6, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Schraufstatter, E.; Bernt, H. Antibacterial action of curcumin and related compounds. Nature 1949, 164, 456. [Google Scholar] [CrossRef] [PubMed]
- Morão, L.G.; Polaquini, C.R.; Kopacz, M.; Torrezan, G.S.; Ayusso, G.M.; Dilarri, G.; Cavalca, L.B.; Zielińska, A.; Scheffers, D.J.; Regasini, L.O.; et al. A simplified curcumin targets the membrane of bacillus subtilis. Microbiologyopen 2019, 8, e00683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, A.; Sharma, P.; Capalash, N. Curcumin alleviates persistence of acinetobacter baumannii against colistin. Sci. Rep. 2018, 8, 11029. [Google Scholar] [CrossRef] [PubMed]
- Batista de Andrade Neto, J.; Pessoa de Farias Cabral, V.; Brito Nogueira, L.F.; Rocha da Silva, C.; Gurgel do Amaral Valente Sá, L.; Ramos da Silva, A.; Barbosa da Silva, W.M.; Silva, J.; Marinho, E.S.; Cavalcanti, B.C.; et al. Anti-mrsa activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb. Pathog. 2021, 155, 104892. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Singh, A.K.; Agrahari, A.K.; Sharma, K.; Singh, A.S.; Gupta, M.K.; Tiwari, V.K.; Prakash, P. Making of water soluble curcumin to potentiate conventional antimicrobials by inducing apoptosis-like phenomena among drug-resistant bacteria. Sci. Rep. 2020, 10, 14204. Available online: https://www.ncbi.nlm.nih.gov/pubmed/32848171 (accessed on 3 February 2022). [CrossRef]
- Teow, S.Y.; Liew, K.; Ali, S.A.; Khoo, A.S.; Peh, C.S. Antibacterial action of curcumin against staphylococcus aureus: A brief review. J. Trop. Med. 2016, 2016, 2853045. [Google Scholar] [CrossRef] [Green Version]
- Bhawana; Basniwal, R.K.; Buttar, H.S.; Jain, V.K.; Jain, N. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J. Agric. Food Chem. 2011, 59, 2056–2061. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21322563 (accessed on 3 February 2022). [CrossRef]
- Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 2015, 11, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yan, M.; Ma, R.; Ma, S. Synthesis and antibacterial activity of novel 4-bromo-1h-indazole derivatives as ftsz inhibitors. Arch. Pharm. 2015, 348, 266–274. [Google Scholar] [CrossRef]
- Hegge, A.B.; Bruzell, E.; Kristensen, S.; Tønnesen, H.H. Photoinactivation of staphylococcus epidermidis biofilms and suspensions by the hydrophobic photosensitizer curcumin—Effect of selected nanocarrier: Studies on curcumin and curcuminoides xlvii. Eur. J. Pharm. Sci. 2012, 47, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Betts, J.W.; Sharili, A.S.; La Ragione, R.M.; Wareham, W.D. In vitro antibacterial activity of curcumin-polymyxin b combinations against multidrug-resistant bacteria associated with traumatic wound infections. J. Nat. Prod. 2016, 79, 1702–1706. [Google Scholar] [CrossRef] [PubMed]
- Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, E.A. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health 2016, 32, 246–250. [Google Scholar] [CrossRef]
- Wang, X.; Ip, M.; Leung, A.W.; Yang, Z.; Wang, P.; Zhang, B.; Ip, S.; Xu, C. Sonodynamic action of curcumin on foodborne bacteria bacillus cereus and escherichia coli. Ultrasonics 2015, 62, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Dogra, N.; Choudhary, R.; Kohli, P.; Haddock, J.D.; Makwana, S.; Horev, B.; Vinokur, Y.; Droby, S.; Rodov, V. Polydiacetylene nanovesicles as carriers of natural phenylpropanoids for creating antimicrobial food-contact surfaces. J. Agric. Food Chem. 2015, 63, 2557–2565. [Google Scholar] [CrossRef] [PubMed]
- Bonifácio, D.; Martins, C.; David, B.; Lemos, C.; Neves, M.; Almeida, A.; Pinto, D.; Faustino, M.A.F.; Cunha, Â. Photodynamic inactivation of listeria innocua biofilms with food-grade photosensitizers: A curcumin-rich extract of curcuma longa vs commercial curcumin. J. Appl. Microbiol. 2018, 125, 282–294. [Google Scholar] [CrossRef]
