Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Herbal Material
2.3. Herbal Extract Preparation
2.4. Determination of Total Phenol Content
2.5. Determination of Total Flavonoid Content
2.6. Determination of Total Hydroxycinnamic Acid and Flavonol Content
2.7. LC-MS/MS Chromatography
2.8. DPPH Radical Scavenging Activity
2.9. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.10. Headspace Solid-Phase Microextraction and GC-MS (HS-SPME/GC-MS)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Determination of Total Phenol, Flavonoid, Hydroxycinnamic Acid and Flavonol Content
3.2. Polyphenolic Characterization of Sage, Wild Thyme and Laurel Herbal Extract and Their Mixtures
3.3. Headspace Solid-Phase Microextraction (HS-SPME/GC-MS)
3.4. Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poddar, S.; Sarkar, T.; Choudhury, S.; Chatterjee, S.; Ghosh, P. Indian Traditional Medicinal Plants: A Concise Review. Int. J. Bot. Stud. 2020, 5, 174–190. [Google Scholar]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional Beverages: The Emerging Side of Functional Foods Commercial Trends, Research, and Health Implications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Aadil, R.M.; Roobab, U.; Sahar, A.; Rahman, U.U.; Khalil, A.A. Functionality of Bioactive Nutrients in Beverages. In Nutrients in Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 237–276. ISBN 978-0-12-816842-4. [Google Scholar]
- Khalaf, A.T.; Wei, Y.; Alneamah, S.J.A.; Al-Shawi, S.G.; Kadir, S.Y.A.; Zainol, J.; Liu, X. What Is New in the Preventive and Therapeutic Role of Dairy Products as Nutraceuticals and Functional Foods? BioMed Res. Int. 2021, 2021, 8823222. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Arif, S.; Khan, R.; Nazir, W.; Khalid, N.; Maqsood, S. Opportunities and Challenges for Functional and Medicinal Beverages: Current and Future Trends. Trends Food Sci. Technol. 2019, 88, 513–526. [Google Scholar] [CrossRef]
- Rodino, S.; Butu, M. Herbal Extracts—New Trends in Functional and Medicinal Beverages. In Functional and Medicinal Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 73–108. ISBN 978-0-12-816397-9. [Google Scholar]
- Alejo-Armijo, A.; Altarejos, J.; Salido, S. Phytochemicals and Biological Activities of Laurel Tree (Laurus nobilis). Nat. Prod. Commun. 2017, 12, 743–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dent, M.; Dragović-Uzelac, V.; Penić, M.; Brncic, M.; Bosiljkov, T.; Levaj, B. The Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts. Food Technol. Biotechnol. 2013, 51, 84–91. [Google Scholar]
- Dent, M.; Kovačević, D.B.; Bosiljkov, T.; Dragović-Uzelac, V. Polyphenolic Composition and Antioxidant Capacity of Indigenous Wild Dalmatian Sage (Salvia officinalis L.). Croat. Chem. Acta 2017, 90, 451–460. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the Extraction Process of Polyphenols from Thymus serpyllum L. Herb Using Maceration, Heat- and Ultrasound-Assisted Techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Raudone, L.; Zymone, K.; Raudonis, R.; Vainoriene, R.; Motiekaityte, V.; Janulis, V. Phenological Changes in Triterpenic and Phenolic Composition of Thymus L. Species. Ind. Crops Prod. 2017, 109, 445–451. [Google Scholar] [CrossRef]
- Baydar, H.; Sangun, M.K.; Erbas, S.; Kara, N. Comparison of Aroma Compounds in Distilled and Extracted Products of Sage (Salvia officinalis L.). J. Essent. Oil Bear. Plants 2013, 16, 39–44. [Google Scholar] [CrossRef]
- Kilic, A.; Hafizoglu, H.; Kollmannsberger, H.; Nitz, S. Volatile Constituents and Key Odorants in Leaves, Buds, Flowers, and Fruits of Laurus nobilis L. J. Agric. Food Chem. 2004, 52, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Characterization of Aroma-Active and Phenolic Profiles of Wild Thyme (Thymus serpyllum) by GC-MS-Olfactometry and LC-ESI-MS/MS. J. Food Sci. Technol. 2016, 53, 1957–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afonso, A.F.; Pereira, O.R.; Cardoso, S.M. Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-Inflammatory and Antitumoral Properties. Antioxidants 2020, 9, 814. [Google Scholar] [CrossRef]
- Aourach, M.; Barbero, G.F.; González de Peredo, A.V.; Diakite, A.; El Boukari, M.; Essalmani, H. Composition and Antifungal Effects of Aqueous Extracts of Cymbopogon citratus, Laurus nobilis and Santolina chamaecyparissus on the Growth of Fusarium oxysporum f. Sp. Lentis. Arch. Phytopathol. Plant Prot. 2021, 54, 2141–2159. [Google Scholar] [CrossRef]
- Dragović-Uzelac, V.; Garofulic, I.E.; Jukic, M.; Penic, M.; Dent, M. The Influence of Microwave-Assisted Extraction on the Isolation of Sage (Salvia officinalis L.) Polyphenols. Food Technol. Biotechnol. 2012, 50, 377–383. [Google Scholar]
- Hajimehdipoor, H.; Shahrestani, R.; Shekarchi, M. Investigating the Synergistic Antioxidant Effects of Some Flavonoid and Phenolic Compounds. Res. J. Pharmacogn. 2014, 1, 35–40. [Google Scholar]
- Jakovljević, M.; Jokić, S.; Molnar, M.; Jašić, M.; Babić, J.; Jukić, H.; Banjari, I. Bioactive Profile of Various Salvia officinalis L. Preparations. Plants 2019, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Janiak, M.; Slavova-Kazakova, A.; Kancheva, V.; Ivanova, M.; Tsrunchev, T.; Karamać, M. Effects of γ-Irradiation of Wild Thyme (Thymus serpyllum L.) on the Phenolic Compounds Profile of Its Ethanolic Extract. Pol. J. Food Nutr. Sci. 2017, 67, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.H.; Shin, J.H.; Kim, S.S.; Joo, J.-H.; Choi, E.; Seo, S.R. Suppression of Propionibacterium acnes-Induced Skin Inflammation by Laurus nobilis Extract and Its Major Constituent Eucalyptol. Int. J. Mol. Sci. 2019, 20, 3510. [Google Scholar] [CrossRef] [Green Version]
- Mercado-Mercado, G.; de la Rosa, L.A.; Alvarez-Parrilla, E. Effect of Pectin on the Interactions among Phenolic Compounds Determined by Antioxidant Capacity. J. Mol. Struct. 2020, 1199, 126967. [Google Scholar] [CrossRef]
- Mohammed, R.R.; Omer, A.K.; Yener, Z.; Uyar, A.; Ahmed, A.K. Biomedical Effects of Laurus nobilis L. Leaf Extract on Vital Organs in Streptozotocin-Induced Diabetic Rats: Experimental Research. Ann. Med. Surg. 2021, 61, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Benyoucef, F.; Dib, M.E.A.; Arrar, Z.; Costa, J.; Muselli, A. Synergistic Antioxidant Activity and Chemical Composition of Essential Oils from Thymus fontanesii, Artemisia herba-alba and Rosmarinus officinalis. J. Appl. Biotechnol. Rep. 2018, 5, 151–156. [Google Scholar] [CrossRef]
