Gender-Specific Metabolic Responses of Crassostrea hongkongensis to Infection with Vibrio harveyi and Lipopolysaccharide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Challenge Experiment
2.3. Metabolite Extraction
2.4. Spectral Processing and Statistical Analyses
2.5. Systematic Statistical Metabolic Correlation and Network Analysis
3. Results
3.1. Hepatopancreas 1H NMR Spectra
3.2. Multivariate Data Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, J.X.; Li, Q.Z.; Xu, L.; Wei, P.Y.; He, P.P.; Zhang, X.Z.; Zhang, L.; Guan, J.L.; Zhang, X.J.; Lin, Y.; et al. Chromosome-level analysis of the Crassostrea hongkongensis genome reveals extensive duplication of immune-related genes in bivalves. Mol. Ecol. Resour. 2020, 20, 980–994. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Li, J.; Qin, Y.P.; Zhou, Y.E.; Zhang, Y.; Yu, Z.N. A comparative study of the survival, growth and gonad development of the diploid and triploid Hong Kong oyster, Crassostrea hongkongensis (Lam & Morton 2003). Aquac. Res. 2017, 48, 2453–2462. [Google Scholar] [CrossRef]
- Qin, Y.P.; Li, X.Y.; Liao, Q.L.; Li, J.; Ma, H.T.; Mo, R.G.; Zhang, Y.H.; Yu, Z.N. Comparative study on the growth, survival, gonad development and trait segregation of F2 hybrids and their grandparent species (Crassostrea ariakensis and C. hongkongensis). Aquaculture 2021, 541, 736757. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, Y.P.; Zhang, A.J.; Zhou, Y.Y.; Li, J.; Liao, Q.L.; Shi, G.P.; Yu, Z.N.; Pan, Y.; Zhang, Y.H. Cloning and characterization of a novel hydrolase gene from Hong Kong oyster Crassostrea hongkongensis. Aquacult. Rep. 2022, 23, 101055. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Liu, K.N.; Li, X.Y.; Qin, Y.P.; Zhang, Y.H.; Zhang, Y.; Xiang, Z.M.; Ma, H.T.; Li, J.; Yu, Z.N. Molluscan Beclin-1 is involved in the innate immune response by regulating the autophagosomes formation in Crassostrea hongkongensis. Aquacult. Rep. 2020, 18, 100541. [Google Scholar] [CrossRef]
- Fu, D.K.; Zhang, Y.; Yu, Z.N. Cloning and expression analysis of a ubiquitin gene (UbL40) in the haemocytes of Crassostrea hongkongensis under bacterial challenge. Chin. J. Oceanol. Limnol. 2011, 29, 80–86. [Google Scholar] [CrossRef]
- Wang, F.X.; Xiao, S.; Zhang, Y.; Zhang, Y.H.; Liu, Y.; Yan, Y.; Xiang, Z.M.; Yu, Z.N. ChAkt1 involvement in orchestrating the immune and heat shock responses in Crassostrea hongkongensis: Molecular cloning and functional characterization. Fish Shellfish Immunol. 2015, 47, 1015–1023. [Google Scholar] [CrossRef]
- Xiang, Z.M.; Qu, F.F.; Qi, L.; Ying, T.; Li, J.; Shu, X.; Yu, Z.N. Cloning and characterization of an apoptosis-related DNA fragmentation factor (DFF) from oyster, Crassostrea hongkongensis. Fish Shellfish Immunol. 2014, 38, 119–126. [Google Scholar] [CrossRef]
- Qu, F.F.; Xiang, Z.M.; Zhang, Y.; Li, J.; Xiao, S.; Zhang, Y.H.; Mao, F.; Ma, H.T.; Yu, Z.N. A novel p38 MAPK indentified from Crassostrea hongkongensis and its involvement in host response to immune challenges. Mol. Immunol. 2016, 79, 113–124. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, Y.; Huang, J.M.; Xiao, S.; Zhang, Y.H.; Li, J.; Chen, J.H.; Yu, Z.N. Transcriptomics analysis of Crassostrea hongkongensis for the discovery of reproduction-related genes. PLoS ONE 2015, 10, 0134280. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Wang, W.X. Chronic effects of copper in oysters Crassostrea hongkonggensis different exposure regimes as shown by NMR-based metabolomics. Environ. Toxicol. Chem. 2017, 36, 2428–2435. [Google Scholar] [CrossRef]
