High-Yield Production of a Rich-in-Hydroxytyrosol Extract from Olive (Olea europaea) Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Olive Leaves
2.2. Quantification and Analyses
2.2.1. Quantification of Hydroxytyrosol
2.2.2. Total Phenolic Content (TPC) and Total Dissolved Sugars
2.2.3. Oxygen Radical Absorbance Capacity (ORAC)
2.3. Solid–Liquid Extraction
2.4. Acid Hydrolysis
2.5. Liquid–Liquid Extraction
3. Results and Discussion
3.1. Pretreatment
3.2. Solid–Lliquid Extraction
3.3. Recovery of Hydroxytyrosol
3.4. Hydrolysis of Oleuropein
3.5. Experiments with H2SO4 as the Hydrolysis Medium
3.6. Antioxidant Capacity of the Rich-In-Hydroxytyrosol Extract
3.7. Proposed Process Scheme
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Bergeron, C.; Carrier, D.J.; Ramaswamy, S. Overview of the Chemistry of Primary and Secondary Plant Metabolites. In Biorefinery Co-Products: Phytochemicals, Primary Metabolites and Value-Added Biomass Processing; Wiley: Hoboken, NJ, USA, 2012; pp. 19–35. ISBN 9780470973578. [Google Scholar]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verpoorte, R. Exploration of nature’s chemodiversity: The role of secondary metabolites as leads in drug development. Drug Discov. Today 1998, 3, 232–2383. [Google Scholar] [CrossRef]
- Kurian, J.K.; Nair, G.R.; Hussain, A.; Raghavan, G.V. Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review. Renew. Sustain. Energy Rev. 2013, 25, 205–219. [Google Scholar] [CrossRef]
- El, S.N.; Karakaya, S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr. Rev. 2009, 67, 632–638. [Google Scholar] [CrossRef]
- Hassen, I.; Casabianca, H.; Hosni, K. Biological activities of the natural antioxidant oleuropein: Exceeding the expectation—A mini-review. J. Funct. Foods 2015, 18, 926–940. [Google Scholar] [CrossRef]
- Wichers, H.J.; Soler-rivas, C.; Espı, J.C. Review Oleuropein and related compounds. J. Sci. Food Agric. 2000, 80, 1013–1023. [Google Scholar]
- Granados-Principal, S.; Quiles, J.L.; Ramírez-Tortosa, C.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C. Hydroxytyrosol: From laboratory investigations to future clinical trials. Nutr. Rev. 2010, 68, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Bolanos, J.; Lopez, O.; Fernandez-Bolanos, J.; Rodriguez-Gutierrez, G. Hydroxytyrosol and Derivatives: Isolation, Synthesis, and Biological Properties. Curr. Org. Chem. 2008, 12, 442–463. [Google Scholar] [CrossRef]
- Capasso, R.; Evidente, A.; Avolio, S.; Solla, F. A Highly Convenient Synthesis of Hydroxytyrosol and Its Recovery from Agricultural Waste Waters. J. Agric. Food Chem. 1999, 47, 1745–1748. [Google Scholar] [CrossRef]
- Fernández-Bolaños, J.; Rodríguez, G.; Rodríguez, R.; Heredia, A.; Guillén, A.R.; Jiménez, A. Production in Large Quantities of Highly Purified Hydroxytyrosol from Liquid−Solid Waste of Two-Phase Olive Oil Processing or “Alperujo”. J. Agric. Food Chem. 2002, 50, 6804–6811. [Google Scholar] [CrossRef] [PubMed]