- Dammak, I.; Hamdi, Z.; El Euch, S.K.; Zemni, H.; Mliki, A.; Hassouna, M.; Lasram, S. Evaluation of Antifungal and Anti-Ochratoxigenic Activities of Salvia officinalis, Lavandula dentata and Laurus nobilis Essential Oils and a Major Monoterpene Constituent 1, 8-Cineole against Aspergillus carbonarius. Ind. Crops Prod. 2019, 128, 85–93. [Google Scholar] [CrossRef]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological Properties of Salvia officinalis and Its Components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Sırıken, B.; Yavuz, C.; Güler, A. Antibacterial Activity of Laurus nobilis: A Review of Literature. Med. Sci. Discov. 2018, 5, 374–379. [Google Scholar] [CrossRef]
- Shortle, E.; O’Grady, M.N.; Gilroy, D.; Furey, A.; Quinn, N.; Kerry, J.P. Influence of Extraction Technique on the Anti-Oxidative Potential of Hawthorn (Crataegus monogyna) Extracts in Bovine Muscle Homogenates. Meat Sci. 2014, 98, 828–834. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Howard, L.R.; Clark, J.R.; Brownmiller, C. Antioxidant Capacity and Phenolic Content in Blueberries as Affected by Genotype and Growing Season. J. Sci. Food Agric. 2003, 83, 1238–1247. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Brnčić, M.; Dragović-Uzelac, V. UPLC-MS2 Profiling of Blackthorn Flower Polyphenols Isolated by Ultrasound-Assisted Extraction. J. Food Sci. 2018, 83, 2782–2789. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Kruk, V.; Martić, A.; Martić, I.; Zorić, Z.; Pedisić, S.; Dragović, S.; Dragović-Uzelac, V. Evaluation of Polyphenolic Profile and Antioxidant Activity of Pistacia lentiscus L. Leaves and Fruit Extract Obtained by Optimized Microwave-Assisted Extraction. Foods 2020, 9, 1556. [Google Scholar] [CrossRef] [PubMed]
- Pavić, V.; Jakovljević, M.; Molnar, M.; Jokić, S. Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Leaves by Supercritical Fluid Extraction and Their Antioxidant and Antibacterial Activity. Plants 2019, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francik, S.; Francik, R.; Sadowska, U.; Bystrowska, B.; Zawiślak, A.; Knapczyk, A.; Nzeyimana, A. Identification of Phenolic Compounds and Determination of Antioxidant Activity in Extracts and Infusions of Salvia Leaves. Materials 2020, 13, 5811. [Google Scholar] [CrossRef] [PubMed]
- Sytar, O.; Hemmerich, I.; Zivcak, M.; Rauh, C.; Brestic, M. Comparative Analysis of Bioactive Phenolic Compounds Composition from 26 Medicinal Plants. Saudi J. Biol. Sci. 2018, 25, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Hamrouni-Sellami, I.; Rahali, F.Z.; Rebey, I.B.; Bourgou, S.; Limam, F.; Marzouk, B. Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods. Food Bioprocess Technol. 2013, 6, 806–817. [Google Scholar] [CrossRef]
- Doymaz, İ.; Karasu, S. Effect of Air Temperature on Drying Kinetics, Colour Changes and Total Phenolic Content of Sage Leaves (Salvia officinalis). Qual. Assur. Saf. Crops Foods 2018, 10, 269–276. [Google Scholar] [CrossRef]
- Goyal, S.; Pandey, H.; Guleria, K.; Tewari, G. Variation in Antioxidant Activity and Antioxidant Constituents of Thymus serpyllum L. Grown in Different Climatic Conditions of Uttarakhand Himalayas. Def. Life Sci. J. 2021, 6, 109–116. [Google Scholar] [CrossRef]
- Jabri Karoui, I.; Msaada, K.; Hammami, M.; Marzouk, B. Research on the Phenolic Compounds and Antioxidant Activities of Tunisian Thymus capitatus. J. Funct. Foods 2012, 4, 661–669. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Félix, L.M.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Polyphenol Composition and Biological Activity of Thymus citriodorus and Thymus vulgaris: Comparison with Endemic Iberian Thymus Species. Food Chem. 2020, 331, 127362. [Google Scholar] [CrossRef]
- Ghandchi, S.; Jamzad, M. Total Flavonoids Contents and Anti Bacterial Activity of the Extracts of Two Labiateae Species: Nepeta menthoides and Thymus trautvetteri. J. Med. Plants-Prod. 2015, 4, 77–82. [Google Scholar] [CrossRef]
- Hossain, M.A.; AL-Raqmi, K.A.S.; AL-Mijizy, Z.H.; Weli, A.M.; Al-Riyami, Q. Study of Total Phenol, Flavonoids Contents and Phytochemical Screening of Various Leaves Crude Extracts of Locally Grown Thymus vulgaris. Asian Pac. J. Trop. Biomed. 2013, 3, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Muñiz-Márquez, D.B.; Wong-Paz, J.E.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Aguilar, C.N. Bioactive Compounds from Bay Leaves (Laurus nobilis) Extracted by Microwave Technology. Z. Naturforsch—Sect. C J. Biosci. 2018, 73, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Kashkouli, S.; Jamzad, M.; Nouri, A. Total Phenolic and Flavonoids Contents, Radical Scavenging Activity and Green Synthesis of Silver Nanoparticles by Laurus nobilis L. Leaves Aqueous Extract. J. Med. Plants-Prod. 2018, 7, 25–32. [Google Scholar] [CrossRef]
- Tometri, S.; Ahmady, M.; Ariaii, P.; Soltani, M. Extraction and Encapsulation of Laurus nobilis Leaf Extract with Nano-Liposome and Its Effect on Oxidative, Microbial, Bacterial and Sensory Properties of Minced Beef. J. Food Meas. Charact. 2020, 14, 3333–3344. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Malongane, F.; McGaw, L.J.; Mudau, F.N. Topic: Chemical Compositions and Mineral Content of Four Selected South African Herbal Teas and the Synergistic Response of Combined Teas. Br. Food J. 2020, 122, 2769–2785. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Galanty, A.; Gościniak, A.; Wieczorek, M.; Kłaput, M.; Dudek-Makuch, M.; Cielecka-Piontek, J. Herbal Infusions as a Valuable Functional Food. Nutrients 2021, 13, 4051. [Google Scholar] [CrossRef]
- Cheminet, G.; Baroni, M.V.; Wunderlin, D.A.; Di Paola Naranjo, R.D. Antioxidant Properties and Phenolic Composition of “Composed Yerba Mate. ” J. Food Sci. Technol. 2021, 58, 4711–4721. [Google Scholar] [CrossRef]
- Dall’Acqua, S.; Cervellati, R.; Speroni, E.; Costa, S.; Guerra, M.C.; Stella, L.; Greco, E.; Innocenti, G. Phytochemical Composition and Antioxidant Activity of Laurus nobilis L. Leaf Infusion. J. Med. Food 2009, 12, 869–876. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Polyphenolic Characterization and Antioxidant Capacity of Laurus nobilis L. Leaf Extracts Obtained by Green and Conventional Extraction Techniques. Processes 2021, 9, 1840. [Google Scholar] [CrossRef]