- Sarkar, A.; De, R.; Mukhopadhyay, K.A. Curcumin as a potential therapeutic candidate for helicobacter pylori associated diseases. World J. Gastroenterol. 2016, 22, 2736–2748. [Google Scholar] [CrossRef] [PubMed]
- Darmani, H.; Smadi, E.A.M.; Bataineh, S.B.M. Blue light emitting diodes enhance the antivirulence effects of curcumin against helicobacter pylori. J. Med. Microbiol. 2020, 69, 617–624. [Google Scholar] [CrossRef]
- De, R.; Kundu, P.; Swarnakar, S.; Ramamurthy, T.; Chowdhury, A.; Nair, G.B.; Mukhopadhyay, K.A. Antimicrobial activity of curcumin against helicobacter pylori isolates from india and during infections in mice. Antimicrob. Agents Chemother. 2009, 53, 1592–1597. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yin, L.; Ramage, G.; Li, B.; Tao, Y.; Zhi, Q.; Lin, H.; Zhou, Y. Assessing the impact of curcumin on dual-species biofilms formed by streptococcus mutans and candida albicans. Microbiologyopen 2019, 8, e937. [Google Scholar] [CrossRef] [Green Version]
- Marathe, S.A.; Balakrishnan, A.; Negi, V.D.; Sakorey, D.; Chandra, N.; Chakravortty, D. Curcumin reduces the motility of salmonella enterica serovar typhimurium by binding to the flagella, thereby leading to flagellar fragility and shedding. J. Bacteriol. 2016, 198, 1798–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahl, T.A.; McGowan, W.M.; Shand, M.A.; Srinivasan, S.V. Photokilling of bacteria by the natural dye curcumin. Arch. Microbiol. 1989, 151, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Raorane, C.J.; Lee, J.H.; Kim, Y.G.; Rajasekharan, S.K.; García-Contreras, R.; Lee, J. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against acinetobacter baumannii. Front. Microbiol. 2019, 10, 990. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Di Giulio, M.; Magi, G.; Di Lodovico, S.; Cimarelli, M.E.; Brenciani, A.; Nostro, A.; Cellini, L.; Facinelli, B. Curcumin, an antibiotic resistance breaker against a multiresistant clinical isolate of mycobacterium abscessus. Phytother. Res. 2018, 32, 488–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izui, S.; Sekine, S.; Maeda, K.; Kuboniwa, M.; Takada, A.; Amano, A.; Nagata, H. Antibacterial activity of curcumin against periodontopathic bacteria. J. Periodontol. 2016, 87, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Mody, D.; Athamneh, A.I.M.; Seleem, N.M. Curcumin: A natural derivative with antibacterial activity against clostridium difficile. J. Glob. Antimicrob. Resist. 2020, 21, 154–161. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31622683 (accessed on 3 February 2022). [CrossRef] [PubMed]
- Varshney, G.K.; Saini, R.K.; Gupta, P.K.; Das, K. Effect of curcumin on the diffusion kinetics of a hemicyanine dye, lds-698, across a lipid bilayer probed by second harmonic spectroscopy. Langmuir 2013, 29, 2912–2918. [Google Scholar] [CrossRef]
- Barry, J.; Fritz, M.; Brender, J.R.; Smith, P.E.; Lee, D.K.; Ramamoorthy, A. Determining the effects of lipophilic drugs on membrane structure by solid-state nmr spectroscopy: The case of the antioxidant curcumin. J. Am. Chem. Soc. 2009, 131, 4490–4498. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal activity of curcumin i is associated with damaging of bacterial membrane. PLoS ONE 2015, 10, e0121313. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.R.U.; Zhao, H.; Huang, L. Antibacterial mechanism of curcumin: A review. Chem. Biodivers. 2020, 17, e2000171. Available online: https://www.ncbi.nlm.nih.gov/pubmed/32533635 (accessed on 3 February 2022). [CrossRef]