- Allouche, N.; Fki, A.I.; Sayadi, S. Toward a High Yield Recovery of Antioxidants and Purified Hydroxytyrosol from Olive Mill Wastewaters. J. Agric. Food Chem. 2003, 52, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: New York, NY, USA, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Josefsson, B.; Uppström, L.; Östling, G. Automatic spectrophotometric procedures for the determination of the total amount of dissolved carbohydrates in sea water. Deep Sea Res. Oceanogr. Abstr. 1972, 19, 385–395. [Google Scholar] [CrossRef]
- Gillespie, K.M.; Chae, J.M.; Ainsworth, E.A. Rapid measurement of total antioxidant capacity in plants. Nat. Protoc. 2007, 2, 867–870. [Google Scholar] [CrossRef]
- Erbay, Z.; Icier, F. Optimization of Drying of Olive Leaves in a Pilot-Scale Heat Pump Dryer. Dry. Technol. 2009, 27, 416–427. [Google Scholar] [CrossRef]
- Kamran, M.; Hamlin, A.S.; Scott, C.J.; Obied, H.K. Drying at high temperature for a short time maximizes the recovery of olive leaf biophenols. Ind. Crops Prod. 2015, 78, 29–38. [Google Scholar] [CrossRef]
- Ahmad-Qasem, M.H.; Barrajón-Catalán, E.; Micol, V.; Mulet, A.; García-Pérez, J.V. Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Res. Int. 2013, 50, 189–196. [Google Scholar] [CrossRef]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef]
- Zagklis, D.; Paraskeva, C.A. Isolation of organic compounds with high added values from agro-industrial solid wastes. J. Environ. Manag. 2018, 216, 183–191. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Goulas, V.; Tsakona, S.; Manganaris, G.A.; Gekas, V. A Knowledge Base for The Recovery of Natural Phenols with Different Solvents. Int. J. Food Prop. 2013, 16, 382–396. [Google Scholar] [CrossRef] [Green Version]
- Cifá, D.; Skrt, M.; Pittia, P.; Di Mattia, C.; Ulrih, N.P. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci. Nutr. 2018, 6, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Yateem, H.; Afaneh, P.; Al-Rimawi, F. Optimum Conditions for Oleuropein Extraction from Olive Leaves. Int. J. Appl. Sci. Technol. 2014, 4, 153–157. [Google Scholar]
- Orians, C. Preserving leaves for tannin and phenolic glycoside analyses: A comparison of methods using three willow taxa. J. Chem. Ecol. 1995, 21, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Abascal, K.; Ganora, L.; Yarnell, E. The effect of freeze-drying and its implications for botanical medicine: A review. Phytother. Res. 2005, 19, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Turkben, C.; Sarıburun, E.; Demir, C.; Uylaşer, V.; Sariburun, E. Effect of Freezing and Frozen Storage on Phenolic Compounds of Raspberry and Blackberry Cultivars. Food Anal. Methods 2009, 3, 144–153. [Google Scholar] [CrossRef]
- De Marco, E.; Savarese, M.; Paduano, A.; Sacchi, R. Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 2007, 104, 858–867. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Navarro, D.; Maunier, S.; Sigoillot, J.-C.; Lorquin, J.; Delattre, M.; Simon, J.-L.; Asther, M.; Labat, M. Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 2001, 75, 501–507. [Google Scholar] [CrossRef]