- Boros, B.; Jakabová, S.; Dörnyei, Á.; Horváth, G.; Pluhár, Z.; Kilár, F.; Felinger, A. Determination of Polyphenolic Compounds by Liquid Chromatography–Mass Spectrometry in Thymus Species. J. Chromatogr. A 2010, 1217, 7972–7980. [Google Scholar] [CrossRef] [PubMed]
- Ivasenko, S.; Orazbayeva, P.; Skalicka-Woźniak, K.; Ludwiczuk, A.; Marchenko, A.; Ishmuratova, M.; Poleszak, E.; Korona-Glowniak, I.; Akhmetova, S.; Karilkhan, I.; et al. Antimicrobial Activity of Ultrasonic Extracts of Two Chemotypes of Thymus serpyllum L. of Central Kazakhstan and Their Polyphenolic Profiles. Open Access Maced. J. Med. Sci. 2021, 9, 61–67. [Google Scholar] [CrossRef]
- Mrkonjić, Ž.; Rakić, D.; Olgun, E.O.; Canli, O.; Kaplan, M.; Teslić, N.; Zeković, Z.; Pavlić, B. Optimization of Antioxidants Recovery from Wild Thyme (Thymus serpyllum L.) by Ultrasound-Assisted Extraction: Multi-Response Approach. J. Appl. Res. Med. Aromat. Plants 2021, 24, 100333. [Google Scholar] [CrossRef]
- Marchica, A.; Cotrozzi, L.; Detti, R.; Lorenzini, G.; Pellegrini, E.; Petersen, M.; Nali, C. The Biosynthesis of Phenolic Compounds Is an Integrated Defence Mechanism to Prevent Ozone Injury in Salvia officinalis. Antioxidants 2020, 9, 1274. [Google Scholar] [CrossRef]
- Bączek, K.; Pióro-Jabrucka, E.; Kosakowska, O.; Węglarz, Z. Intraspecific Variability of Wild Thyme (Thymus serpyllum L.) Occurring in Poland. J. Appl. Res. Med. Aromat. Plants 2019, 12, 30–35. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.-H.; Khalel, K.I. Evaluation of Antioxidant Activity, Total Phenols and Phenolic Compounds in Thyme (Thymus vulgaris L.), Sage (Salvia officinalis L.), and Marjoram (Origanum majorana L.) Extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Konovalov, D.; Alieva, N. Phenolic Compounds of Laurus nobilis (Review). Pharm. Pharmacol. 2019, 7, 244–259. [Google Scholar] [CrossRef]
- Nasuhova, N.M.; Shevchuk, O.M.; Logvinenko, L.A. Investigation of phenolic compounds in extracts from the leaves of Laurus nobilis L. Pharm. Pharmacol. 2017, 5, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Brezoiu, A.-M.; Prundeanu, M.; Berger, D.; Deaconu, M.; Matei, C.; Oprea, O.; Vasile, E.; Negreanu-Pîrjol, T.; Muntean, D.; Danciu, C. Properties of Salvia officinalis L. and Thymus serpyllum L. Extracts Free and Embedded into Mesopores of Silica and Titania Nanomaterials. Nanomaterials 2020, 10, 820. [Google Scholar] [CrossRef]
- Boufadi, M.Y.; Keddari, S.; Moulai-Hacene, F.; Chaa, S. Chemical Composition, Antioxidant and Anti-Inflammatory Properties of Salvia officinalis Extract from Algeria. Pharmacogn. J. 2020, 13, 506–515. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.; Hussein, M.; Gendy, A.; Tkachenko, K. Quality of Sage (Salvia officinalis L.) Essential Oil Grown in Egypt. Int. J. Plant Res. 2015, 1, 119–123. [Google Scholar]
- Ovidi, E.; Laghezza Masci, V.; Zambelli, M.; Tiezzi, A.; Vitalini, S.; Garzoli, S. Laurus nobilis, Salvia sclarea and Salvia officinalis Essential Oils and Hydrolates: Evaluation of Liquid and Vapor Phase Chemical Composition and Biological Activities. Plants 2021, 10, 707. [Google Scholar] [CrossRef]
- Politi, M.; Ferrante, C.; Menghini, L.; Angelini, P.; Flores, G.A.; Muscatello, B.; Braca, A.; De Leo, M. Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation. Plants 2022, 11, 349. [Google Scholar] [CrossRef] [PubMed]
- Craft, J.D.; Satyal, P.; Setzer, W.N. The Chemotaxonomy of Common Sage (Salvia officinalis) Based on the Volatile Constituents. Medicines 2017, 4, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grdiša, M.; Jug-Dujaković, M.; Lončarić, M.; Carović-Stanko, K.; Ninčević, T.; Liber, Z.; Ivan, R.; Zlatko, Š. Dalmatian Sage (Salvia officinalis L.): A Review of Biochemical Contents, Medical Properties and Genetic Diversity. Agric. Conspec. Sci. 2015, 80, 69–78. [Google Scholar]
- Jug-Dujaković, M.; Ristić, M.; Pljevljakušić, D.; Dajić-Stevanović, Z.; Liber, Z.; Hančević, K.; Radić, T.; Šatović, Z. High Diversity of Indigenous Populations of Dalmatian Sage (Salvia officinalis L.) in Essential-Oil Composition. Chem. Biodivers. 2012, 9, 2309–2323. [Google Scholar] [CrossRef] [PubMed]
- Raina, A.P.; Negi, K.S.; Dutta, M. Variability in Essential Oil Composition of Sage (Salvia officinalis L.) Grown under North Western Himalayan Region of India. J. Med. Plants Res. 2013, 7, 683–688. [Google Scholar] [CrossRef]
- Radulović, N.S.; Genčić, M.S.; Stojanović, N.M.; Randjelović, P.J.; Stojanović-Radić, Z.Z.; Stojiljković, N.I. Toxic Essential Oils. Part V: Behaviour Modulating and Toxic Properties of Thujones and Thujone-Containing Essential Oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L. Food Chem. Toxicol. 2017, 105, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulou, Ν.-S.; Kokkini, M.; P. Megremi, S.-F.; Daferera, D.; Skotti, E.; Kimbaris, A.; Polissiou, M.; Tarantilis, P. Determination of α- and β-Thujone in Wormwood and Sage Infusions of Greek Flora and Estimation of Their Average Toxicity. Curr. Res. Nutr. Food Sci. J. 2016, 4, 152–160. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Uebelacker, M. Risk Assessment of Thujone in Foods and Medicines Containing Sage and Wormwood--Evidence for a Need of Regulatory Changes? Regul. Toxicol. Pharmacol. 2010, 58, 437–443. [Google Scholar] [CrossRef]
- Edris, A.; Jirovetz, L.; Buchbauer, G.; Denkova, Z.; Stoyanova, A.; Slavchev, A. Chemical Composition, Antimicrobial Activities and Olfactive Evaluation of a Salvia officinalis L. (Sage) Essential Oil from Egypt. J. Essent. Oil Res. 2007, 19, 186–189. [Google Scholar] [CrossRef]
- Poitou, X.; Thibon, C.; Darriet, P. 1,8-Cineole in French Red Wines: Evidence for a Contribution Related to Its Various Origins. J. Agric. Food Chem. 2017, 65, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Terentjeva, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Kačániová, M. Thymus serpyllum Essential Oil and Its Biological Activity as a Modern Food Preserver. Plants 2021, 10, 1416. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Pathak, R.; Pandey, H.K.; Kumari, A.; Tewari, G.; Bhandari, N.S.; Bala, M. Comparative Study of the Volatile Constituents of Thymus serpyllum L. Grown at Different Altitudes of Western Himalayas. SN Appl. Sci. 2020, 2, 1208. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Chatha, S.A.S.; Latif, S.; Sherazi, S.T.H.; Ahmad, A.; Worthington, J.; Sarker, S.D. Chemical Composition and Bioactivity Studies of the Essential Oils from Two Thymus Species from the Pakistani Flora. LWT—Food Sci. Technol. 2013, 50, 185–192. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Saikia, D.; Chauhan, A.; Krishna, V.; Sundaresan, V. Chemical Composition and Antimicrobial Activity of the Essential Oils Isolated from the Herbage and Aqueous Distillates of Two Thymus Species. J. Essent. Oil Bear. Plants 2016, 19, 936–943. [Google Scholar] [CrossRef]
