Itaconate Isomers in Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Homemade Bread
2.2. Commercial Bread
2.3. Preanalytical Processing
2.4. Wheat Seedlings
2.5. Mass Spectrometry
2.6. Computation and Statistics
3. Results
3.1. Itaconate Isomers in Homemade and Commercial Bread
3.2. Estimated Dietary Intake of Itaconate Isomers in Bread
3.3. Absence of Itaconate Isomers in Wheat Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peace, C.G.; O’Neill, L.A. The role of itaconate in host defense and inflammation. J. Clin. Investig. 2022, 132, e148548. [Google Scholar] [CrossRef] [PubMed]
- Michelucci, A.; Cordes, T.; Ghelfi, J.; Pailot, A.; Reiling, N.; Goldmann, O.; Binz, T.; Wegner, A.; Tallam, A.; Rausell, A.; et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. USA 2013, 110, 7820–7825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Lukat, P.; Iqbal, A.A.; Saile, K.; Kaever, V.; van den Heuvel, J.; Blankenfeldt, W.; Bussow, K.; Pessler, F. Crystal structure of cis-aconitate decarboxylase reveals the impact of naturally occurring human mutations on itaconate synthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 20644–20654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Henne, A.; Lauterbach, M.; Geißmar, E.; Heinz, A.; Dostert, C.; Nikolka, F.; Kho, C.; Cordes, T.; Härm, J.; et al. Mesaconate is synthesized from itaconate and exerts immunomodulatory effects in macrophages. Nat. Metab. 2022, 4, 524–533. [Google Scholar] [CrossRef]
- Chen, F.; Elgaher, W.A.; Winterhoff, M.; Büssow, K.; Waqas, S.F.H.; Graner, E.; Pires-Afonso, Y.; Casares-Perez, L.; De la Vega, L.; Sahini, N.; et al. Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nat. Metab. 2022, 4, 534–546. [Google Scholar] [CrossRef]
- Duran, M.; Bruinvis, L.; Ketting, D.; Wadman, S.K. Deranged isoleucine metabolism during ketotic attacks in patients with methylmalonic acidaemia. J. Inherit. Metab. Dis. 1978, 1, 105–107. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, K.; Long, Y.; Liang, X.; He, B.; Yu, L.; Ye, J. Benzo(a)pyrene degradation by cytochrome P450 hydroxylase and the functional metabolism network of Bacillus thuringiensis. J. Hazard. Mater. 2019, 366, 329–337. [Google Scholar] [CrossRef]
- Ewers, J.; Rubio, M.A.; Knackmuss, H.J.; Freier-Schroder, D. Bacterial metabolism of 2,6-xylenol. Appl. Environ. Microbiol. 1989, 55, 2904–2908. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Asano, Y. 3-Methylaspartate ammonia-lyase as a marker enzyme of the mesaconate pathway for (S)-glutamate fermentation in Enterobacteriaceae. Arch. Microbiol. 1997, 168, 457–463. [Google Scholar] [CrossRef]
- Winterhoff, M.; Chen, F.; Sahini, N.; Ebensen, T.; Kuhn, M.; Kaever, V.; Bähre, H.; Pessler, F. Establishment, Validation, and Initial Application of a Sensitive LC-MS/MS Assay for Quantification of the Naturally Occurring Isomers Itaconate, Mesaconate, and Citraconate. Metabolites 2021, 11, 270. [Google Scholar] [CrossRef]
- Aicher, W.K.; Alexander, D.; Haas, C.; Kuchen, S.; Pagenstecher, A.; Gay, S.; Peter, H.H.; Eibel, H. Transcription factor early growth response 1 activity up-regulates expression of tissue inhibitor of metalloproteinases 1 in human synovial fibroblasts. Arthritis Rheum 2003, 48, 348–359. [Google Scholar] [CrossRef]
- Sohail, A.; Iqbal, A.A.; Sahini, N.; Chen, F.; Pessler, F. Itaconate and derivatives reduce interferon responses and inflammation in influenza A infection. PLoS Pathog. 2021, 18, e1010219. [Google Scholar] [CrossRef]
- Thompson, J.F.; Muenster, A.-M.E.; Artlip, T.S.; Madison, J.T. Determination of cis- and trans-Aconitic Acids in Plant Materials by Chromatography on Anion-Exchange Resins. J. Agric. Food Chem. 1988, 36, 69–73. [Google Scholar] [CrossRef]
- Cordes, T.; Michelucci, A.; Hiller, K. Itaconic Acid: The Surprising Role of an Industrial Compound as a Mammalian Antimicrobial Metabolite. Annu. Rev. Nutr. 2015, 35, 451–473. [Google Scholar] [CrossRef]
- Lohbeck, K.; Haferkorn, H.; Fuhrmann, W.; Fedtke, N. Citraconic and Mesaconic Acids. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- De Vuyst, L.; Comasio, A.; Kerrebroeck, S.V. Sourdough production: Fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit. Rev. Food Sci. Nutr. 2021, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Nothlings, U.; Hoffmann, K.; Bergmann, M.M.; Boeing, H. Identification of a food pattern characterized by high-fiber and low-fat food choices associated with low prospective weight change in the EPIC-Potsdam cohort. J. Nutr. 2005, 135, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuer, T. Die Nationale Verzehrsstudie II. Available online: https://www.mri.bund.de/de/institute/ernaehrungsverhalten/forschungsprojekte/nvsii/ (accessed on 9 June 2022).