- Lee, O.-H.; Lee, B.-Y.; Lee, J.; Lee, H.-B.; Son, J.-Y.; Park, C.-S.; Shetty, K.; Kim, Y.-C. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresour. Technol. 2009, 100, 6107–6113. [Google Scholar] [CrossRef]
Extracted Material | Moisture Content (%) | Solvent | TPC (g/kg d.w.) | Reducing Sugars (g/kg d.w.) |
---|---|---|---|---|
Olive leaves (fresh, cut) | 51.2 | Tap water | 10.74 ± 0.04 | 118.0 ± 0.0 |
50% (v/v) ethanol | 19.23 ± 0.12 | 114.4 ± 0.8 | ||
1 Olive leaves (dried, grinded) | 5.6 | Tap water | 20.86 ± 0.64 | 127.1 ± 6.0 |
50% (v/v) ethanol | 39.82 ± 1.16 | 139.8 ± 17.8 | ||
2 Olive leaves (dried, grinded) | 5.7 | Tap water | 19.40 ± 0.0 | 116.0 ± 9.8 |
50% (v/v) ethanol | 36.48 ± 0.07 | 131.6 ± 2.0 |
Solvent Used for Extraction | TPC (g/kg d.w.) | Sugars (g/kg d.w.) |
---|---|---|
Tap water | 58.42 | 188.80 |
1 3 M HCl(aq.) | 43.51 | 240.92 |
2 3 M HCl(aq.) | 43.34 | 147.56 |
pH of Aqueous Phase | Extract (g/kg d.w.) | Sugars (g/kg d.w.) | TPC (g/kg d.w.) | Hydroxytyrosol (g/kg d.w.) | Hydroxytyrosol in Extract (%) |
---|---|---|---|---|---|
1 | 51.07 ± 7.70 | 4.01 ± 0.64 | 19.86 ± 3.46 | 2.33 ± 0.03 | 4.57 ± 0.75 |
2 | 44.07 ± 5.23 | 4.01 ± 0.22 | 17.72 ± 3.46 | 2.45 ± 0.23 | 5.56 ± 1.18 |
4 | 36.08 ± 5.78 | 3.91 ± 0.05 | 17.50 ± 3.61 | 2.67 ± 0.18 | 7.40 ± 1.70 |
6 | 17.44 ± 3.82 | 1.74 ± 0.65 | 10.36 ± 4.15 | 2.35 ± 0.29 | 13.48 ± 4.64 |
8 | 11.17 ± 1.36 | 2.07 ± 0.40 | 8.92 ± 1.78 | 2.60 ± 0.11 | 23.23 ± 3.83 |
9 | 9.08 ± 0.86 | 1.34 ± 0.37 | 5.40 ± 0.52 | 2.26 ± 0.08 | 24.84 ± 3.30 |
10 | 6.10 ± 0.16 | 1.39 ± 0.09 | 3.64 ± 0.05 | 1.36 ± 0.02 | 22.33 ± 0.93 |
11 | 3.61 ± 0.04 | 1.62 ± 0.05 | 2.00 ± 0.21 | 0.38 ± 0.12 | 10.40 ± 3.57 |
12 | 2.42 ± 0.39 | ND * | 0.56 | ND * | ND * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papageorgiou, C.S.; Lyri, P.; Xintaropoulou, I.; Diamantopoulos, I.; Zagklis, D.P.; Paraskeva, C.A. High-Yield Production of a Rich-in-Hydroxytyrosol Extract from Olive (Olea europaea) Leaves. Antioxidants 2022, 11, 1042. https://doi.org/10.3390/antiox11061042
Papageorgiou CS, Lyri P, Xintaropoulou I, Diamantopoulos I, Zagklis DP, Paraskeva CA. High-Yield Production of a Rich-in-Hydroxytyrosol Extract from Olive (Olea europaea) Leaves. Antioxidants. 2022; 11(6):1042. https://doi.org/10.3390/antiox11061042
Chicago/Turabian StylePapageorgiou, Costas S., Paraskevi Lyri, Ioanna Xintaropoulou, Ioannis Diamantopoulos, Dimitris P. Zagklis, and Christakis A. Paraskeva. 2022. "High-Yield Production of a Rich-in-Hydroxytyrosol Extract from Olive (Olea europaea) Leaves" Antioxidants 11, no. 6: 1042. https://doi.org/10.3390/antiox11061042
APA StylePapageorgiou, C. S., Lyri, P., Xintaropoulou, I., Diamantopoulos, I., Zagklis, D. P., & Paraskeva, C. A. (2022). High-Yield Production of a Rich-in-Hydroxytyrosol Extract from Olive (Olea europaea) Leaves. Antioxidants, 11(6), 1042. https://doi.org/10.3390/antiox11061042