- Kessler, J.C.; Vieira, V.A.; Martins, I.M.; Manrique, Y.A.; Afonso, A.; Ferreira, P.; Mandim, F.; Ferreira, I.C.; Barros, L.; Rodrigues, A.E. Obtaining Aromatic Extracts from Portuguese Thymus mastichina L. by Hydrodistillation and Supercritical Fluid Extraction with CO2 as Potential Flavouring Additives for Food Applications. Molecules 2022, 27, 694. [Google Scholar] [CrossRef] [PubMed]
- Andrés, M.F.; González-Coloma, A.; Muñoz, R.; De la Peña, F.; Julio, L.F.; Burillo, J. Nematicidal Potential of Hydrolates from the Semi Industrial Vapor-Pressure Extraction of Spanish Aromatic Plants. Environ. Sci. Pollut. Res. Int. 2018, 25, 29834–29840. [Google Scholar] [CrossRef]
- Elbe, H.; Yigitturk, G.; Cavusoglu, T.; Baygar, T.; Ozgul Onal, M.; Ozturk, F. Comparison of Ultrastructural Changes and the Anticarcinogenic Effects of Thymol and Carvacrol on Ovarian Cancer Cells: Which Is More Effective? Ultrastruct. Pathol. 2020, 44, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Jarić, S.; Mitrović, M.; Pavlović, P. Review of Ethnobotanical, Phytochemical, and Pharmacological Study of Thymus serpyllum L. Evid. Based Complement. Alternat. Med. 2015, 2015, 101978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kachur, K.; Suntres, Z. The Antibacterial Properties of Phenolic Isomers, Carvacrol and Thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, M.; Amiri, H.; Ayoobi, F.; Rahmani, M.; Taghipour, Z.; Ghavamabadi, R.T.; Jafarzadeh, A.; Sankian, M. Carvacrol Ameliorates Experimental Autoimmune Encephalomyelitis through Modulating Pro- and Anti-Inflammatory Cytokines. Life Sci. 2019, 219, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front. Pharmacol. 2017, 8, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Contreras, M.M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and Human Health: A Comprehensive Review. Phytother. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Acimovic, M.; Pezo, L.; Jeremic, J.S.; Cvetkovic, M.; Rat, M.; Cabarkapa, I.; Tesevic, V. QSRR Model for Predicting Retention Indices of Geraniol Chemotype of Thymus serpyllum Essential Oil. J. Essent. Oil Bear. Plants 2020, 23, 464–473. [Google Scholar] [CrossRef]
- Butt, A.; Nisar, N.; Ghani, N.; Altaf, I.; Mughal, T. Isolation of Thymoquinone from Nigella Sativa L. and Thymus vulgaris L., and Its Anti-Proliferative Effect on HeLa Cancer Cell Lines. Trop. J. Pharm. Res. 2019, 18, 37. [Google Scholar] [CrossRef] [Green Version]
- Butt, A.S.; Nisar, N.; Mughal, T.A.; Ghani, N.; Altaf, I. Anti-Oxidative and Anti-Proliferative Activities of Extracted Phytochemical Compound Thymoquinone. JPMA J. Pak. Med. Assoc. 2019, 69, 1479–1485. [Google Scholar] [CrossRef]
- Salmani, J.M.M.; Asghar, S.; Lv, H.; Zhou, J. Aqueous Solubility and Degradation Kinetics of the Phytochemical Anticancer Thymoquinone; Probing the Effects of Solvents, PH and Light. Molecules 2014, 19, 5925–5939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Biological Activity of Plant-Based Carvacrol and Thymol and Their Impact on Human Health and Food Quality. Trends Food Sci. Technol. 2021, 116, 733–748. [Google Scholar] [CrossRef]
- Morsy, N.F.S. Production of Thymol Rich Extracts from Ajwain (Carum copticum L.) and Thyme (Thymus vulgaris L.) Using Supercritical CO2. Ind. Crops Prod. 2020, 145, 112072. [Google Scholar] [CrossRef]
- Lira, P.D.L.; Retta, D.; Tkacik, E.; Ringuelet, J.; Coussio, J.D.; Van Baren, C.; Bandoni, A.L. Essential Oil and By-Products of Distillation of Bay Leaves (Laurus nobilis L.) from Argentina. Ind. Crops Prod. 2009, 30, 259–264. [Google Scholar] [CrossRef]
- Belasli, A.; Ben Miri, Y.; Aboudaou, M.; Aït Ouahioune, L.; Montañes, L.; Ariño, A.; Djenane, D. Antifungal, Antitoxigenic, and Antioxidant Activities of the Essential Oil from Laurel ( Laurus nobilis L.): Potential Use as Wheat Preservative. Food Sci. Nutr. 2020, 8, 4717–4729. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Rosa, M.; Fernandez, A.; Lorenzetti, F.; Raimundo, K.; Cortez, D.; Gonçalves, J.; Simões, M.; Colauto, N.; Lobo, V.; et al. Larvicidal Activity against Aedes aegypti of Essential Oil of Laurus nobilis Leaves Obtained at Different Seasons. J. Essent. Oil Res. 2018, 30, 379–387. [Google Scholar] [CrossRef]
- Nenadis, N.; Papapostolou, M.; Tsimidou, M.Z. Suggestions on the Contribution of Methyl Eugenol and Eugenol to Bay Laurel (Laurus nobilis L.) Essential Oil Preservative Activity through Radical Scavenging. Molecules 2021, 26, 2342. [Google Scholar] [CrossRef] [PubMed]
- Fidan, H.; Stefanova, G.; Kostova, I.; Stankov, S.; Damyanova, S.; Stoyanova, A.; Zheljazkov, V.D. Chemical Composition and Antimicrobial Activity of Laurus nobilis L. Essential Oils from Bulgaria. Molecules 2019, 24, 804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamatou, G.P.P.; Viljoen, A.M. Linalool—A Review of a Biologically Active Compound of Commercial Importance. Nat. Prod. Commun. 2008, 3, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-G.; Kim, S.-M.; Min, J.-H.; Kwon, O.-K.; Park, M.-H.; Park, J.-W.; Ahn, H.I.; Hwang, J.-Y.; Oh, S.-R.; Lee, J.-W.; et al. Anti-Inflammatory Effects of Linalool on Ovalbumin-Induced Pulmonary Inflammation. Int. Immunopharmacol. 2019, 74, 105706. [Google Scholar] [CrossRef]
- Peris, I.; Blázquez, M.A. Comparative GC-MS Analysis of Bay Leaf ( Laurus nobilis L.) Essential Oils in Commercial Samples. Int. J. Food Prop. 2015, 18, 757–762. [Google Scholar] [CrossRef]
