Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS) Profiling of Commercial Enocianina and Evaluation of Their Antioxidant and Anti-Inflammatory Activity
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Qualitative Analysis by LC-HRMS
2.3. Semiquantitative Analysis of Anthocyanins by LC-MS
2.4. Absolute Quantitative Analysis of Anthocyanins by LC-UV
2.5. Total Anthocyanins Content
2.6. Total Tannins Content
2.7. Total Polyphenols Content
2.8. DPPH Assay
2.9. NRF2
2.10. Anti-Inflammatory Activity
2.11. MTT Assay
2.12. Statistical Analysis
3. Results and Discussion
3.1. Qualitative Profile of Enocianina Extracts Determined by Targeted LC-HRMS Analysis
3.2. Quantitative Analyses
3.3. Semi-Quantitative Analysis
3.4. Radical Scavenging, Antioxidant and Anti-Inflammatory Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wallace, T.C.; Giusti, M.M. Anthocyanins-Nature’s Bold, Beautiful, and Health-Promoting Colors. Foods 2019, 8, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Porto, C.; Zironi, R.; Celotti, E.; Bertolo, A. Evaluation of the colour stability of enocyanines. J. Int. Sci. Vigne Vin 1998, 32, 153–161. [Google Scholar] [CrossRef]
- Prodanov, M.P.; Domínguez, J.A.; Blázquez, I.; Salinas, M.R.; Alonso, G.L. Some aspects of the quantitative/qualitative assessment of commercial anthocyanin-rich extracts. Food Chem. 2005, 90, 585–596. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Carpenè, A.; Comboni, E. L’enocianina e i vini poveri in colore. Boll. Comizio Agrar. Massa 1882, 1. [Google Scholar]
- Bridle, P.; Timberlake, C.F. Anthocyanins as natural food colours—Selected aspects. Food Chem. 1997, 58, 103–109. [Google Scholar] [CrossRef]
- Brazinha, C.; Cadima, M.; Crespo, J.G. Optimization of extraction of bioactive compounds from different types of grape pomace produced at wineries and distilleries. J. Food Sci. 2014, 79, E1142–E1149. [Google Scholar] [CrossRef]
- Bonfigli, M.; Godoy, E.; Reinheimer, M.A.; Scenna, N.J. Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. J. Food Eng. 2017, 207, 56–72. [Google Scholar] [CrossRef]
- Pazir, F.; Koçak, E.; Turan, F.O.G. Extraction of anthocyanins from grape pomace by using supercritical carbon dioxide. J. Food Process. Preserv. 2021, 45, e14950. [Google Scholar] [CrossRef]
- Sapone, V.; Cicci, A.; Franceschi, D.; Vincenzi, S.; Bravi, M. Antioxidant Extraction and Bioactivity Preservation from Winery By-products by Natural Deep Eutectic Solvents (nades). Chem. Eng. Trans. 2020, 79, 157–162. [Google Scholar]
- Alibade, A.; Lakka, A.; Bozinou, E.; Lalas, S.I.; Chatzilazarou, A.; Makris, D.P. Development of a green methodology for simultaneous extraction of polyphenols and pigments from red winemaking solid wastes (Pomace) using a novel glycerol-sodium benzoate deep eutectic solvent and ultrasonication pretreatment. Environments 2021, 8, 90. [Google Scholar] [CrossRef]