- Deryabin, D.; Galadzhieva, A.; Kosyan, D.; Duskaev, G. Plant-derived inhibitors of ahl-mediated quorum sensing in bacteria: Modes of action. Int. J. Mol. Sci. 2019, 20, 5588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brackman, G.; Coenye, T. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 2015, 21, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Li, T.; Li, J. Impact of curcumin liposomes with anti-quorum sensing properties against foodborne pathogens aeromonas hydrophila and serratia grimesii. Microb. Pathog. 2018, 122, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.P.; Santos, M.S.; Rodrigues, P.L.F.; Araújo, T.S.D.; de Oliveira, J.M.; Rosa, L.P.; Bagnato, V.S.; da Silva, F.C. Photodynamic therapry with curcumin in the reduction of enterococcus faecalis biofilm in bone cavity: Rmicrobiological and spectral fluorescense analysis. Photodiagn. Photodyn. Ther. 2021, 33, 102084. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.A.; Lima, E.M.F.; Franco, B.; Pinto, M.U. Exploring phenolic compounds as quorum sensing inhibitors in foodborne bacteria. Front. Microbiol. 2021, 12, 735931. [Google Scholar] [CrossRef] [PubMed]
- Gayani, B.; Dilhari, A.; Wijesinghe, G.K.; Kumarage, S.; Abayaweera, G.; Samarakoon, S.R.; Perera, I.C.; Kottegoda, N.; Weerasekera, M.M. Effect of natural curcuminoids-intercalated layered double hydroxide nanohybrid against staphylococcus aureus, pseudomonas aeruginosa, and enterococcus faecalis: A bactericidal, antibiofilm, and mechanistic study. Microbiologyopen 2019, 8, e00723. [Google Scholar] [CrossRef]
- Niu, X.; Gao, Y.; Yu, Y.; Yang, Y.; Wang, G.; Sun, L.; Wang, H. Molecular modelling reveals the inhibition mechanism and structure-activity relationship of curcumin and its analogues to staphylococcal aureus sortase A. J. Biomol. Struct. Dyn. 2019, 37, 1220–1230. [Google Scholar] [CrossRef]
- Packiavathy, I.A.; Priya, S.; Pandian, S.K.; Ravi, V.A. Inhibition of biofilm development of uropathogens by curcumin–An anti-quorum sensing agent from curcuma longa. Food Chem. 2014, 148, 453–460. [Google Scholar] [CrossRef]
- Hu, P.; Huang, P.; Chen, W.M. Curcumin reduces streptococcus mutans biofilm formation by inhibiting sortase a activity. Arch. Oral Biol. 2013, 58, 1343–1348. [Google Scholar] [CrossRef]
- Hu, P.; Huang, P.; Chen, M.W. Curcumin inhibits the sortase a activity of the streptococcus mutans ua159. Appl. Biochem. Biotechnol. 2013, 171, 396–402. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Lin, H.; Zhou, Y. Curcumin as a promising antibacterial agent: Effects on metabolism and biofilm formation in s. Mutans. Biomed. Res. Int. 2018, 2018, 4508709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magesh, H.; Kumar, A.; Alam, A.; Sekar, U.; Priyam; Sumantran, V.N.; Vaidyanathan, R. Identification of natural compounds which inhibit biofilm formation in clinical isolates of klebsiella pneumoniae. Indian J. Exp. Biol. 2013, 51, 764–772. [Google Scholar] [PubMed]
- Zhu, H.; He, C.C.; Chu, H.Q. Inhibition of quorum sensing in chromobacterium violaceum by pigments extracted from auricularia auricular. Lett. Appl. Microbiol. 2011, 52, 269–274. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21204879 (accessed on 3 February 2022). [CrossRef] [PubMed]
- Rai, D.; Singh, J.K.; Roy, N.; Panda, D. Curcumin inhibits ftsz assembly: An attractive mechanism for its antibacterial activity. Biochem. J. 2008, 410, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, S.; Lutkenhaus, J. At the heart of bacterial cytokinesis: The z ring. Trends Microbiol. 2019, 27, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Modi, N.H.; Panda, D.; Roy, N. Probing the binding site of curcumin in escherichia coli and bacillus subtilis ftsz – A structural insight to unveil antibacterial activity of curcumin. Eur. J. Med. Chem. 2010, 45, 4209–4214. [Google Scholar] [CrossRef]
- Allocati, N.; Masulli, M.; Di Ilio, C.; De Laurenzi, V. Die for the community: An overview of programmed cell death in bacteria. Cell Death Dis. 2015, 6, e1609. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, D.J.; Camacho, D.M.; Kohanski, M.A.; Callura, J.M.; Collins, J.J. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell 2012, 46, 561–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezraty, B.; Gennaris, A.; Barras, F.; Collet, F.J. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 2017, 15, 385–396. [Google Scholar] [CrossRef]