- Shriner, R.L.; Ford, S.G.; Roll, L.J. Mesaconic acid. Org. Synth. 1931, 11, 74. [Google Scholar] [CrossRef]
- Booth, A.N.; Taylor, J.; Wilson, R.H.; Deeds, F. The inhibitory effects of itaconic acid in vitro and In Vivo. J. Biol. Chem. 1952, 195, 697–702. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Zhao, Y.; Tao, L.; Liu, H.; Dong, W.; Yang, G.; Li, L. Effects of dietary supplementation with itaconic acid on the growth performance, nutrient digestibility, slaughter variables, blood biochemical parameters, and intestinal morphology of broiler chickens. Poult. Sci. 2022, 101, 101732. [Google Scholar] [CrossRef]
- Ku, H.C.; Shen, T.C.; Cheng, C.F. The potential of using itaconate as treatment for inflammation-related heart diseases. Tzu Chi Med. J. 2022, 34, 113–118. [Google Scholar] [CrossRef]
- Diotallevi, M.; Ayaz, F.; Nicol, T.; Crabtree, M.J. Itaconate as an inflammatory mediator and therapeutic target in cardiovascular medicine. Biochem. Soc. Trans. 2021, 49, 2189–2198. [Google Scholar] [CrossRef] [PubMed]
Bread Type | Itaconate | Citraconate | Mesaconate | Citrate | cis-Aconitate | |
---|---|---|---|---|---|---|
Wheat | Commercial | 1.5 ± 0.1 | 2.7 ± 0.1 | 0.8 ± 0.04 | 96.0 ± 6.6 | 15.0 ± 0.2 |
Homemade | 3.4 ± 0.3 | 3.7 ± 1.0 | 0.3 ± 0.4 | 14.0 ± 7.2 | 46.4 ± 4.3 | |
Rye | Commercial | 2.8 ± 0.2 | 4.8 ± 0.3 | 1.3 ± 0.1 | 72.0 ± 4.0 | 26.7 ± 0.6 |
Homemade | 2.7 ± 0.6 | 3.1 ± 0.5 | 4.1 ± 2.4 | 83.0 ± 53.6 | 86.9 ± 8.5 |
Estimated Mean Intake (Adult/Day) g × 10−6 | |||||
---|---|---|---|---|---|
Reference | Average Bread Intake (Adult/Day) c | Itaconate | Citraconate | Mesaconate | All |
[17] a | 45.3 | 2.1 | 2.8 | 1.8 | 7.0 |
[18] b | 134.5 c | 6.2 | 8.6 | 3.9 | 19 |
Citrate | cis-Aconitate | |
---|---|---|
Seed leaves | 477 ± 187 | 189 ± 21 |
Mature leaves | 202 ± 61 | 218 ± 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruenwald, M.; Chen, F.; Bähre, H.; Pessler, F. Itaconate Isomers in Bread. Antioxidants 2022, 11, 1382. https://doi.org/10.3390/antiox11071382
Gruenwald M, Chen F, Bähre H, Pessler F. Itaconate Isomers in Bread. Antioxidants. 2022; 11(7):1382. https://doi.org/10.3390/antiox11071382
Chicago/Turabian StyleGruenwald, Mona, Fangfang Chen, Heike Bähre, and Frank Pessler. 2022. "Itaconate Isomers in Bread" Antioxidants 11, no. 7: 1382. https://doi.org/10.3390/antiox11071382
APA StyleGruenwald, M., Chen, F., Bähre, H., & Pessler, F. (2022). Itaconate Isomers in Bread. Antioxidants, 11(7), 1382. https://doi.org/10.3390/antiox11071382