- Sun, X.B.; Wang, S.M.; Li, T.; Yang, Y.Q. Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and Cell Cycle Arrest in Prostate Cancer Cells. Trop. J. Pharm. Res. 2015, 14, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.-L.; Shi, S.; Shen, Y.-L.; Wang, L.; Chen, H.-Y.; Zhu, J.; Ding, Y. Myricetin and Methyl Eugenol Combination Enhances the Anticancer Activity, Cell Cycle Arrest and Apoptosis Induction of Cis-Platin against HeLa Cervical Cancer Cell Lines. Int. J. Clin. Exp. Pathol. 2015, 8, 1116–1127. [Google Scholar] [PubMed]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of Essential Oil and Its Biological Activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-J.; Tabakoff, B.; Levinson, S.R.; Heinbockel, T. Inhibition of Na v 1.7 Channels by Methyl Eugenol as a Mechanism Underlying Its Antinociceptive and Anesthetic Actions. Acta Pharmacol. Sin. 2015, 36, 791–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, P.M.C.L.; Mezzomo, N.; Aguiar, G.P.S.; Senna, E.M.T.L.; Hense, H.; Ferreira, S.R.S. Ultrasound-Assisted Emulsion of Laurel Leaves Essential Oil (Laurus nobilis L.) Encapsulated by SFEE. J. Supercrit. Fluids 2019, 147, 284–292. [Google Scholar] [CrossRef]
- Waykole, P.; Badekar, R.; Lokhande, R.; Nemade, H.G. Structural Studies of Novel Synthesized Compounds from Methyleugenol with Various Acid Derivatives of Indole. Adv. Innov. Res. 2018, 5, 25–28. [Google Scholar]
- Zhou, Y.; Ye, Y.; Zhang, W.; Li, S.; Chen, J.; Wang, S.; Li, D.; Mu, C. Oxidized Amylose with High Carboxyl Content: A Promising Solubilizer and Carrier of Linalool for Antimicrobial Activity. Carbohydr. Polym. 2016, 154, 13–19. [Google Scholar] [CrossRef]
- Molina, G.; Pessôa, M.G.; Bicas, J.L.; Fontanille, P.; Larroche, C.; Pastore, G.M. Optimization of Limonene Biotransformation for the Production of Bulk Amounts of α-Terpineol. Bioresour. Technol. 2019, 294, 122180. [Google Scholar] [CrossRef]
- Yu, H.; Ren, X.; Liu, Y.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Extraction of Cinnamomum Camphora Chvar. Borneol Essential Oil Using Neutral Cellulase Assisted-Steam Distillation: Optimization of Extraction, and Analysis of Chemical Constituents. Ind. Crops Prod. 2019, 141, 111794. [Google Scholar] [CrossRef]
- Hazafa, A.; Rehman, K.-U.; Jahan, N.; Jabeen, Z. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutr. Cancer 2019, 72, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Khan, H.; Gowrishankar, S.; Lagoa, R.J.L.; Mahomoodally, F.M.; Khan, Z.; Suroowan, S.; Tewari, D.; Zengin, G.; Hassan, S.T.S.; et al. The Role of Flavonoids in Autoimmune Diseases: Therapeutic Updates. Pharmacol. Ther. 2019, 194, 107–131. [Google Scholar] [CrossRef]
- Solanki, I.; Parihar, P.; Mansuri, M.L.; Parihar, M.S. Flavonoid-Based Therapies in the Early Management of Neurodegenerative Diseases. Adv. Nutr. 2015, 6, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Y.; Ren, X.; Zhu, Y.; Zhang, Y.; Peng, Z.; Zhou, G. Comparison of Lipid Radical Scavenging Capacity of Spice Extract in Situ in Roast Beef with DPPH and Peroxy Radical Scavenging Capacities in Vitro Models. LWT—Food Sci. Technol. 2020, 130, 109626. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-Antioxidant Activity Relationship of Methoxy, Phenolic Hydroxyl, and Carboxylic Acid Groups of Phenolic Acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef] [PubMed]
- Russo, D. Flavonoids and the Structure-Antioxidant Activity Relationship. J. Pharmacogn. Nat. Prod. 2018, 4, e109. [Google Scholar] [CrossRef]
- Ydyrys, A.; Zhaparkulova, N.; Aralbaeva, A.; Mamataeva, A.; Seilkhan, A.; Syraiyl, S.; Murzakhmetova, M. Systematic Analysis of Combined Antioxidant and Membrane-Stabilizing Properties of Several Lamiaceae Family Kazakhstani Plants for Potential Production of Tea Beverages. Plants 2021, 10, 666. [Google Scholar] [CrossRef]
- Cai, Z.-M.; Peng, J.-Q.; Chen, Y.; Tao, L.; Zhang, Y.-Y.; Fu, L.-Y.; Long, Q.-D.; Shen, X.-C. 1,8-Cineole: A Review of Source, Biological Activities, and Application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
- Cos, P.; Rajan, P.; Vedernikova, I.; Calomme, M.; Pieters, L.; Vlietinck, A.J.; Augustyns, K.; Haemers, A.; Vanden Berghe, D. In Vitro Antioxidant Profile of Phenolic Acid Derivatives. Free Radic. Res. 2002, 36, 711–716. [Google Scholar] [CrossRef]
- Kaewnarin, K.; Suwannarach, N.; Kumla, J.; Lumyong, S. Phenolic Profile of Various Wild Edible Mushroom Extracts from Thailand and Their Antioxidant Properties, Anti-Tyrosinase and Hyperglycaemic Inhibitory Activities. J. Funct. Foods 2016, 27, 352–364. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Gil-Chávez, J.; Sotelo-Mundo, R.R.; Namiesnik, J.; Gorinstein, S.; González-Aguilar, G.A. Antioxidant Interactions between Major Phenolic Compounds Found in ‘Ataulfo’ Mango Pulp: Chlorogenic, Gallic, Protocatechuic and Vanillic Acids. Molecules 2012, 17, 12657–12664. [Google Scholar] [CrossRef]
- Xu, Y.-Q.; Gao, Y.; Granato, D. Effects of Epigallocatechin Gallate, Epigallocatechin and Epicatechin Gallate on the Chemical and Cell-Based Antioxidant Activity, Sensory Properties, and Cytotoxicity of a Catechin-Free Model Beverage. Food Chem. 2021, 339, 128060. [Google Scholar] [CrossRef]
- Malongane, F.; McGaw, L.J.; Mudau, F.N. The Synergistic Potential of Various Teas, Herbs and Therapeutic Drugs in Health Improvement: A Review. J. Sci. Food Agric. 2017, 97, 4679–4689. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Mercado, A.T.; Vazquez-Armenta, F.J.; Tapia-Rodriguez, M.R.; Islas-Osuna, M.A.; Mata-Haro, V.; Gonzalez-Aguilar, G.A.; Lopez-Zavala, A.A.; Ayala-Zavala, J.F. Comparison of Single and Combined Use of Catechin, Protocatechuic, and Vanillic Acids as Antioxidant and Antibacterial Agents against Uropathogenic Escherichia coli at Planktonic and Biofilm Levels. Molecules 2018, 23, 2813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandalari, G.; Bisignano, C.; D’Arrigo, M.; Ginestra, G.; Arena, A.; Tomaino, A.; Wickham, M.S.J. Antimicrobial Potential of Polyphenols Extracted from Almond Skins. Lett. Appl. Microbiol. 2010, 51, 83–89. [Google Scholar] [CrossRef] [PubMed]
Herbal Extract and Mixtures | Herbs | Ratios (v/v) | Label |
---|---|---|---|
One-component extract | Wild thyme (WT) | WT | |
Sage (S) | S | ||
Laurel (L) | L | ||
WT + S | 1:1 | WTS11 | |
WT + S | 1:3 | WTS13 | |
WT + S | 3:1 | WTS31 | |
WT + L | 1:1 | WTL11 | |
Two-component mixtures | WT + L | 1:3 | WTL13 |
WT + L | 3:1 | WTL31 | |
S + L | 1:1 | SL11 | |
S + L | 1:3 | SL13 | |
S + L | 3:1 | SL31 | |
WT + S + L | 1:1:1 | WTSL111 | |
WT + S + L | 1:2:1 | WTSL121 | |
WT + S + L | 1:1:2 | WTSL112 | |