- Spagna, G.; Pifferi, P.G. Purification and separation of oenocyanin anthocyanins on sulphoxyethylcellulose. Food Chem. 1992, 44, 185–188. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of anthocyanins (E 163) as a food additive. EFSA J. 2013, 11, 3145. [Google Scholar]
- Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Ž.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; et al. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front. Pharmacol. 2020, 11, 1300. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef]
- Ali, T.; Kim, T.; Rehman, S.U.; Khan, M.S.; Amin, F.U.; Khan, M.; Ikram, M.; Kim, M.O. Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 6076–6093. [Google Scholar] [CrossRef]
- Pour, P.M.; Fakhri, S.; Asgary, S.; Farzaei, M.H.; Echeverría, J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front. Pharmacol. 2019, 10, 1027. [Google Scholar]
- Baron, G.; Altomare, A.; Mol, M.; Garcia, J.L.; Correa, C.; Raucci, A.; Mancinelli, L.; Mazzotta, S.; Fumagalli, L.; Trunfio, G.; et al. Analytical Profile and Antioxidant and Anti-Inflammatory Activities of the Enriched Polyphenol Fractions Isolated from Bergamot Fruit and Leave. Antioxidants 2021, 10, 141. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Martínez-Gascueña, J.; Chacón-Vozmediano, J.L.; García-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chem. 2019, 295, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Trujillo, J.P.; Hernández, Z.; López-Bellido, F.J.; Hermosín-Gutiérrez, I. Characteristic phenolic composition of single-cultivar red wines of the Canary Islands (Spain). J. Agric. Food Chem. 2011, 59, 6150–6164. [Google Scholar] [CrossRef] [PubMed]
- Lago-Vanzela, E.S.; Da-Silva, R.; Gomes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic composition of the edible parts (flesh and skin) of Bordô grape (Vitis labrusca) using HPLC-DAD-ESI-MS/MS. J. Agric. Food Chem. 2011, 59, 13136–13146. [Google Scholar] [CrossRef] [PubMed]
- Colombo, R.C.; Roberto, S.R.; Nixdorf, S.L.; Pérez-Navarro, J.; Gómez-Alonso, S.; Mena-Morales, A.; García-Romero, E.; Gonçalves, L.S.A.; da Cruz, M.A.; de Carvalho, D.U.; et al. Analysis of the phenolic composition and yield of ‘RS Vitoria’ seedless table grape under different bunch densities using HPLC-DAD-ESI-MS/MS. Food Res. Int. 2020, 130, 108955. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, Y.; Lu, J. Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int. J. Mol. Sci. 2012, 13, 3492–3510. [Google Scholar] [CrossRef] [Green Version]