- Butala, M.; Zgur-Bertok, D.; Busby, J.S. The bacterial lexa transcriptional repressor. Cell Mol. Life Sci. 2009, 66, 82–93. [Google Scholar] [CrossRef]
- Ghasemi, M.; Khorsandi, K.; Kianmehr, Z. Photodynamic inactivation with curcumin and silver nanoparticles hinders pseudomonas aeruginosa planktonic and biofilm formation: Evaluation of glutathione peroxidase activity and ros production. World J. Microbiol. Biotechnol. 2021, 37, 149. [Google Scholar] [CrossRef] [PubMed]
- Ghate, V.S.; Zhou, W.; Yuk, G.H. Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Compr. Rev. Food Sci. Food Saf. 2019, 18, 402–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nima, G.; Soto-Montero, J.; Alves, L.A.; Mattos-Graner, R.O.; Giannini, M. Photodynamic inactivation of streptococcus mutans by curcumin in combination with edta. Dent. Mater. 2021, 37, e1–e14. [Google Scholar] [CrossRef]
- Jiang, Y.; Leung, A.W.; Hua, H.; Rao, X.; Xu, C. Photodynamic action of led-activated curcumin against Staphylococcus aureus involving intracellular ros increase and membrane damage. Int. J. Photoenergy 2014, 2014, 637601. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Chen, B.; Li, H.; Zeng, Q.-H.; Wang, J.J.; Liu, H.; Pan, Y.; Zhao, Y. Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against listeria monocytogenes. Food Control 2020, 108, 106886. Available online: https://www.sciencedirect.com/science/article/pii/S095671351930475X (accessed on 3 February 2022). [CrossRef]
- Chen, B.; Huang, J.; Liu, Y.; Liu, H.; Zhao, Y.; Wang, J.J. Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with vibrio parahaemolyticus during storage at different temperature. Int. J. Food Microbiol. 2021, 345, 109152. Available online: https://www.sciencedirect.com/science/article/pii/S0168160521001112 (accessed on 3 February 2022). [CrossRef]
- Zangirolami, A.C.; Dias, L.D.; Blanco, K.C.; Vinagreiro, C.S.; Inada, N.M.; Arnaut, L.G.; Pereira, M.M.; Bagnato, S.V. Avoiding ventilator-associated pneumonia: Curcumin-functionalized endotracheal tube and photodynamic action. Proc. Natl. Acad. Sci. USA 2020, 117, 22967–22973. [Google Scholar] [CrossRef]
- Belenky, P.; Ye, J.D.; Porter, C.B.; Cohen, N.R.; Lobritz, M.A.; Ferrante, T.; Jain, S.; Korry, B.J.; Schwarz, E.G.; Walker, G.C.; et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 2015, 13, 968–980. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Huang, X.; Wang, X.; Yan, S.; Guo, S.; Abdalla, A.E.; Huang, C.; Xie, J. L-serine potentiates fluoroquinolone activity against escherichia coli by enhancing endogenous reactive oxygen species production. J. Antimicrob. Chemother. 2016, 71, 2192–2199. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, O.S.; Obeme-Imom, J.I.; Akpor, B.O.; Rotimi, D.; Batiha, G.E.; Owolabi, A. Altered redox status, DNA damage and modulation of l-tryptophan metabolism contribute to antimicrobial action of curcumin. Heliyon 2020, 6, e03495. [Google Scholar] [CrossRef]
- Marathe, S.A.; Sen, M.; Dasgupta, I.; Chakravortty, D. Differential modulation of intracellular survival of cytosolic and vacuolar pathogens by curcumin. Antimicrob. Agents Chemother. 2012, 56, 5555–5567. Available online: https://www.ncbi.nlm.nih.gov/pubmed/22890770 (accessed on 3 February 2022). [CrossRef] [Green Version]
- Case, E.D.; Smith, J.A.; Ficht, T.A.; Samuel, J.E.; de Figueiredo, P. Space: A final frontier for vacuolar pathogens. Traffic 2016, 17, 461–474. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26842840 (accessed on 3 February 2022). [CrossRef] [PubMed] [Green Version]