- Luo, L.Z.; Ke, C.H.; Guo, X.Y.; Shi, B.; Huang, M.Q. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. Fish Shellfish Immunol. 2014, 38, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Alfaro, A.C. Metabolomics investigation of summer mortality in New Zealand Greenshell (TM) mussels (Perna canaliculus). Fish Shellfish Immunol. 2020, 106, 783–791. [Google Scholar] [CrossRef]
- Cappello, T.; Giannetto, A.; Parrino, V.; Marco, G.D.; Mauceri, A.; Maisano, M. Food safety using NMR-based metabolomics: Assessment of the Atlantic bluefin tuna, Thunnus thynnus, from the Mediterranean Sea. Food Chem. Toxicol. 2018, 115, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Cappello, T.; Marco, G.D.; Conti, G.O.; Giannetto, A.; Ferrante, M.; Mauceri, A.; Maisano, M. Time-dependent metabolic disorders induced by short-term exposure to polystyrene microplastics in the Mediterranean mussel Mytilus galloprovincialis. Ecotoxicol. Environ. Saf. 2021, 209, 111780. [Google Scholar] [CrossRef]
- Zitouni, N.; Cappello, T.; Missawi, O.; Boughattas, I.; Marco, G.D.; Belbekhouche, S.; Mokni, M.; Alphonse, V.; Guerbej, H.; Bousserrhine, N.; et al. Metabolomic disorders unveil hepatotoxicity of environmental microplastics in wild fish Serranus scriba (Linnaeus 1758). Sci. Total Environ. 2022, 838, 155872. [Google Scholar] [CrossRef]
- Frizzo, R.; Bortoletto, E.; Riello, T.; Leanza, L.; Schievano, E.; Venier, P.; Mammi, S. NMR metabolite profiles of the bivalve mollusc Mytilus galloprovincialis before and after immune stimulation with Vibrio splendidus. Front. Mol. Biosci. 2021, 8, 686770. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Melvin, S.D.; Yu, R.M.K.; O’Connor, W.A.; Tran, T.K.A.; Andrew-Priestley, M.; Leusch, F.D.L.; MacFarlane, G.R. Exposure to estrogenic mixtures results in tissue-specific alterations to the metabolome of oysters. Aquat. Toxicol. 2021, 231, 105722. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Ye, Y.F.; Lu, K.H.; Zheng, Z.M.; Zhu, J.Y. NMR-based metabolomic responses of freshwater gastropod Bellamya aeruginosa to MC-producing and non MCproducing Microcystis aeruginosa. J. Oceanol. Limnol. 2022, 40, 260–272. [Google Scholar] [CrossRef]
- Lu, J.; Yao, T.; Shi, S.K.; Ye, L.T. Effects of acute ammonia nitrogen exposure on metabolic and immunological responses in the Hong Kong oyster Crassostrea hongkongensis. Ecotoxicol. Environ. Saf. 2022, 237, 113518. [Google Scholar] [CrossRef]
- Wei, L.; Wang, Q.; Wu, H.F.; Ji, C.L.; Zhao, J.M. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated ρCO2 exposure. J. Proteom. 2015, 112, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Wang, W.X. Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution. Environ. Pollut. 2016, 216, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.L.; Wang, Q.; Wu, H.F.; Tan, Q.G.; Wang, W.X. A metabolomic investigation of the effects of metal pollution in oysters Crassostrea hongkongensis. Mar. Pollut. Bull. 2015, 90, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Rungrassamee, W.; Maibunkaew, S.; Karoonuthaisiri, N.; Jiravanichpaisal, P. Application of bacterial lipopolysaccharide to improve survival of the black tiger shrimp after Vibrio harveyi exposure. Dev. Comp. Immunol. 2013, 41, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Shi, Y.Y.; Yao, T.; Bai, C.M.; Jiang, J.Z.; Ye, L.T. Gender Differences in Hemocyte Immune Parameters of Hong Kong Oyster Crassostrea hongkongensis During Immune Stress. Front. Immunol. 2021, 12, 659469. [Google Scholar] [CrossRef]
