Increased Adherence to the Mediterranean Diet after Lifestyle Intervention Improves Oxidative and Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
- (1)
- Waist circumference of ≥ 102 cm in men and ≥ 88 cm in women.
- (2)
- Serum glucose level ≥ 100 cm.
- (3)
- Systolic blood pressure ≥ 130 mmHg or diastolic blood pressure ≥85 mmHg.
- (4)
- Triglycerides levels ≥ 150 mg/dL.
- (5)
- Reduced HDL-cholesterol levels < 40 mg/dL in men and < 50 mg/dL in women.
2.2. FLIPAN Clinical Trial Guidelines
2.3. Anthropometrics and Clinical Assessment
2.4. Biochemical Parameters and Hemogram
2.5. Plasma and PBMCs Isolation
2.6. Enzymatic Determinations
2.7. Measurement of tGSH and GSSG
2.8. RNA Extraction and Real-Time PCR
2.9. Immunoassays
2.10. Statistics
3. Results
3.1. Anthropometric and Biochemical Parameters
3.2. Hematological Parameters
3.3. Oxidative Stress Biomarkers
3.4. Immuno-Assays
4. Discussion
4.1. Strengths and Limitations
4.2. Anthropometric and Biochemical Parameters
4.3. Hematological Parameters
4.4. Oxidative Stress and Inflammatory Biomarkers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sureda, A.; Bibiloni, M.; Julibert, A.; Bouzas, C.; Argelich, E.; Llompart, I.; Pons, A.; Tur, J. Adherence to the Mediterranean Diet and Inflammatory Markers. Nutrients 2018, 10, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fresán, U.; Martínez-Gonzalez, M.A.; Sabaté, J.; Bes-Rastrollo, M. The Mediterranean diet, an environmentally friendly option: Evidence from the Seguimiento Universidad de Navarra (SUN) cohort. Public Health Nutr. 2018, 21, 1573–1582. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.; Sultana, J.; Doecke, J.; Mantzioris, E. Differences in the interpretation of a modernized Mediterranean diet prescribed in intervention studies for the management of type 2 diabetes: How closely does this align with a traditional Mediterranean diet? Eur. J. Nutr. 2019, 58, 1369–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotfi, K.; Saneei, P.; Hajhashemy, Z.; Esmaillzadeh, A. Adherence to the Mediterranean Diet, Five-Year Weight Change, and Risk of Overweight and Obesity: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2022, 13, 152–166. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Katsagoni, C.N.; Papatheodoridis, G.V.; Ioannidou, P.; Deutsch, M.; Alexopoulou, A.; Papadopoulos, N.; Papageorgiou, M.V.; Fragopoulou, E.; Kontogianni, M.D. Improvements in clinical characteristics of patients with non-alcoholic fatty liver disease, after an intervention based on the Mediterranean lifestyle: A randomised controlled clinical trial. Br. J. Nutr. 2018, 120, 164–175. [Google Scholar] [CrossRef]
- Ahmed, A.; Wong, R.J.; Harrison, S.A. Nonalcoholic fatty liver disease review: Diagnosis, treatment, and outcomes. Clin. Gastroenterol. Hepatol. 2015, 13, 2062–2070. [Google Scholar] [CrossRef] [Green Version]
- Manne, V.; Handa, P.; Kowdley, K.V. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin. Liver Dis. 2018, 22, 23–37. [Google Scholar] [CrossRef]
- Mascaró, C.M.; Bouzas, C.; Tur, J.A. Association between Non-Alcoholic Fatty Liver Disease and Mediterranean Lifestyle: A Systematic Review. Nutrients 2021, 14, 49. [Google Scholar] [CrossRef]
- Nasr, P.; Ignatova, S.; Kechagias, S.; Ekstedt, M. Natural history of nonalcoholic fatty liver disease: A prospective follow-up study with serial biopsies. Hepatol. Commun. 2018, 2, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleiner, D.E.; Brunt, E.M.; Wilson, L.A.; Behling, C.; Guy, C.; Contos, M.; Cummings, O.; Yeh, M.; Gill, R.; Chalasani, N.; et al. Association of histologic disease activity with progression of nonalcoholic fatty liver disease. JAMA Netw. Open 2019, 2, e1912565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wainwright, P.; Byrne, C.D. Bidirectional Relationships and Disconnects between NAFLD and Features of the Metabolic Syndrome. Int. J. Mol. Sci. 2016, 17, 367. [Google Scholar] [CrossRef] [Green Version]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hong, M.; Tan, H.Y.; Wang, N.; Feng, Y. Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases. Oxid. Med. Cell. Longev. 2016, 2016, 4234061. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free. Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Li, S.; Tan, H.-Y.; Wang, N.; Zhang, Z.-J.; Lao, L.; Wong, C.-W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [Green Version]
- Cichoz-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Ore, A.; Akinloye, O.A. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina 2019, 55, 26. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.; Huerta-Salgado, C.; Orozco-Aguilar, J.; Aguirre, F.; Tacchi, F.; Simon, F.; Cabello-Verrugio, C. Role of Oxidative Stress in Hepatic and Extrahepatic Dysfunctions during Nonalcoholic Fatty Liver Disease (NAFLD). Oxid. Med. Cell. Longev. 2020, 2020, 1617805. [Google Scholar] [CrossRef]