- Ogawa, M.; Sasakawa, C. Intracellular survival of shigella. Cell Microbiol. 2006, 8, 177–184. Available online: https://www.ncbi.nlm.nih.gov/pubmed/16441429 (accessed on 3 February 2022). [CrossRef] [PubMed]
- Bai, X.; Oberley-Deegan, R.E.; Bai, A.; Ovrutsky, A.R.; Kinney, W.H.; Weaver, M.; Zhang, G.; Honda, J.R.; Chan, D.E. Curcumin enhances human macrophage control of mycobacterium tuberculosis infection. Respirology 2016, 21, 951–957. Available online: https://www.ncbi.nlm.nih.gov/pubmed/27012592 (accessed on 3 February 2022). [CrossRef]
- Bush, K. Synergistic antibiotic combinations. In Antibacterials; Fisher, J.F., Mobashery, S., Miller, J.M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 69–88. [Google Scholar]
- Gülen, D.; Şafak, B.; Erdal, B.; Günaydın, B. Curcumin-meropenem synergy in carbapenem resistant klebsiella pneumoniae curcumin-meropenem synergy. Iran. J. Microbiol. 2021, 13, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, N.K.; Sreekala, S.R.; Jacob, J.; Nambisan, B. In vitro synergistic effect of curcumin in combination with third generation cephalosporins against bacteria associated with infectious diarrhea. Biomed. Res. Int. 2014, 2014, 561456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, E.; Sharma, S.; Jadhav, K.; Banerjee, R. Combinatorial liposomes of berberine and curcumin inhibit biofilm formation and intracellular methicillin resistant staphylococcus aureus infections and associated inflammation. J. Mater. Chem. B 2021, 9, 864–875. [Google Scholar] [CrossRef]
- Gholami, M.; Zeighami, H.; Bikas, R.; Heidari, A.; Rafiee, F.; Haghi, F. Inhibitory activity of metal-curcumin complexes on quorum sensing related virulence factors of pseudomonas aeruginosa pao1. AMB Express 2020, 10, 111. [Google Scholar] [CrossRef]
- Jawetz, E. Polymyxins, colistin, bacitracin, ristocetin and vancomycin. Pediatr. Clin. N. Am. 1968, 15, 85–94. [Google Scholar] [CrossRef]
- Dixon, R.A.; Chopra, I. Polymyxin b and polymyxin b nonapeptide alter cytoplasmic membrane permeability in escherichia coli. J. Antimicrob. Chemother. 1986, 18, 557–563. Available online: https://www.ncbi.nlm.nih.gov/pubmed/3027012 (accessed on 3 February 2022). [CrossRef]
- Sampson, T.R.; Liu, X.; Schroeder, M.R.; Kraft, C.S.; Burd, E.M.; Weiss, S.D. Rapid killing of acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob. Agents Chemother. 2012, 56, 5642–5649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.; Wang, Y.; Sharma, G.; Shen, J.; Velkov, T.; Xiao, X. Polymyxins-curcumin combination antimicrobial therapy: Safety implications and efficacy for infection treatment. Antioxidants 2020, 9, 506. [Google Scholar] [CrossRef] [PubMed]
- Ahmida, M.H. Protective role of curcumin in nephrotoxic oxidative damage induced by vancomycin in rats. Exp. Toxicol. Pathol. 2012, 64, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, K.G.; Peter, J.G.; Trubiano, J.A.; Phillips, J.E. Antibiotic allergy. Lancet 2019, 393, 183–198. [Google Scholar] [CrossRef]
- Yadav, S.; Singh, A.K.; Agrahari, A.K.; Pandey, A.K.; Gupta, M.K.; Chakravortty, D.; Tiwari, V.K.; Prakash, P. Galactose-clicked curcumin-mediated reversal of meropenem resistance among klebsiella pneumoniae by targeting its carbapenemases and the acrab-tolc efflux system. Antibiotics 2021, 10, 388. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.H.; Joung, D.K.; Kim, Y.S.; Kang, O.H.; Kim, S.B.; Seo, Y.S.; Kim, Y.C.; Lee, D.S.; Shin, D.W.; Kweon, K.T.; et al. Synergistic antibacterial effect of curcumin against methicillin-resistant staphylococcus aureus. Phytomedicine 2013, 20, 714–718. [Google Scholar] [CrossRef]
- Wang, S.; Kim, M.C.; Kang, O.H.; Kwon, Y.D. The mechanism of bisdemethoxycurcumin enhances conventional antibiotics against methicillin-resistant staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 7945. [Google Scholar] [CrossRef]
- Stokes, J.M.; Lopatkin, A.J.; Lobritz, M.A.; Collins, J.J. Bacterial metabolism and antibiotic efficacy. Cell Metab. 2019, 30, 251–259. [Google Scholar] [CrossRef]