- Manfra, M.; de Nisco, M.; Bolognese, A.; Nuzzo, V.; Sofo, A.; Scopa, A.; Santi, L.; Tenore, G.C.; Novellino, E. Anthocyanin composition and extractability in berry skin and wine of Vitis vinifera L. cv. Aglianico. J. Sci. Food Agric. 2011, 91, 2749–2755. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef]
- Fermo, P.; Comite, V.; Sredojević, M.; Ćirić, I.; Gašić, U.; Mutić, J.; Baošić, R.; Tešić, Ž. Elemental Analysis and Phenolic Profiles of Selected Italian Wines. Foods 2021, 10, 158. [Google Scholar] [CrossRef]
- Quaglieri, C.; Iachetti, G.; Jourdes, M.; Waffo-Teguo, P.; Teissedre, P.-L. Are pyranoanthocyanins involved in sensory effect in red wines? BIO Web Conf. 2016, 7, 02007. [Google Scholar] [CrossRef] [Green Version]
- Marquez, A.; Serratosa, M.P.; Merida, J. Pyranoanthocyanin Derived Pigments in Wine: Structure and Formation during Winemaking. J. Chem. 2013, 2013, 713028. [Google Scholar] [CrossRef]
- Baron, G.; Altomare, A.; Regazzoni, L.; Redaelli, V.; Grandi, S.; Riva, A.; Morazzoni, P.; Mazzolari, A.; Carini, M.; Vistoli, G.; et al. Pharmacokinetic profile of bilberry anthocyanins in rats and the role of glucose transporters: LC-MS/MS and computational studies. J. Pharm. Biomed. Anal. 2017, 144, 112–121. [Google Scholar] [CrossRef]
- Mónica Giusti, M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. In Handbook of Food Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2005; Volume 53, pp. 19–31. [Google Scholar]
- Herald, T.J.; Gadgil, P.; Perumal, R.; Bean, S.R.; Wilson, J.D. High-throughput micro-plate HCI-vanillin assay for screening tannin content in sorghum grain. J. Sci. Food Agric. 2014, 94, 2133–2136. [Google Scholar] [CrossRef] [PubMed]
- Baron, G.; Ferrario, G.; Marinello, C.; Carini, M.; Morazzoni, P.; Aldini, G. Effect of Extraction Solvent and Temperature on Polyphenol Profiles, Antioxidant and Anti-Inflammatory Effects of Red Grape Skin By-Product. Molecules 2021, 26, 5454. [Google Scholar] [CrossRef] [PubMed]
- Baron, G.; Altomare, A.; Regazzoni, L.; Fumagalli, L.; Artasensi, A.; Borghi, E.; Ottaviano, E.; del Bo, C.; Riso, P.; Allegrini, P.; et al. Profiling Vaccinium macrocarpon components and metabolites in human urine and the urine ex-vivo effect on Candida albicans adhesion and biofilm-formation. Biochem. Pharmacol. 2020, 173, 113726. [Google Scholar] [CrossRef] [PubMed]
- Harsha, P.S.S.; Gardana, C.; Simonetti, P.; Spigno, G.; Lavelli, V. Characterization of phenolics, in vitro reducing capacity and anti-glycation activity of red grape skins recovered from winemaking by-products. Bioresour. Technol. 2013, 140, 263–268. [Google Scholar] [CrossRef]
- Lin, D.; Dai, F.; Sun, L.D.; Zhou, B. Toward an understanding of the role of a catechol moiety in cancer chemoprevention: The case of copper- and o-quinone-dependent Nrf2 activation by a catechol-type resveratrol analog. Mol. Nutr. Food Res. 2015, 59, 2395–2406. [Google Scholar] [CrossRef]