- Liu, X.L.; Ji, C.L.; Zhao, J.M.; Wu, H.F. Differential metabolic responses of clam Ruditapes philippinarum to Vibrio anguillarum and Vibrio splendidus challenges. Fish Shellfish Immunol. 2013, 35, 2001–2007. [Google Scholar] [CrossRef]
- Jacob, D.; Deborde, C.; Lefebvre, M.; Maucourt, M.; Moing, A. NMRProcFlow: A graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics. Metabolomics 2017, 13, 36. [Google Scholar] [CrossRef] [Green Version]
- Elliott, P.; Posma, J.M.; Chan, Q.; Garcia-Perez, I.; Wijeyesekera, A.; Bictash, M.; Ebbels, T.M.D.; Ueshima, H.; Zhao, L.C.; van Horn, L.; et al. Urinary metabolic signatures of human adiposity. Sci. Transl. Med. 2015, 7, 285ra262. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.Q.; Chong, J.; Zhou, G.Y.; Morais, D.A.d.L.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-E.; Li, S.Z.; Xia, J.G. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Sokolov, E.P.; Sokolova, I.M. Compatible osmolytes modulate mitochondrial function in a marine osmoconformer Crassostrea gigas (Thunberg, 1793). Mitochondrion 2019, 45, 29–37. [Google Scholar] [CrossRef]
- Eymann, C.; Gotze, S.; Bock, C.; Guderley, H.; Knoll, A.H.; Lannig, G.; Sokolova, I.M.; Aberhan, M.; Portner, H.O. Thermal performance of the European flat oyster, Ostrea edulis (Linnaeus, 1758)-explaining ecological findings under climate change. Mar. Biol. 2020, 167, 2–15. [Google Scholar] [CrossRef]
- Ellis, R.P.; Spicer, J.I.; Byrne, J.J.; Sommer, U.; Viant, M.R.; White, D.A.; Widdicombe, S. 1H NMR Metabolomics Reveals Contrasting Response by Male and Female Mussels Exposed to Reduced Seawater pH, Increased Temperature, and a Pathogen. Environ. Sci. Technol. 2014, 48, 7044–7052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.B.; Sun, W.; Zhang, Z.; Chen, H.G.; Jia, X.P.; Cai, W.G. Gender-specific metabolic responses in gonad of mussel Perna viridis to triazophos. Mar. Pollut. Bull. 2017, 123, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.J.; He, S.; Ming, T.H.; Lu, C.Y.; Zhou, J.; Su, X.R. A metabonomic analysis on the response of Enterobacter cloacae from coastal outfall for land-based pollutant under phoxim stress. Arch. Microbiol. 2017, 199, 1165–1173. [Google Scholar] [CrossRef]
- Li, M.H.; Wang, J.S.; Lu, Z.G.; Wei, D.D.; Yang, M.H.; Kong, L.Y. NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus). Aquat. Toxicol. 2014, 146, 82–92. [Google Scholar] [CrossRef]
- Yang, C.Y.; Hao, R.J.; Du, X.D.; Wang, Q.H.; Deng, Y.W.; Sun, R.J. Response to different dietary carbohydrate and protein levels of pearl oysters (Pinctada fucata martensii) as revealed by GC-TOF/MS-based metabolomics. Sci. Total Environ. 2019, 650, 2614–2623. [Google Scholar] [CrossRef]