- Bahari, S.; Zeighami, H.; Mirshahabi, H.; Roudashti, S.; Haghi, F. Inhibition of pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J. Glob. Antimicrob. Resist. 2017, 10, 21–28. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elhakim, Y.M.; Abdel-Motal, S.M.; Malhat, S.M.; Mostafa, H.I.; Moselhy, A.A.A.; Beheiry, R.R.; Said, N.E. Curcumin mitigates neurotoxic and neurobehavioral changes of gentamicin and sodium salicylate in rats by adjusting oxidative stress and apoptosis. Life Sci. 2021, 265, 118824. [Google Scholar] [CrossRef]
- Parnham, M.J.; Erakovic Haber, V.; Giamarellos-Bourboulis, E.J.; Perletti, G.; Verleden, G.M.; Vos, R. Azithromycin: Mechanisms of action and their relevance for clinical applications. Pharmacol. Ther. 2014, 143, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Chan, F.Y.; Lu, Y.J.; Neves, M.A.; Lui, H.K.; Wang, Y.; Chow, K.Y.; Chan, K.F.; Yan, S.C.; Leung, Y.C.; et al. Rational design of berberine-based ftsz inhibitors with broad-spectrum antibacterial activity. PLoS ONE 2014, 9, e97514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domadia, P.N.; Bhunia, A.; Sivaraman, J.; Swarup, S.; Dasgupta, D. Berberine targets assembly of escherichia coli cell division protein ftsz. Biochemistry 2008, 47, 3225–3234. [Google Scholar] [CrossRef] [PubMed]
- Gordon, N.C.; Wareham, W.D. Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (egcg) against clinical isolates of stenotrophomonas maltophilia. Int. J. Antimicrob. Agents 2010, 36, 129–131. [Google Scholar] [CrossRef]
- Betts, J.W.; Wareham, W.D. In vitro activity of curcumin in combination with epigallocatechin gallate (egcg) versus multidrug-resistant acinetobacter baumannii. BMC Microbiol. 2014, 14, 172. [Google Scholar] [CrossRef] [Green Version]
- Hatano, T.; Tsugawa, M.; Kusuda, M.; Taniguchi, S.; Yoshida, T.; Shiota, S.; Tsuchiya, T. Enhancement of antibacterial effects of epigallocatechin gallate, using ascorbic acid. Phytochemistry 2008, 69, 3111–3116. [Google Scholar] [CrossRef]
- Lade, H.; Paul, D.; Kweon, H.J. Combined effects of curcumin and (-)-epigallocatechin gallate on inhibition of n-acylhomoserine lactone-mediated biofilm formation in wastewater bacteria from membrane bioreactor. J. Microbiol. Biotechnol. 2015, 25, 1908–1919. [Google Scholar] [CrossRef]
- Lemire, J.A.; Harrison, J.J.; Turner, J.R. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Lyu, Y.; Yu, M.; Liu, Q.; Zhang, Q.; Liu, Z.; Tian, Y.; Li, D.; Changdao, M. Synthesis of silver nanoparticles using oxidized amylose and combination with curcumin for enhanced antibacterial activity. Carbohydr. Polym. 2020, 230, 115573. [Google Scholar] [CrossRef]
- Song, Z.; Wu, Y.; Wang, H.; Han, H. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ros-mediated pathways. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Targhi, A.A.; Moammeri, A.; Jamshidifar, E.; Abbaspour, K.; Sadeghi, S.; Lamakani, L.; Akbarzadeh, I. Synergistic effect of curcumin-cu and curcumin-ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorg. Chem. 2021, 115, 105116. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Saha, T.; Behera, S.; Gupta, S.; Das, S.; Mukhopadhyay, K. Enhanced efficacy of a Cu2+ complex of curcumin against gram-positive and gram-negative bacteria: Attributes of complex formation. J. Inorg. Biochem. 2021, 222, 111494. [Google Scholar] [CrossRef]
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Anil Kumar, N.V.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of curcumin: A review of clinical trials. Eur. J. Med. Chem. 2019, 163, 527–545. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, A.M. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef]
- Evaluation of Certain Food Additives and Contaminants; WHO Technical Report Series; WHO: Geneva, Switzerland, 2013; pp. 1–75.