- Potter, G.A.; Patterson, L.H.; Wanogho, E.; Perry, P.J.; Butler, P.C.; Ijaz, T.; Ruparelia, K.C.; Lamb, J.H.; Farmer, P.B.; Stanley, L.A.; et al. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer 2002, 86, 774–778. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, D.; Zhang, J.; Yuan, J. Metabolism, Transport and Drug-Drug Interactions of Silymarin. Molecules 2019, 24, 3693. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Hu, R.; Fan, Y.; Xu, Y.N.; Park, H.J.; Lee, S.K. Photoprotective effects of 2S,3R-6-methoxycarbonylgallocatechin isolated from Anhua dark tea on UVB-induced inflammatory responses in human keratinocytes. J. Photochem. Photobiol. B 2020, 202, 111704. [Google Scholar] [CrossRef]
- Fagundes, F.L.; Pereira, Q.C.; Zarricueta, M.L.; Santos, R.C.D. Malvidin Protects against and Repairs Peptic Ulcers in Mice by Alleviating Oxidative Stress and Inflammation. Nutrients 2021, 13, 3312. [Google Scholar] [CrossRef] [PubMed]
Malvidin 3-Glucoside | Peonidin 3-Glucoside | Delphinidin 3-Glucoside | Cyanidin 3-Glucoside | |
---|---|---|---|---|
Code | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD |
mg/100 mg | mg/100 mg | mg/100 mg | mg/100 mg | |
A | 1.056 ± 0.027 | 0.247 ± 0.049 | 0.293 ± 0.013 | 0.050 ± 0.007 |
B | 1.131 ± 0.027 | 0.083 ± 0.003 | 0.060 ± 0.003 | 0.007 ± 0.001 |
C | 1.302 ± 0.032 | 0.190 ± 0.012 | 0.049 ± 0.001 | 0.015 ± 0.001 |
D | 1.744 ± 0.026 | 0.363 ± 0.007 | 0.575 ± 0.012 | 0.223 ± 0.013 |
Anthocyanins | Tannins | Total Polyphenols | |
---|---|---|---|
Code | Mean ± SD | Mean ± SD | Mean ± SD |
mg/100 mg | mg/100 mg | mg/100 mg | |
A | 1.66 ± 0.11 | 1.92 ± 0.96 | 23.539 ± 1.438 |
B | 1.28 ± 0.02 | 2.39 ± 0.69 | 14.640 ± 0.903 |
C | 1.46 ± 0.03 | 2.51 ± 0.23 | 21.063 ± 2.113 |
D | 3.24 ± 0.07 | 2.55 ± 0.06 | 13.069 ± 0.706 |
Name | A | B | C | D |
---|---|---|---|---|
Malvidin 3-glucoside | 39.846 ± 1.070 | 47.799 ± 0.684 | 47.332 ± 0.751 | 29.325 ± 0.427 |
Peonidin 3-glucoside | 15.563 ± 0.064 | 6.292 ± 0.090 | 8.599 ± 0.113 | 8.444 ± 0.035 |
Petunidin 3-glucoside | 8.685 ± 0.338 | 6.787 ± 0.076 | 5.996 ± 0.060 | 8.902 ± 0.090 |
Malvidin 3-(6″-coumaroyl)-glucoside | 7.958 ± 0.293 | 5.861 ± 0.031 | 6.734 ± 0.227 | 13.124 ± 0.058 |
Delphinidin 3-glucoside | 5.508 ± 0.217 | 1.484 ± 0.017 | 1.047 ± 0.004 | 5.263 ± 0.145 |
Malvidin 3-(6″-acetyl)-glucoside | 3.862 ± 0.246 | 20.243 ± 0.412 | 16.779 ± 0.194 | 14.354 ± 0.077 |
Peonidin-3-(6″-coumaroyl)-glucoside | 2.789 ± 0.069 | 0.786 ± 0.016 | 1.236 ± 0.041 | 2.962 ± 0.052 |
Vitisin B | 2.104 ± 0.090 | 0.407 ± 0.006 | 0.477 ± 0.013 | 0.029 ± 0.002 |
Cyanidin 3-glucoside | 1.481 ± 0.066 | 0.660 ± 0.014 | 0.845 ± 0.014 | 3.095 ± 0.057 |