- Tweeddale, H.; Notley-Mcrobb, L.; Ferenci, T. Effect of Slow Growth on Metabolism of Escherichia coli, as Revealed by Global Metabolite Pool (“Metabolome”) Analysis. J. Bacteriol. 1998, 180, 5109–5116. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.D.; Liu, W.B.; Zhang, D.D.; Xu, C.Y.; Zhang, C.Y.; Zheng, X.C.; Chi, C. Dietary reduced glutathione supplementation can improve growth, antioxidant capacity, and immunity on Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol. 2020, 100, 300–308. [Google Scholar] [CrossRef]
- Xia, Z.Q.; Wu, S.J. Effects of glutathione on the survival, growth performance and non-specific immunity of white shrimps (Litopenaeus vannamei). Fish Shellfish Immunol. 2018, 73, 141–144. [Google Scholar] [CrossRef]
- Feng, L.; Li, W.; Liu, Y.; Jiang, W.D.; Kuang, S.Y.; Wu, P.; Jiang, J.; Tang, L.; Tang, W.N.; Zhang, Y.G.; et al. Protective role of phenylalanine on the ROS-induced oxidative damage, apoptosis and tight junction damage via Nrf2, TOR and NF-kB signalling molecules in the gill of fish. Fish Shellfish Immunol. 2017, 60, 185–196. [Google Scholar] [CrossRef]
- Rui, L.Y. Energy Metabolism in the Liver. Compr. Physiol. 2014, 4, 177–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.L.; Sun, H.S.; Wang, Y.Y.; Ma, M.W.; Zhang, Y.M. Gender-specific metabolic responses in hepatopancreas of mussel Mytilus galloprovincialis challenged by Vibrio harveyi. Fish Shellfish Immunol. 2014, 40, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Alfaro, A.; Arroyo, B.B.; Leon, J.A.R.; Sonnenholzner, S. Metabolic responses of penaeid shrimp to acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. Aquaculture 2021, 533, 736174. [Google Scholar] [CrossRef]
- Sun, X.J.; Tu, K.; Li, L.; Biao, W.; Wu, L.; Liu, Z.H.; Zhou, L.Q.; Tian, J.T.; Yang, A.G. Integrated transcriptome and metabolome analysis reveals molecular responses of the clams to acute hypoxia. Mar. Environ. Res. 2021, 168, 105317. [Google Scholar] [CrossRef]
- Lu, J.; Shi, Y.Y.; Wang, S.H.; Chen, H.; Cai, S.H.; Feng, J.H. NMR-based metabolomic analysis of Haliotis diversicolor exposed to thermal and hypoxic stresses. Sci. Total Environ. 2016, 545–546, 280–288. [Google Scholar] [CrossRef]
- Li, F.; Meng, X.J.; Wang, X.Q.; Ji, C.L.; Wu, H.F. Graphene-triphenyl phosphate (TPP) co-exposure in the marine environment: Interference with metabolism and immune regulation in mussel Mytilus galloprovincialis. Ecotoxicol. Environ. Saf. 2021, 227, 112904. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Lu, J.; Yao, T.; Ye, L.; Wang, J. Gender-Specific Metabolic Responses of Crassostrea hongkongensis to Infection with Vibrio harveyi and Lipopolysaccharide. Antioxidants 2022, 11, 1178. https://doi.org/10.3390/antiox11061178
Ma L, Lu J, Yao T, Ye L, Wang J. Gender-Specific Metabolic Responses of Crassostrea hongkongensis to Infection with Vibrio harveyi and Lipopolysaccharide. Antioxidants. 2022; 11(6):1178. https://doi.org/10.3390/antiox11061178
Chicago/Turabian StyleMa, Lijuan, Jie Lu, Tuo Yao, Lingtong Ye, and Jiangyong Wang. 2022. "Gender-Specific Metabolic Responses of Crassostrea hongkongensis to Infection with Vibrio harveyi and Lipopolysaccharide" Antioxidants 11, no. 6: 1178. https://doi.org/10.3390/antiox11061178
APA StyleMa, L., Lu, J., Yao, T., Ye, L., & Wang, J. (2022). Gender-Specific Metabolic Responses of Crassostrea hongkongensis to Infection with Vibrio harveyi and Lipopolysaccharide. Antioxidants, 11(6), 1178. https://doi.org/10.3390/antiox11061178