- Momeni, H.R.; Eskandari, N. Curcumin protects the testis against cadmium-induced histopathological damages and oxidative stress in mice. Hum. Exp. Toxicol. 2020, 39, 653–661. [Google Scholar] [CrossRef]
- Kim, K.S.; Lim, H.J.; Lim, J.S.; Son, J.Y.; Lee, J.; Lee, B.M.; Chang, S.C.; Kim, S.H. Curcumin ameliorates cadmium-induced nephrotoxicity in sprague-dawley rats. Food Chem. Toxicol. 2018, 114, 34–40. [Google Scholar] [CrossRef]
- Li, S.; Liu, R.; Wei, G.; Guo, G.; Yu, H.; Zhang, Y.; Ishfaq, M.; Fazilani, S.A.; Zhang, X. Curcumin protects against aflatoxin b1-induced liver injury in broilers via the modulation of long non-coding rna expression. Ecotoxicol. Environ. Saf. 2021, 208, 111725. [Google Scholar] [CrossRef]
- Cheng, P.; Ishfaq, M.; Yu, H.; Yang, Y.; Li, S.; Li, X.; Fazlani, S.A.; Guo, W.; Zhang, X. Curcumin ameliorates duodenal toxicity of afb1 in chicken through inducing p-glycoprotein and downregulating cytochrome p450 enzymes. Poult. Sci. 2020, 99, 7035–7045. [Google Scholar] [CrossRef] [PubMed]
- Kundu, P.; De, R.; Pal, I.; Mukhopadhyay, A.K.; Saha, D.R.; Swarnakar, S. Curcumin alleviates matrix metalloproteinase-3 and -9 activities during eradication of helicobacter pylori infection in cultured cells and mice. PLoS ONE 2011, 6, e16306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; et al. Phase i clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21, 2895–2900. [Google Scholar] [PubMed]
- Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; et al. Phase i clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004, 10, 6847–6854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panahi, Y.; Karbasi, A.; Valizadegan, G.; Ostadzadeh, N.; Soflaei, S.S.; Jamialahmadi, T.; Majeed, M.; Sahebkar, A. Effect of curcumin on severity of functional dyspepsia: A triple blinded clinical trial. Adv. Exp. Med. Biol. 2021, 1308, 119–126. [Google Scholar] [CrossRef]
- Taghavi Kevij, H.; Salami, M.; Mohammadian, M.; Khodadadi, M. Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the ph-driven method. Food Hydrocoll. 2020, 108, 106026. Available online: https://www.sciencedirect.com/science/article/pii/S0268005X20306044 (accessed on 3 February 2022). [CrossRef]
- Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res. 2018, 32, 985–995. [Google Scholar] [CrossRef]
- Kotha, R.R.; Luthria, L.D. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef] [Green Version]
- Adahoun, M.A.; Al-Akhras, M.H.; Jaafar, M.S.; Bououdina, M. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artif. Cells Nanomed. Biotechnol. 2017, 45, 98–107. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26747522 (accessed on 3 February 2022). [CrossRef]
- Ezati, P.; Rhim, W.J. Ph-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydr. Polym. 2020, 230, 115638. [Google Scholar] [CrossRef]
- Sharifi, S.; Fathi, N.; Memar, M.Y.; Hosseiniyan Khatibi, S.M.; Khalilov, R.; Negahdari, R.; Zununi Vahed, S.; Maleki Dizaj, S. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother. Res. 2020, 34, 1926–1946. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, Y.; Lee, R.J.; Xiang, G. Nano encapsulated curcumin: And its potential for biomedical applications. Int. J. Nanomed. 2020, 15, 3099–3120. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.R.; Suresh, S.; Devi, K.; Yadav, S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech 2009, 10, 752–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Lu, Z.; Wu, H.; Lv, F. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int. J. Food Microbiol. 2009, 136, 71–74. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19775769 (accessed on 3 February 2022). [CrossRef]
- Varaprasad, K.; Vimala, K.; Ravindra, S.; Narayana Reddy, N.; Venkata Subba Reddy, G.; Mohana Raju, K. Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. J. Mater. Sci. Mater. Med. 2011, 22, 1863–1872. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21681658 (accessed on 3 February 2022). [CrossRef]
- Singh, A.K.; Prakash, P.; Singh, R.; Nandy, N.; Firdaus, Z.; Bansal, M.; Singh, R.K.; Srivastava, A.; Roy, J.K.; Mishra, B.; et al. Curcumin quantum dots mediated degradation of bacterial biofilms. Front. Microbiol. 2017, 8, 1517. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28848526 (accessed on 3 February 2022). [CrossRef] [Green Version]
- Gao, M.Q.; Long, X.; Du, J.; Teng, M.T.; Zhang, W.C.; Wang, Y.T.; Wang, X.Q.; Wang, Z.Y.; Zhang, P.; Li, J. Enhanced curcumin solubility and antibacterial activity by encapsulation in plga oily core nanocapsules. Food Funct. 2020, 11, 448–455. [Google Scholar] [CrossRef]