Petunidin 3-(6″-coumaroyl)-glucoside | 1.172 ± 0.040 | 0.715 ± 0.014 | 0.830 ± 0.031 | 2.509 ± 0.022 |
Vitisin A | 1.124 ± 0.035 | 0.446 ± 0.006 | 0.920 ± 0.016 | 0.067 ± 0.001 |
Delphinidin 3-(6″-p-coumaroyl)-glucoside | 1.054 ± 0.043 | 0.441 ± 0.006 | 0.487 ± 0.021 | 1.861 ± 0.017 |
Peonidin 3-(6″-acetyl)-glucoside | 1.041 ± 0.092 | 1.748 ± 0.042 | 2.413 ± 0.078 | 2.471 ± 0.038 |
Malvidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 3 | 0.933 ± 0.048 | 0.160 ± 0.007 | 0.071 ± 0.007 | 0.008 ± 0.001 |
Malvidin 3-(6″-caffeoyl)-glucoside | 0.644 ± 0.032 | 1.471 ± 0.013 | 1.652 ± 0.077 | 0.149 ± 0.003 |
Malvidin 3-O-(6′′-p coumaroyl)glucoside acetaldehyde | 0.643 ± 0.016 | 0.064 ± 0.002 | 0.068 ± 0.006 | 0.009 ± 0.000 |
Petunidin 3-(6″-acetyl)-glucoside | 0.640 ± 0.046 | 2.002 ± 0.049 | 1.731 ± 0.058 | 3.667 ± 0.047 |
Malvidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 2 | 0.603 ± 0.025 | 0.095 ± 0.002 | 0.049 ± 0.005 | 0.006 ± 0.000 |
Malvidin 3-O-(6′′-p coumaroyl)glucoside ethyl-catechin | 0.572 ± 0.035 | 0.068 ± 0.003 | 0.044 ± 0.001 | 0.005 ± 0.003 |
Delphinidin 3-(6″-acetyl)-glucoside | 0.384 ± 0.018 | 1.073 ± 0.034 | 0.768 ± 0.037 | 2.053 ± 0.003 |
Cyanidin 3-O-(6′′-p-coumaroyl)glucoside | 0.361 ± 0.023 | 0.100 ± 0.003 | 0.164 ± 0.008 | 0.796 ± 0.019 |
Peonidin 3-O-glucoside-pyruvate | 0.334 ± 0.010 | 0.067 ± 0.002 | 0.167 ± 0.002 | 0.012 ± 0.000 |
Malvidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 4 | 0.317 ± 0.034 | 0.065 ± 0.003 | 0.031 ± 0.005 | 0.003 ± 0.001 |
Malvidin 3-O-(6′′-p coumaroyl)glucoside-pyruvate | 0.285 ± 0.018 | 0.066 ± 0.000 | 0.127 ± 0.002 | 0.031 ± 0.001 |
Petunidin 3-O-glucoside-acetaldehyde | 0.278 ± 0.014 | 0.068 ± 0.005 | 0.095 ± 0.005 | 0.023 ± 0.001 |
Malvidin 3-O-(6′′-acetyl)glucoside-acetaldehyde | 0.254 ± 0.021 | 0.080 ± 0.003 | 0.031 ± 0.000 | 0.010 ± 0.000 |
Peonidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 2 | 0.247 ± 0.016 | 0.018 ± 0.001 | 0.012 ± 0.001 | 0.001 ± 0.000 |
Malvidin 3-O-glucoside-4-vinyl-(epi)catechin | 0.230 ± 0.016 | 0.153 ± 0.002 | 0.306 ± 0.019 | 0.011 ± 0.001 |
Malvidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 1 | 0.159 ± 0.014 | 0.031 ± 0.002 | 0.020 ± 0.002 | 0.003 ± 0.000 |
Peonidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 1 | 0.156 ± 0.010 | 0.009 ± 0.001 | 0.005 ± 0.001 | 0.001 ± 0.000 |
Cyanidin-3-acetylglucoside | 0.122 ± 0.013 | 0.146 ± 0.003 | 0.192 ± 0.010 | 0.656 ± 0.011 |
Malvidin 3-O-(6′′-acetyl)glucoside-pyruvate | 0.122 ± 0.005 | 0.135 ± 0.005 | 0.093 ± 0.001 | 0.040 ± 0.001 |
Petunidin 3-(6″-caffeoyl)-glucoside | 0.111 ± 0.009 | 0.118 ± 0.005 | 0.133 ± 0.007 | 0.028 ± 0.001 |
Malvidin 3-O-glucoside-acetone | 0.076 ± 0.009 | 0.147 ± 0.016 | 0.348 ± 0.026 | 0.010 ± 0.001 |