Three-component mixtures | WT + S + L | 1:2:2 | WTSL122 |
WT + S + L | 2:1:1 | WTSL211 | |
WT + S + L | 2:2:1 | WTSL221 | |
WT + S + L | 2:1:2 | WTSL212 |
TPC (g L−1) | TFC (g L−1) | THCA (g L−1) | TFLC (g L−1) | DPPH (μmol TE mL−1) | ORAC (μmol TE mL−1) | |
---|---|---|---|---|---|---|
p < 0.01 † | p < 0.01 † | p = 0.25 ‡ | p = 0.39 ‡ | p < 0.01 † | p < 0.01 † | |
Laurel (L) | 1.18 ± 0.04 a,b | 0.14 ± 0.2 a | 1.08 ± 0.21 a | 1.06 ± 0.21 a | 781.62 ± 5.19 j | 1896.10 ± 8.77 h,i |
Wild thyme (WT) | 2.79 ± 0.04 j | 0.56 ± 0.2 f,g,h | 1.20 ± 0.21 a | 0.96 ± 0.21 a | 544.13 ± 5.19 f,g | 1734.74 ± 8.77 d |
Sage (S) | 2.49 ± 0.04 i | 0.62 ± 0.2 g,h | 1.02 ± 0.21 a | 0.93 ± 0.21 a | 578.81 ± 5.19 h | 1459.32 ± 8.77 c |
WTS11 | 2.13 ± 0.04 f,g,h | 0.66 ± 0.2 h | 1.09 ± 0.21 a | 0.94 ± 0.21 a | 553.50 ± 5.19 g,h | 1744.08 ± 8.77 d,e |
WTS13 | 2.27 ± 0.04 g,h,i | 0.64 ± 0.2 h | 1.11 ± 0.21 a | 1.01 ± 0.21 a | 551.94 ± 5.19 g,h | 1785.72 ± 8.77 e,f |
WTS31 | 2.51 ± 0.04 i | 0.63 ± 0.2 g,h | 1.13 ± 0.21 a | 0.95 ± 0.21 a | 521.94 ± 5.19 d,e,f | 1305.37 ± 8.77 b |
WTL11 | 1.91 ± 0.04 e,f | 0.41 ± 0.2 c | 0.62 ± 0.21 a | 0.50 ± 0.21 a | 547.56 ± 5.19 f,g | 1755.68 ± 8.77 d,e |
WTL13 | 1.56 ± 0.04 c,d | 0.26 ± 0.2 b | 0.39 ± 0.21 a | 0.35 ± 0.21 a | 679.12 ± 5.19 i | 1913.38 ± 8.77 i |
WTL31 | 2.33 ± 0.04 h,i | 0.50 ± 0.2 c,d,e,f | 0.83 ± 0.21 a | 0.65 ± 0.21 a | 532.56 ± 5.19 e,f,g | 1769.66 ± 8.77 d,e,f |
SL11 | 1.79 ± 0.04 d,e | 0.44 ± 0.2 c,d | 0.58 ± 0.21 a | 0.53 ± 0.21 a | 469.44 ± 5.19 a,b | 1304.70 ± 8.77 b |
SL13 | 1.52 ± 0.04 c | 0.30 ± 0.2 b | 0.36 ± 0.21 a | 0.32 ± 0.21 a | 676.31 ± 5.19 i | 1849.74 ± 8.77 g,h |
SL31 | 2.04 ± 0.04 f,g | 0.55 ± 0.2 e,f,g,h | 0.76 ± 0.21 a | 0.69 ± 0.21 a | 506.94 ± 5.19 c,d,e | 1229.36 ± 8.77 a |
WTSL111 | 1.14 ± 0.04 a,b | 0.49 ± 0.2 c,d,e,f | 0.82 ± 0.21 a | 0.74 ± 0.21 a | 504.12 ± 5.19 c,d,e | 1256.65 ± 8.77 a,b |
WTSL121 | 1.20 ± 0.04 a,b | 0.56 ± 0.2 f,g,h | 0.81 ± 0.21 a | 0.70 ± 0.21 a | 539.44 ± 5.19 f,g | 1810.04 ± 8.77 f,g |
WTSL112 | 0.97 ± 0.04 a | 0.44 ± 0.2 c,d | 0.64 ± 0.21 a | 0.56 ± 0.21 a | 449.12 ± 5.19 a | 1245.13 ± 8.77 a |
WTSL122 | 0.99 ± 0.04 a | 0.47 ± 0.2 c,d,e,f | 0.71 ± 0.21 a | 0.64 ± 0.21 a | 506.31 ± 5.19 c,d,e | 1260.94 ± 8.77 a,b |
WTSL211 | 1.35 ± 0.04 b,c | 0.51 ± 0.2 d,e,f | 0.88 ± 0.21 a | 0.74 ± 0.21 a | 501.94 ± 5.19 c,d | 1232.79 ± 8.77 a |
WTSL221 | 1.45 ± 0.04 c | 0.53 ± 0.2 d,e,f,g | 0.85 ± 0.21 a | 0.74 ± 0.21 a | 490.69 ± 5.19 b,c | 1301.07 ± 8.77 b |
WTSL212 | 1.00 ± 0.04 a | 0.45 ± 0.2 c,d,e | 0.70 ± 0.21 a | 0.61 ± 0.21 a | 502.87 ± 5.19 c,d | 1217.64 ± 8.77 a |
Flavanols | Flavonols | |||||||||||||
Compound | 1 | 7 | 11 | 16 | 17 | 2 | 3 | 6 | 9 | 10 | 12 | 13 | 14 | 15 |
Tentative Identification | Procyandinin Trimer | Epigallocatechin Gallate | Epicatechin Gallate | Catechin | Epicatechin | Ruthin | Kaempferol-3-rutinoside | Quercetin-3-glucoside | Quercetin-3-rhamnoside | Kaempferol-3-O-hexoside | Quercetin-3-pentoside | Kaempferol-3-O-deoxyhexoside | Kaempferol-3-O-pentoside | Myricetin |
p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | |
Laurel (L) | 1.21 ± 0.02 h | 0.02 ± 0.00 a,b | 0.10 ± 0.00 e,f | 1.43 ± 0.03 l | 1.26 ± 0.03 j | 0.70 ± 0.20 a | 1.10 ± 0.74 a | 2.88 ± 0.16 d,e,f | 3.91 ± 0.06 i | 2.53 ± 1.58 a | 1.42 ± 0.04 h | 0.03 ± 0.00 h,i,j | 0.72 ± 0.10 b | 0.22 ± 0.02 a,b,c |
Wild thyme (WT) | 0.32 ± 0.02 e | 0.03 ± 0.00 a,b,c | 0.05 ± 0.00 a | 1.19 ± 0.03 i,j | 1.22 ± 0.03 j | 2.72 ± 0.20 b,c,d,e,f | 10.80 ± 0.74 e | 1.49 ± 0.16 a,b | 0.61 ± 0.06 b,c | 6.43 ± 1.58 a | 0.22 ± 0.04 a | 0.01 ± 0.00 b,c | 4.51 ± 0.10 i,j | 0.20 ± 0.02 a,b |
Sage (S) | 0.10 ± 0.02 a,b,c | 0.05 ± 0.00 f,g | 0.10 ± 0.00 d,e,f | 0.36 ± 0.03 a | 0.31 ± 0.03 a | 4.24 ± 0.20 g,h,i | 23.49 ± 0.74 f,g,h | 2.95 ± 0.16 d,e,f | 0.20 ± 0.06 a | 137.04 ± 1.58 j | 0.05 ± 0.04 a | 0.03 ± 0.00 j,k | 0.12 ± 0.10 a | 1.06 ± 0.02 f |
WTS11 | 0.06 ± 0.02 a | 0.03 ± 0.00 b,c,d | 0.11 ± 0.00 f,g | 1.27 ± 0.03 j,k | 1.30 ± 0.03 j | 12.69 ± 0.20 k | 40.67 ± 0.74 j | 10.73 ± 0.16 h | 0.87 ± 0.06 c,d | 35.38 ± 1.58 d | 0.77 ± 0.04 c,d | 0.01 ± 0.00 a | 1.73 ± 0.10 d,e | 1.28 ± 0.02 g |
WTS13 | 0.07 ± 0.02 a,b | 0.08 ± 0.00 h | 0.11 ± 0.00 f,g | 1.18 ± 0.03 h,i,j | 1.22 ± 0.03 j | 13.21 ± 0.20 k | 65.41 ± 0.74 l | 12.72 ± 0.16 i | 0.75 ± 0.06 b,c,d | 45.74 ± 1.58 e,f | 0.74 ± 0.04 b,c,d | 0.02 ± 0.00 e,f,g | 1.04 ± 0.10 b,c | 1.69 ± 0.02 i |
WTS31 | 0.09 ± 0.02 a,b,c | 0.03 ± 0.00 c,d,e | 0.06 ± 0.00 b | 1.40 ± 0.03 k,l | 1.44 ± 0.03 k | 23.21 ± 0.20 l | 48.87 ± 0.74 k | 17.56 ± 0.16 j | 1.35 ± 0.06 f,g | 38.61 ± 1.58 d,e | 1.54 ± 0.04 h | 0.02 ± 0.00 d | 7.39 ± 0.10 k | 1.43 ± 0.02 h |
WTL11 | 0.17 ± 0.02 b,c,d | 0.03 ± 0.00 a,b,c | 0.08 ± 0.00 b,c,d | 0.70 ± 0.03 c,d | 0.80 ± 0.03 d,e | 1.97 ± 0.20 b,c | 2.71 ± 0.74 a,b | 3.09 ± 0.16 e,f | 1.98 ± 0.06 h | 35.20 ± 1.58 d | 1.52 ± 0.04 h | 0.03 ± 0.00 i,j,k | 5.05 ± 0.10 j | 1.25 ± 0.02 g |
WTL13 | 0.56 ± 0.02 g | 0.03 ± 0.00 b,c,d | 0.11 ± 0.00 f | 0.54 ± 0.03 b | 0.54 ± 0.03 b | 2.56 ± 0.20 b,c,d,e | 3.95 ± 0.74 a,b,c | 4.87 ± 0.16 g | 3.65 ± 0.06 i | 23.40 ± 1.58 b,c | 2.42 ± 0.04 j | 0.01 ± 0.00 a,b | 4.15 ± 0.10 h,i | 1.44 ± 0.02 h |
WTL31 | 0.11 ± 0.02 a,b,c | 0.04 ± 0.00 d,e | 0.08 ± 0.00 c,d,e | 0.97 ± 0.03 f,g | 1.03 ± 0.03 f,g,h | 5.19 ± 0.20 i,j | 5.56 ± 0.74 b,c,d | 3.61 ± 0.16 f | 2.07 ± 0.06 h | 56.45 ± 1.58 g,h | 1.51 ± 0.04 h | 0.02 ± 0.00 e | 2.65 ± 0.10 f,g | 0.22 ± 0.02 a,b,c |
SL11 | 0.09 ± 0.02 a,b,c | 0.03 ± 0.00 c,d | 0.11 ± 0.00 f,g | 0.66 ± 0.03 b,c | 0.70 ± 0.03 c,d | 1.77 ± 0.20 a,b | 8.69 ± 0.74 d,e | 1.88 ± 0.16 a,b,c | 1.35 ± 0.06 f,g | 55.52 ± 1.58 g,h | 0.87 ± 0.04 d,e | 0.01 ± 0.00 c | 0.90 ± 0.10 b | 0.28 ± 0.02 b,c |
SL13 | 0.23 ± 0.02 d,e | 0.05 ± 0.00 f,g | 0.09 ± 0.00 c,d,e | 0.56 ± 0.03 b,c | 0.63 ± 0.03 b,c | 1.73 ± 0.20 a,b | 7.16 ± 0.74 c,d,e | 3.26 ± 0.16 e,f | 3.81 ± 0.06 i | 45.81 ± 1.58 e,f | 1.84 ± 0.04 i | 0.03 ± 0.00 f,g,h | 1.58 ± 0.10 c,d | 0.20 ± 0.02 a,b |
SL31 | 0.13 ± 0.02 a,b,c,d | 0.02 ± 0.00 a | 0.13 ± 0.00 h,i | 0.35 ± 0.03 a | 0.31 ± 0.03 a | 4.70 ± 0.20 g,h,i | 22.80 ± 0.74 f,g,h | 2.55 ± 0.16 c,d,e | 1.08 ± 0.06 d,e,f | 140.19 ± 1.58 j | 1.05 ± 0.04 e,f | 0.03 ± 0.00 k | 1.01 ± 0.10 b | 0.60 ± 0.02 e |
WTSL111 | 0.06 ± 0.02 a | 0.03 ± 0.00 c,d,e | 0.08 ± 0.00 b,c | 1.06 ± 0.03 g,h,i | 1.06 ± 0.03 g,h,i | 2.90 ± 0.20 c,d,e,f | 20.05 ± 0.74 f | 0.96 ± 0.16 a | 0.60 ± 0.06 b,c | 47.46 ± 1.58 e,f,g | 0.51 ± 0.04 b | 0.01 ± 0.00 b,c | 2.16 ± 0.10 e,f | 0.22 ± 0.02 a,b,c |