- Shariati, A.; Asadian, E.; Fallah, F.; Azimi, T.; Hashemi, A.; Sharahi, J.Y.; Moghadam, T.M. Evaluation of nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant pseudomonas aeruginosa isolated from burn wound infection in tehran, iran. Infect. Drug Resist. 2019, 12, 2223–2235. [Google Scholar] [CrossRef] [Green Version]
- Leng, Q.Q.; Li, Y.; Pang, X.L.; Wang, B.Q.; Wu, Z.X.; Lu, Y.; Xiong, K.; Zhao, L.; Zhou, P.; Fu, Z.S. Curcumin nanoparticles incorporated in pva/collagen composite films promote wound healing. Drug Deliv. 2020, 27, 1676–1685. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Varaprasad, K.; Akbari-Fakhrabadi, A.; Hameed, A.S.H.; Sadiku, R. Biomolecule chitosan, curcumin and zno-based antibacterial nanomaterial, via a one-pot process. Carbohydr. Polym. 2020, 249, 116825. [Google Scholar] [CrossRef]
Bacteria Type | Antibacterial Activity | References |
---|---|---|
Staphylococcus aureus | Growth inhibition, inhibition of cell division or biofilm formation inhibition | [28,29,30] |
Staphylococcus epidermidis | Growth inhibition or biofilm formation inhibition | [31] |
Streptococcus pyogenes | Growth inhibition | [32] |
Bacillus subtilis | Growth inhibition, or cell division inhibition | [23,28,30,33] |
Bacillus cereus | Growth inhibition, or biofilm formation inhibition | [34,35] |
Listeria innocua | Growth inhibition | [36] |
Helicobacter pylori | Growth inhibition | [37,38,39] |
Pseudomonas aeruginosa | Growth inhibition, biofilm formation inhibition, or inhibition of cell division | [28,29,30,33] |
Escherichia coli | Growth inhibition, biofilm formation inhibition, or inhibition of cell division | [8,28,30,33] |
Streptococcus mutans | Adhesion inhibition, biofilm formation inhibition | [40] |
Salmonella entericaserotype Typhmurium | Growth inhibition, or inhibition of surface motility | [41,42] |
Klebsiella pneumoniae | Growth inhibition | [8,9,33] |
Acinetobacter baumannii | Growth inhibition, biofilm formation inhibition or inhibition of the surface motility | [8,43] |
Enterococcus faecium | Growth inhibition | [8,28,33] |
Mycobacterium abscessus | Growth inhibition, or biofilm formation inhibition | [44] |
Porphyromonas gingivalis | Growth inhibition, or biofilm formation inhibition | [45] |
Clostridium difficile | Growth inhibition | [46] |
Bacteria Type | Targets or Action Model of Curcumin | References |
---|---|---|
Staphylococcus aureus | By inhibiting the activity of sortase A by interaction with VAL-168, LEU-169, and GLN-172 sites based on curcumin and its analog methoxyl group on the benzene ring | [30,57] |
Enterococcus faecalis | Unclear | [54] |
Listeria monocytogenes | By circumventing the limitations to singlet-oxygen diffusion imposed by the extracellular matrix | [36] |
Bacillus cereus | Unclear | [35] |
Helicobacter pylori | By inhibiting biofilm maturation | [38] |
Pseudomonas aeruginosa | By inhibiting the production of the QS-dependent factors, such as exopolysaccharide production, alginate production, swimming, and swarming motility of uropathogens | [30,58] |
Escherichia coli | Similar to Pseudomonas aeruginosa | [58] |
Streptococcus mutans | By inhibiting sortase A activity; suppressing the expression of genes related to extracellular polysaccharide synthesis, carbohydrate metabolism, adherence, and the two-component transduction system | [59,60,61] |
Serratia marcescens | By inhibiting the production of violacein production in a QS-independent manner, as well as swimming and swarming motility. | [55] |
Klebsiella pneumoniae | Unclear | [62] |
Acinetobacter baumannii | By blocking BfmR, which is a response regulator in a two-component signal transduction system | [43] |
Aeromonas hydrophila | Inhibition of violacein production and swimming motility | [53,63] |
Porphyromonas gingivalis | By inhibiting the activities of Arg-- and Lys-specific proteinase (named RGP and KGP, respectively) | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, C.; Lin, J.; Li, H.; Shen, Z.; Wang, Y.; Velkov, T.; Shen, J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants 2022, 11, 459. https://doi.org/10.3390/antiox11030459
Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, Shen J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants. 2022; 11(3):459. https://doi.org/10.3390/antiox11030459
Chicago/Turabian StyleDai, Chongshan, Jiahao Lin, Hui Li, Zhangqi Shen, Yang Wang, Tony Velkov, and Jianzhong Shen. 2022. "The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems" Antioxidants 11, no. 3: 459. https://doi.org/10.3390/antiox11030459
APA StyleDai, C., Lin, J., Li, H., Shen, Z., Wang, Y., Velkov, T., & Shen, J. (2022). The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants, 11(3), 459. https://doi.org/10.3390/antiox11030459