Delphinidin 3-O-glucoside-8-ethyl-(epi)catechin | 0.074 ± 0.003 | 0.040 ± 0.002 | 0.029 ± 0.002 | 0.014 ± 0.001 |
Malvidin 3-O-glucosidepyruvate procyanidin dimer | 0.055 ± 0.006 | 0.048 ± 0.003 | 0.075 ± 0.004 | 0.001 ± 0.001 |
Malvidin 3-O-glucoside-acetaldehyde | 0.048 ± 0.005 | 0.044 ± 0.005 | 0.053 ± 0.008 | 0.011 ± 0.000 |
Malvidin 3-O-glucoside-pyruvate | 0.044 ± 0.011 | 0.015 ± 0.002 | 0.012 ± 0.001 | 0.009 ± 0.001 |
Petunidin 3-O-(6′′-p-coumaroyl)glucoside-8-ethyl-(epi)catechin | 0.040 ± 0.002 | 0.006 ± 0.001 | 0.003 ± 0.001 | 0.002 ± 0.000 |
Malvidin 3-O-(6′′-p-coumaroyl)glucoside-4-vinylphenol | 0.035 ± 0.002 | 0.007 ± 0.001 | 0.005 ± 0.001 | 0.020 ± 0.001 |
Malvidin 3-O-glucosidepyruvate procyanidin dimer | 0.028 ± 0.004 | 0.020 ± 0.001 | 0.010 ± 0.001 | 0.002 ± 0.000 |
Radical Scavenging Activity | Anti-Inflammatory Activity | |
---|---|---|
Code | IC50 µg/mL | IC20 µg/mL |
(Mean ± SD) | (Mean ± SD) | |
A | 9.582 ± 0.871 | 68.4 ± 14.3 |
B | 16.093 ± 2.173 | 115.3 ± 25.1 |
C | 10.552 ± 1.371 | 52.2 ± 16.9 |
D | 16.389 ± 3.472 | 186.9 ± 48.2 |
Catechols | A | B | C | D |
---|---|---|---|---|
Delphinidin 3-glucoside | 5.66 | 1.65 | 0.85 | 10.15 |
Procyandin B peak1 | 0.71 | 2.47 | 2.75 | 2.40 |
Cyanidin 3-glucoside | 1.29 | 0.69 | 0.71 | 6.84 |
Procyanidin trimer peak 1 | 0.16 | 0.96 | 0.86 | 0.65 |
Catechin | 0.41 | 1.29 | 1.30 | 0.99 |
Procyanidin trimer peak 2 | 0.20 | 0.77 | 0.76 | 0.59 |
Petunidin 3-glucoside | 9.23 | 7.12 | 6.54 | 21.52 |
Procyanidin B peak4 | 0.82 | 2.27 | 2.58 | 2.20 |
Epicatechin | 0.45 | 1.08 | 1.38 | 0.83 |
Procyanidin trimer peak 3 | 0.33 | 1.12 | 1.17 | 0.97 |
Petunidin 3-O-glucoside-acetaldehyde | 0.27 | 0.06 | 0.06 | 0.02 |
Procyanidin tetramer | 0.09 | 0.40 | 0.42 | 0.20 |
Delphinidin 3-O-glucoside-8-ethyl-(epi)catechin | 0.31 | 0.03 | 0.02 | 0.02 |
Delphinidin 3-(6″-acetyl)-glucoside | 0.70 | 2.28 | 1.46 | 10.36 |
Myricetin 3-glucuronide | 0.35 | 0.47 | 0.39 | 0.28 |
Myricetin 3-glucoside | 0.86 | 1.65 | 1.76 | 0.83 |
Myricetin dihexoside | 0.03 | 0.48 | 0.27 | 0.01 |
Cyanidin-3-acetylglucoside | 0.28 | 0.38 | 0.45 | 3.04 |
Catechin gallate/epicatechin 3-gallate | 0.31 | 0.48 | 0.60 | 0.03 |
Petunidin 3-(6″-acetyl)-glucoside | 1.36 | 5.39 | 3.97 | 23.98 |
Quercetin 3-galactoside | 0.52 | 0.61 | 0.66 | 0.35 |
Quercetin 3-glucuronide | 8.03 | 7.13 | 8.81 | 4.61 |
Quercetin 3-glucoside | 1.90 | 1.09 | 1.90 | 0.09 |
Dihydroquercetin-3-rhamnoside | 0.56 | 0.49 | 0.83 | 1.96 |
Malvidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 1 | 0.76 | 0.24 | 0.14 | 0.02 |
Laricitrin-3-glucoside/Laricitrin 3-galactoside | 0.59 | 1.83 | 2.19 | 0.87 |
Peonidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 1 | 0.75 | 0.09 | 0.06 | 0.01 |
Malvidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 2 | 2.68 | 0.48 | 0.23 | 0.05 |
Peonidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 2 | 0.99 | 0.08 | 0.05 | 0.01 |
Malvidin 3-O-glucosidepyruvate procyanidin dimer 1 | 0.18 | 0.10 | 0.15 | 0.00 |
Malvidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 3 | 4.21 | 1.00 | 0.46 | 0.10 |
Petunidin 3-(6″-caffeoyl)-glucoside | 0.22 | 0.39 | 0.44 | 0.21 |
Malvidin 3-O-glucosidepyruvate procyanidin dimer 2 | 0.22 | 0.26 | 0.32 | 0.02 |
Malvidin 3-O-glucoside-8-ethyl-(epi)catechin isomer 4 | 13.42 | 0.63 | 0.30 | 0.04 |
Quercetin-3-rhamnoside | 0.55 | 0.48 | 0.75 | 2.21 |
Delphinidin 3-(6″-coumaroyl)-glucoside | 2.75 | 2.10 | 2.08 | 14.88 |
Myricetin | 0.21 | 0.24 | 0.22 | 0.85 |
Malvidin 3-(6″-caffeoyl)-glucoside | 3.12 | 9.84 | 9.87 | 1.73 |
Cyanidin 3-O-(6′′-p-coumaroyl)glucoside | 1.59 | 0.58 | 0.98 | 7.40 |
Petunidin 3-O-(6′′-p-coumaroyl)glucoside-8-ethyl-(epi)catechin | 0.42 | 0.11 | 0.07 | 0.01 |
Petunidin 3-(6″-coumaroyl)-glucoside | 5.51 | 5.09 | 5.83 | 23.98 |
Malvidin 3-O-glucoside-4-vinyl-(epi)catechin | 0.92 | 0.95 | 1.30 | 0.02 |
Malvidin 3-O-(6′′-p coumaroyl)glucoside ethyl-catechin | 6.12 | 0.96 | 0.79 | 0.11 |
Quercetin | 2.42 | 2.70 | 3.76 | 0.22 |
Laricitrin | 0.05 | 0.09 | 0.08 | 0.10 |
Catechol index | 82.49 | 68.59 | 70.54 | 145.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Della Vedova, L.; Ferrario, G.; Gado, F.; Altomare, A.; Carini, M.; Morazzoni, P.; Aldini, G.; Baron, G. Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS) Profiling of Commercial Enocianina and Evaluation of Their Antioxidant and Anti-Inflammatory Activity. Antioxidants 2022, 11, 1187. https://doi.org/10.3390/antiox11061187
Della Vedova L, Ferrario G, Gado F, Altomare A, Carini M, Morazzoni P, Aldini G, Baron G. Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS) Profiling of Commercial Enocianina and Evaluation of Their Antioxidant and Anti-Inflammatory Activity. Antioxidants. 2022; 11(6):1187. https://doi.org/10.3390/antiox11061187
Chicago/Turabian StyleDella Vedova, Larissa, Giulio Ferrario, Francesca Gado, Alessandra Altomare, Marina Carini, Paolo Morazzoni, Giancarlo Aldini, and Giovanna Baron. 2022. "Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS) Profiling of Commercial Enocianina and Evaluation of Their Antioxidant and Anti-Inflammatory Activity" Antioxidants 11, no. 6: 1187. https://doi.org/10.3390/antiox11061187
APA StyleDella Vedova, L., Ferrario, G., Gado, F., Altomare, A., Carini, M., Morazzoni, P., Aldini, G., & Baron, G. (2022). Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS) Profiling of Commercial Enocianina and Evaluation of Their Antioxidant and Anti-Inflammatory Activity. Antioxidants, 11(6), 1187. https://doi.org/10.3390/antiox11061187