WTSL121 | 0.19 ± 0.02 c,d | 0.03 ± 0.00 c,d,e | 0.07 ± 0.00 b,c | 1.04 ± 0.03 g | 1.16 ± 0.03 h,i,j | 4.89 ± 0.20 h,i | 45.51 ± 0.74 k | 3.04 ± 0.16 e,f | 1.45 ± 0.06 g | 103.56 ± 1.58 i | 1.32 ± 0.04 g,h | 0.03 ± 0.00 g,h,i | 3.17 ± 0.10 g | 0.34 ± 0.02 c,d |
WTSL112 | 0.43 ± 0.02 f | 0.05 ± 0.00 g | 0.18 ± 0.00 j | 0.88 ± 0.03 e,f | 0.86 ± 0.03 e | 6.09 ± 0.20 j | 28.39 ± 0.74 i | 5.30 ± 0.16 g | 2.26 ± 0.06 h | 30.49 ± 1.58 c,d | 2.56 ± 0.04 j | 0.01 ± 0.00 c | 4.64 ± 0.10 i,j | 0.44 ± 0.02 d |
WTSL122 | 1.21 ± 0.02 h | 0.04 ± 0.00 e | 0.15 ± 0.00 i | 0.95 ± 0.03 e,f,g | 1.01 ± 0.03 f,g | 3.11 ± 0.20 d,e,f | 24.30 ± 0.74 g,h,i | 1.26 ± 0.16 a,b | 0.89 ± 0.06 c,d,e | 58.77 ± 1.58 h | 0.67 ± 0.04 b,c,d | 0.02 ± 0.00 e,f | 1.93 ± 0.10 d,e | 0.44 ± 0.02 d |
WTSL211 | 0.06 ± 0.02 a | 0.04 ± 0.00 d,e | 0.13 ± 0.00 g,h | 1.27 ± 0.03 j,k | 1.17 ± 0.03 i,j | 2.20 ± 0.20 b,c,d | 25.68 ± 0.74 g,h,i | 2.08 ± 0.16 b,c,d | 1.22 ± 0.06 e,f,g | 60.88 ± 1.58 h | 0.90 ± 0.04 d,e | 0.01 ± 0.00 a,b,c | 4.12 ± 0.10 h,i | 0.25 ± 0.02 b,c |
WTSL221 | 0.06 ± 0.02 a | 0.05 ± 0.00 f | 0.10 ± 0.00 e,f | 1.04 ± 0.03 g,h | 1.01 ± 0.03 f,g,h | 3.60 ± 0.20 e,f,g | 26.12 ± 0.74 h,i | 1.15 ± 0.16 a | 0.47 ± 0.06 a,b | 20.88 ± 1.58 b | 0.53 ± 0.04 b,c | 0.02 ± 0.00 d | 2.53 ± 0.10 f | 0.13 ± 0.02 a |
WTSL212 | 0.09 ± 0.02 a,b,c | 0.04 ± 0.00 e | 0.11 ± 0.00 f | 0.82 ± 0.03 d,e | 0.89 ± 0.03 e,f | 3.83 ± 0.20 f,g,h | 21.52 ± 0.74 f,g | 2.43 ± 0.16 c,d,e | 1.22 ± 0.06 e,f,g | 52.83 ± 1.58 f,g,h | 1.17 ± 0.04 f,g | 0.02 ± 0.00 e | 3.93 ± 0.10 h | 0.21 ± 0.02 a,b |
Flavones | Hydroxycinnamic Acids | Hydroxybenzoic Acids | ||||||||||||
Compound | 8 | 18 | 19 | 20 | 21 | 24 | 25 | 27 | 22 | 23 | 26 | 28 | 29 | |
Tentative Identification | Luteolin-6-C-Glucoside | Luteolin | Apigenin | Rosmarinic Acid | Chlorogenic Acid | Ferulic Acid | Caffeic Acid | p-Caffeic Acid | 3,4-Dihidrobenzoic Acid Hexoside | Syringic Acid | Gallic Acid | Protocatehuic Acid | p-Hydroxybenzoic Acid | |
p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | ||
Laurel (L) | 1.11 ± 0.03 i | 1.09 ± 0.10 a | 0.94 ± 0.19 a | 0.14 ± 0.05 a | 0.19 ± 0.06 a | 1.23 ± 0.07 b | 2.34 ± 0.10 c,d | 2.79 ± 0.08 g,h,i | 0.50 ± 0.01 h | 0.14 ± 0.00 g,h,i | 6.06 ± 0.05 i | 92.80 ± 0.97 i | 5.38 ± 0.09 i | |
Wild thyme (WT) | 0.08 ± 0.03 a | 5.07 ± 0.10 i,j | 6.28 ± 0.19 c,d,e | 1.45 ± 0.05 e | 4.54 ± 0.06 g | 0.30 ± 0.07 a | 17.72 ± 0.10 i | 13.27 ± 0.08 k | 0.27 ± 0.01 c,d,e | 0.15 ± 0.00 h,i | 0.25 ± 0.05 a,b | 13.55 ± 0.97 b | 3.80 ± 0.09 h | |
Sage (S) | 0.37 ± 0.03 b | 2.21 ± 0.10 b | 3.33 ± 0.19 b | 2.00 ± 0.05 g | 0.09 ± 0.06 a | 4.47 ± 0.07 m | 9.76 ± 0.10 h | 1.86 ± 0.08 a,b | 0.34 ± 0.01 f,g | 0.01 ± 0.00 a | 0.13 ± 0.05 a | 0.00 ± 0.97 a | 1.43 ± 0.09 a | |
WTS11 | 0.37 ± 0.03 b | 3.96 ± 0.10 f,g | 8.15 ± 0.19 g,h | 4.34 ± 0.05 i | 3.45 ± 0.06 f | 4.44 ± 0.07 m | 7.67 ± 0.10 f | 2.69 ± 0.08 f,g,h | 0.32 ± 0.01 d,e,f | 0.16 ± 0.00 i | 0.18 ± 0.05 a | 26.53 ± 0.97 e,f | 2.20 ± 0.09 c,d | |
WTS13 | 0.35 ± 0.03 b | 5.15 ± 0.10 i,j | 9.72 ± 0.19 i | 3.97 ± 0.05 h | 2.21 ± 0.06 d | 5.94 ± 0.07 n | 8.27 ± 0.10 g | 2.13 ± 0.08 b,c,d,e | 0.38 ± 0.01 g | 0.02 ± 0.00 a,b | 0.16 ± 0.05 a | 15.80 ± 0.97 b | 1.61 ± 0.09 a,b | |
WTS31 | 0.85 ± 0.03 g,h | 4.31 ± 0.10 g,h | 13.08 ± 0.19 j | 4.75 ± 0.05 j | 5.99 ± 0.06 h | 3.16 ± 0.07 j,k,l | 7.11 ± 0.10 f | 3.16 ± 0.08 i | 0.50 ± 0.01 h | 0.19 ± 0.00 j | 0.18 ± 0.05 a | 40.14 ± 0.97 h | 2.97 ± 0.09 e,f,g | |
WTL11 | 0.98 ± 0.03 h,i | 2.97 ± 0.10 c,d | 9.78 ± 0.19 i | 1.56 ± 0.05 e,f | 2.88 ± 0.06 e | 1.12 ± 0.07 b | 2.32 ± 0.10 c,d | 2.38 ± 0.08 d,e,f,g | 0.25 ± 0.01 c,d | 0.14 ± 0.00 f,g,h,i | 0.82 ± 0.05 e,f | 27.08 ± 0.97 e,f | 2.25 ± 0.09 c,d | |
WTL13 | 1.54 ± 0.03 k | 4.63 ± 0.10 h,i | 6.77 ± 0.19 d,e,f | 1.80 ± 0.05 f,g | 1.46 ± 0.06 c | 1.49 ± 0.07 b,c | 1.15 ± 0.10 a | 1.94 ± 0.08 b,c | 0.23 ± 0.01 b,c | 0.13 ± 0.00 f,g | 2.01 ± 0.05 g | 33.25 ± 0.97 g | 3.08 ± 0.09 f,g | |
WTL31 | 0.83 ± 0.03 g,h | 3.33 ± 0.10 c,d,e | 13.88 ± 0.19 j | 1.45 ± 0.05 e | 3.36 ± 0.06 f | 1.51 ± 0.07 b,c | 2.68 ± 0.10 d,e | 2.35 ± 0.08 c,d,e,f | 0.26 ± 0.01 c,d | 0.12 ± 0.00 f | 0.40 ± 0.05 a,b,c | 26.65 ± 0.97 e,f | 2.40 ± 0.09 c,d | |
SL11 | 0.56 ± 0.03 d,e,f | 3.71 ± 0.10 e,f | 2.62 ± 0.19 b | 0.17 ± 0.05 a | 0.10 ± 0.06 a | 2.17 ± 0.07 e,f | 2.17 ± 0.10 c,d | 1.45 ± 0.08 a | 0.17 ± 0.01 a | 0.04 ± 0.00 b,c,d | 0.80 ± 0.05 d,e,f | 23.80 ± 0.97 e,f | 2.06 ± 0.09 b,c | |
SL13 | 1.33 ± 0.03 j | 3.41 ± 0.10 d,e,f | 2.44 ± 0.19 b | 0.31 ± 0.05 a,b,c | 0.06 ± 0.06 a | 2.49 ± 0.07 f,g,h | 1.35 ± 0.10 a,b | 4.78 ± 0.08 j | 0.23 ± 0.01 b,c | 0.04 ± 0.00 b,c,d | 3.42 ± 0.05 h | 42.95 ± 0.97 h | 4.98 ± 0.09 i | |
SL31 | 0.67 ± 0.03 e,f | 5.40 ± 0.10 j | 6.32 ± 0.19 c,d,e | 0.76 ± 0.05 d | 0.10 ± 0.06 a | 3.50 ± 0.07 l | 3.13 ± 0.10 e | 2.03 ± 0.08 b,c,d | 0.34 ± 0.01 f,g | 0.05 ± 0.00 d | 0.51 ± 0.05 b,c,d | 17.98 ± 0.97 b,c,d | 2.59 ± 0.09 d,e | |
WTSL111 | 0.44 ± 0.03 b,c,d | 2.92 ± 0.10 c,d | 5.69 ± 0.19 c,d | 0.22 ± 0.05 a,b | 0.32 ± 0.06 a | 1.69 ± 0.07 c,d | 2.33 ± 0.10 c,d | 2.38 ± 0.08 d,e,f,g | 0.32 ± 0.01 e,f | 0.03 ± 0.00 a,b,c | 0.30 ± 0.05 a,b,c | 15.77 ± 0.97 b | 2.10 ± 0.09 c | |
WTSL121 | 0.71 ± 0.03 f,g | 4.40 ± 0.10 g,h | 8.21 ± 0.19 g,h | 2.03 ± 0.05 g | 1.49 ± 0.06 c | 2.76 ± 0.07 h,i,j | 3.01 ± 0.10 e | 2.52 ± 0.08 e,f,g | 0.36 ± 0.01 f,g | 0.02 ± 0.00 a,b | 0.41 ± 0.05 a,b,c | 21.60 ± 0.97 c,d,e | 2.59 ± 0.09 d,e,f | |
WTSL112 | 1.55 ± 0.03 k | 3.43 ± 0.10 d,e,f | 6.54 ± 0.19 c,d,e,f | 1.53 ± 0.05 e,f | 2.14 ± 0.06 d | 3.36 ± 0.07 k,l | 2.59 ± 0.10 d,e | 1.94 ± 0.08 b,c | 0.32 ± 0.01 e,f | 0.31 ± 0.00 k | 1.01 ± 0.05 f | 27.87 ± 0.97 f,g | 3.28 ± 0.09 g | |
WTSL122 | 0.54 ± 0.03 c,d,e | 3.30 ± 0.10 c,d,e | 5.58 ± 0.19 c | 0.17 ± 0.05 a | 0.20 ± 0.06 a | 1.97 ± 0.07 d,e | 1.42 ± 0.10 a,b | 2.30 ± 0.08 c,d,e,f | 0.19 ± 0.01 a,b | 0.04 ± 0.00 b,c,d | 0.41 ± 0.05 a,b,c | 16.93 ± 0.97 b,c | 3.14 ± 0.09 g | |
WTSL211 | 0.65 ± 0.03 e,f | 7.69 ± 0.10 k | 8.54 ± 0.19 h | 0.58 ± 0.05 c,d | 1.60 ± 0.06 c | 2.71 ± 0.07 g,h,i | 1.79 ± 0.10 b,c | 2.64 ± 0.08 f,g,h | 0.24 ± 0.01 b,c,d | 0.09 ± 0.00 e | 0.29 ± 0.05 a,b,c | 22.96 ± 0.97 d,e,f | 2.38 ± 0.09 c,d | |
WTSL221 | 0.40 ± 0.03 b,c | 3.28 ± 0.10 c,d,e | 7.41 ± 0.19 f,g | 0.26 ± 0.05 a,b | 0.99 ± 0.06 b | 2.31 ± 0.07 e,f,g | 2.20 ± 0.10 c,d | 3.02 ± 0.08 h,i | 0.28 ± 0.01 d,e,f | 0.04 ± 0.00 c,d | 0.24 ± 0.05 a,b | 15.59 ± 0.97 b | 2.31 ± 0.09 c,d | |
WTSL212 | 0.85 ± 0.03 g,h | 2.80 ± 0.10 c | 6.97 ± 0.19 e,f | 0.47 ± 0.05 b,c | 1.97 ± 0.06 d | 3.01 ± 0.07 i,j,k | 1.42 ± 0.10 a,b | 2.60 ± 0.08 f,g,h | 0.34 ± 0.01 f,g | 0.13 ± 0.00 f,g,h | 0.57 ± 0.05 c,d,e | 33.17 ± 0.97 g | 2.05 ± 0.09 b,c |
1,8-Cineole | Linalool | β-Thujone | α-Thujone | Camphor | Thymol | Carvacrol | Methyleugenol | Thymoquinone | Geraniol | ||
Laurel (L) | 34.61 ± 0.57 | 17.75 ± 0.53 | - | - | - | - | - | 14.43 ± 0.30 | - | - | |
Wild thyme (WT) | - | - | 1.19 ± 0.06 | - | 2.87 ± 0.06 | 11.9 ± 0.28 | 19.24 ± 0.18 | - | 11.3 ± 0.21 | 11.7 ± 0.42 | |
Sage (S) | 13.08 ± 0.09 | 1.48 ± 0.02 | 32.73 ± 0.53 | 17.99 ± 1.04 | 14.42 ± 0.29 | - | - | - | - | - | |
SL11 | 20.94 ± 1.20 | 9.41 ± 0.22 | 21.39 ± 1.70 | 11.34 ± 0.24 | 9.89 ± 0.63 | - | - | 6.22 ± 0.16 | - | - | |
SL13 | 24.58 ± 1.05 | 14.56 ± 0.43 | 12.36 ± 0.34 | 6.44 ± 0.24 | 6.21 ± 0.15 | - | - | 10 ± 0.14 | - | - | |
SL31 | 17.73 ± 0.62 | 3.98 ± 0.07 | 30.72 ± 0.35 | 18.03 ± 0.33 | 10.89 ± 0.69 | - | - | 2.22 ± 0.15 | - | - | |
WTL11 | 19.72 ± 1.32 | 10.16 ± 0.68 | - | - | 1.37 ± 0.26 | 5.95 ± 0.25 | 10.08 ± 0.40 | 6.62 ± 0.43 | 1.75 ± 0.07 | 5.28 ± 0.20 | |
WTL13 | 29.32 ± 0.93 | 14.27 ± 0.83 | - | - | - | 2.61 ± 0.08 | 4.58 ± 0.27 | 9.84 ± 0.98 | - | 2.35 ± 0.05 | |
WTL31 | 10.45 ± 0.42 | 6.56 ± 0.52 | - | - | 1.87 ± 0.15 | 7.62 ± 0.74 | 12.64 ± 0.77 | 2.87 ± 0.40 | 2.78 ± 0.13 | 6.66 ± 0.46 | |
WTS11 | 9.00 ± 0.09 | 2.03 ± 0.02 | 21.73 ± 0.93 | 11.28 ± 0.42 | 10.57 ± 0.75 | 4.37 ± 0.12 | 7.45 ± 0.25 | - | 2.05 ± 0.07 | 3.52 ± 0.10 | |
WTS13 | 11.68 ± 1.11 | 1.43 ± 0.16 | 30.55 ± 1.64 | 17.52 ± 1.64 | 11.66 ± 0.80 | 2.16 ± 0.11 | 3.67 ± 0.18 | - | - | 1.55 ± 0.04 | |
WTS31 | 5.06 ± 0.15 | 2.31 ± 0.08 | 13.78 ± 1.79 | 7.54 ± 0.38 | 6.34 ± 0.56 | 7.1 ± 0.18 | 11.74 ± 1.01 | - | 2.44 ± 0.10 | 5.68 ± 0.18 | |
WTSL111 | 16.23 ± 0.73 | 5.77 ± 0.47 | 18.09 ± 0.70 | 10.1 ± 0.49 | 7.05 ± 0.60 | 3.22 ± 0.16 | 5.53 ± 0.37 | 3.95 ± 0.59 | - | 2.4 ± 0.10 | |
WTSL121 | 15.51 ± 1.08 | 4.23 ± 0.16 | 23.36 ± 1.27 | 12.73 ± 1.08 | 9.00 ± 0.35 | 2.13 ± 0.09 | 3.75 ± 0.53 | 2.41 ± 0.22 | - | 1.54 ± 0.05 | |
WTSL112 | 23.29 ± 1.62 | 8.92 ± 0.65 | 13.66 ± 0.88 | 6.83 ± 0.58 | 6.35 ± 0.65 | 2.14 ± 0.10 | 3.87 ± 0.54 | 5.87 ± 0.54 | - | 1.49 ± 0.05 | |
WTSL122 | 18.85 ± 1.24 | 6.48 ± 0.33 | 20.79 ± 1.41 | 11.71 ± 1.13 | 7.8 ± 0.49 | 1.88 ± 0.25 | 3.27 ± 0.12 | 4.24 ± 0.09 | - | 1.32 ± 0.02 | |
WTSL211 | 11.66 ± 1.10 | 5.37 ± 0.20 | 13.41 ± 1.10 | 7.22 ± 0.25 | 6.53 ± 0.11 | 4.99 ± 0.05 | 8.33 ± 0.15 | 2.52 ± 0.10 | 1.31 ± 0.05 | 3.71 ± 0.07 | |
WTSL221 | 15.84 ± 1.82 | 4.75 ± 0.31 | 20.11 ± 1.98 | 10.34 ± 1.01 | 9.3 ± 0.45 | 3.67 ± 0.05 | 6.2 ± 0.10 | 2.07 ± 0.10 | - | 2.89 ± 0.02 | |
WTSL212 | 17.73 ± 1.10 | 7.6 ± 0.20 | 11.96 ± 0.98 | 6.52 ± 0.45 | 5.14 ± 0.36 | 4.22 ± 0.15 | 7.18 ± 0.22 | 4.83 ± 0.11 | - | 3.26 ± 0.10 | |
Eugenol | Borneol | 4-Terpineol | α-Terpineol | α-Terpinyl acetate | Oct-1-en-3-ol | (E)-Citral | 1,4-Dihydroxy-2,5-di-tert-butylbenzene | γ-Terpinene | Veridiflorol | Menthol | |
Laurel (L) | 4.13 ± 0.10 | - | 4.81 ± 0.15 | 6.39 ± 0.20 | 7.54 ± 0.33 | - | - | - | - | - | - |
Wild thyme (WT) | - | 6.12 ± 0.21 | 6.25 ± 0.34 | 1.12 ± 0.10 | - | 2.29 ± 0.12 | - | 7.66 ± 0.98 | 2.29 ± 0.08 | - | - |
Sage (S) | - | 3.71 ± 0.12 | 1.55 ± 0.20 | - | - | - | - | - | - | 1.63 ± 0.10 | - |
SL11 | 1.66 ± 0.05 | 2.77 ± 0.01 | 3.12 ± 0.04 | 3.18 ± 0.08 | 2.22 ± 0.09 | - | - | - | - | - | - |
SL13 | 2.63 ± 0.06 | 2.1 ± 0.07 | 4.34 ± 0.10 | 5.23 ± 0.15 | 3.6 ± 0.20 | - | - | - | - | - | - |
SL31 | - | 2.59 ± 0.20 | 1.81 ± 0.17 | 1.2 ± 0.05 | 1.42 ± 0.09 | - | - | - | - | - | - |
WTL11 | 1.99 ± 0.10 | 3.01 ± 0.17 | 5.28 ± 0.11 | 3.38 ± 0.06 | 4.19 ± 0.08 | 1.18 ± 0.05 | - | 8.73 ± 0.58 | - | - | - |
WTL13 | 2.67 ± 0.15 | 1.85 ± 0.07 | 5.21 ± 0.18 | 4.9 ± 0.20 | 6.87 ± 0.87 | - | - | 3.47 ± 0.10 | - | - | - |
WTL31 | 1.58 ± 0.04 | 4.03 ± 0.15 | 5.52 ± 0.25 | 2.13 ± 0.08 | 2.03 ± 0.05 | 1.55 ± 0.03 | 1.55 ± 0.02 | 18.51 ± 1.89 | 1.4 ± 0.02 | - | - |
WTS11 | - | 4.07 ± 0.02 | 3.05 ± 0.08 | - | - | 1.21 ± 0.05 | 1.28 ± 0.06 | 10.46 ± 1.20 | - | - | - |
WTS13 | - | 3.26 ± 0.15 | 2.06 ± 0.05 | - | - | - | - | 4.96 ± 0.29 | - | - | - |
WTS31 | - | 4.03 ± 0.15 | 3.88 ± 0.12 | - | - | 1.43 ± 0.05 | 1.62 ± 0.06 | 16.75 ± 1.88 | 1.01 ± 0.05 | - | - |
WTSL111 | 1.52 ± 0.10 | 2.78 ± 0.08 | - | 1.95 ± 0.05 | 2.23 ± 0.22 | - | - | 6.77 ± 0.20 | - | - | 3.27 ± 0.11 |
WTSL121 | 1.08 ± 0.05 | 3.03 ± 0.05 | 2.44 ± 0.58 | 1.37 ± 0.09 | 1.48 ± 0.15 | - | - | 6.7 ± 0.33 | - | - | - |
WTSL112 | 2.01 ± 0.07 | 2.71 ± 0.06 | 4.03 ± 0.10 | 3.24 ± 0.08 | 1.78 ± 0.16 | - | - | 4.82 ± 0.14 | - | - | - |
WTSL122 | 1.35 ± 0.05 | 2.57 ± 0.08 | 3.04 ± 0.10 | 2.15 ± 0.03 | 2.62 ± 0.19 | - | - | 2.88 ± 0.05 | - | - | - |
WTSL211 | 1.39 ± 0.04 | 3.61 ± 0.10 | 3.93 ± 0.23 | 1.82 ± 0.05 | 1.31 ± 0.20 | 1.19 ± 0.07 | 1.81 ± 0.10 | 12.48 ± 1.99 | - | - | - |
WTSL221 | 1.34 ± 0.04 | 3.63 ± 0.07 | 3.74 ± 0.11 | 1.62 ± 0.05 | - | 1.08 ± 0.05 | - | 2.1 ± 0.08 | - | - | - |
WTSL212 | 1.92 ± 0.02 | 2.97 ± 0.05 | 4.08 ± 0.25 | 2.61 ± 0.10 | 2.76 ± 0.11 | - | - | 5.5 ± 0.18 | 1.01 ± 0.05 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maleš, I.; Dragović-Uzelac, V.; Jerković, I.; Zorić, Z.; Pedisić, S.; Repajić, M.; Garofulić, I.E.; Dobrinčić, A. Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages. Antioxidants 2022, 11, 1140. https://doi.org/10.3390/antiox11061140
Maleš I, Dragović-Uzelac V, Jerković I, Zorić Z, Pedisić S, Repajić M, Garofulić IE, Dobrinčić A. Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages. Antioxidants. 2022; 11(6):1140. https://doi.org/10.3390/antiox11061140
Chicago/Turabian StyleMaleš, Ivanka, Verica Dragović-Uzelac, Igor Jerković, Zoran Zorić, Sandra Pedisić, Maja Repajić, Ivona Elez Garofulić, and Ana Dobrinčić. 2022. "Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages" Antioxidants 11, no. 6: 1140. https://doi.org/10.3390/antiox11061140
APA StyleMaleš, I., Dragović-Uzelac, V., Jerković, I., Zorić, Z., Pedisić, S., Repajić, M., Garofulić, I. E., & Dobrinčić, A. (2022). Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages. Antioxidants, 11(6), 1140. https://doi.org/10.3390/antiox11061140