- Satapati, S.; Kucejova, B.; Duarte, J.A.G.; Fletcher, J.A.; Reynolds, L.; Sunny, N.E.; He, T.; Nair, L.A.; Livingston, K.A.; Fu, X.; et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J. Clin. Investig. 2016, 126, 1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alisi, A.; Carpino, G.; Oliveira, F.L.; Panera, N.; Nobili, V.; Gaudio, E. The Role of Tissue Macrophage-Mediated Inflammation on NAFLD Pathogenesis and Its Clinical Implications. Mediat. Inflamm. 2017, 2017, 8162421. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Bouzas, C.; Montemayor, S. Improvement of Intrahepatic Fat Contents after 6 months of lifestyle intervention is related to a better oxidative stress and inflammatory status. Antioxidants 2022, 11, 1266. [Google Scholar] [CrossRef]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.A.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Food Composition Tables (Spanish), 19th ed.; Pirámide: Madrid, Spain, 2018. [Google Scholar]
- Álvarez-Álvarez, I.; Martinez-Gonzalez, M.A.; Sánchez-Tainta, A.; Corella, D.; Díaz-López, A.; Fito, M.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Wärnberg, J.; et al. Adherence to an energy-restricted Mediterranean diet score and prevalence of cardiovascular risk factors in the PREDIMED-plus: A cross-sectional study. Rev. Esp. Cardiol. 2019, 72, 925–934. [Google Scholar] [CrossRef]
- Reeder, S.B.; Sirlin, C.B. Quantification of liver fat with magnetic resonance imaging. Magn. Reson. Imaging Clin. 2010, 18, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.P.; Sim, J.; Eston, R.G.; Hession, R.; Fox, R. Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. Br. J. Sports Med. 2004, 38, 197–205. [Google Scholar] [CrossRef]
- Bøyum, A. Separation of White Blood Cells. Nature 1964, 204, 793–794. [Google Scholar] [CrossRef]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Capó, X.; Bouzas, C.; Mateos, D.; Pons, A.; Tur, J.A.; Sureda, A. Metabolic Syndrome is Associated with Oxidative Stress and Proinflammatory State. Antioxidants 2020, 9, 236. [Google Scholar] [CrossRef] [Green Version]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Flohé, L.; Otting, F. Superoxide dismutase assays. Methods Enzymol. 1984, 105, 93–104. [Google Scholar] [PubMed]
- Kontogianni, M.D.; Tileli, N.; Margariti, A.; Georgoulis, M.; Deutsch, M.; Tiniakos, D.; Fragopoulou, E.; Zafiropoulou, R.; Manios, Y.; Papatheodoridis, G. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin. Nutr. 2014, 33, 678–683. [Google Scholar] [CrossRef]
- Baratta, F.; Pastori, D.; Polimeni, L.; Bucci, T.; Ceci, F.; Calabrese, C.; Ernesti, I.; Pannitteri, G.; Violi, F.; Angelico, F.; et al. Adherence to Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: Effect on Insulin Resistance. Am. J. Gastroenterol. 2017, 112, 1832–1839. [Google Scholar] [CrossRef]
- De Pergola, G.; D’alessandro, A. Influence of Mediterranean Diet on Blood Pressure. Nutrients 2018, 10, 1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzas, C.; Bibiloni, M.D.M.; Julibert, A.; Ruiz-canela, M.; Salas-salvadó, J.; Corella, D.; Zomeño, M.D.; Romaguera, D.; Vioque, J.; Alonso-gómez, Á.M.; et al. Adherence to the Mediterranean Lifestyle and Desired Body Weight Loss in a Mediterranean Adult Population with Overweight: A PREDIMED-Plus Study. Nutrients 2020, 12, 2114. [Google Scholar] [CrossRef] [PubMed]
- Celada Roldan, C.; Tarraga Marcos, M.L.; Madrona Marcos, F.; Solera Albero, J.; Salmeron Rios, R.; Celada Rodriguez, A.; Panisello Royo, J.M.; Tárraga López, P.J. Adhesion to the Mediterranean diet in diabetic patients with poor control. Clin. Investig. Arterioscler. 2019, 31, 210–217. [Google Scholar] [CrossRef]
- Díez-Espino, J.; Buil-Cosiales, P.; Serrano-Martínez, M.; Toledo, E.; Salas-Salvadó, J.; Martínez-González, M.Á. Adherence to the Mediterranean diet in patients with type 2 diabetes mellitus and HbA1c level. Ann. Nutr. Metab. 2011, 58, 74–78. [Google Scholar] [CrossRef]
- Sanyal, D.; Mukherjee, P.; Raychaudhuri, M.; Ghosh, S.; Mukherjee, S.; Chowdhury, S. Profile of liver enzymes in non-alcoholic fatty liver disease in patients with impaired glucose tolerance and newly detected untreated type 2 diabetes. Indian J. Endocrinol. Metab. 2015, 19, 597–601. [Google Scholar] [CrossRef]
- Gelli, C.; Tarocchi, M.; Abenavoli, L.; Di Renzo, L.; Galli, A.; De Lorenzo, A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J. Gastroenterol. 2017, 23, 3150–3162. [Google Scholar] [CrossRef]
- Vos, M.B.; Barve, S.; Joshi-Barve, S.; Carew, J.D.; Whitington, P.F.; McClain, C.J. Cytokeratin 18, a marker of cell death, is increased in children with suspected nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 481–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altaf, B.; Jawed, S.; Salam, R.M.T. Association of apoptotic marker cytokeratin18 with blood pressure in nonalcoholic fatty liver disease patients. J. Pak. Med. Assoc. 2020, 70, 2128–2131. [Google Scholar]
- Billingsley, H.E.; Carbone, S. The antioxidant potential of the Mediterranean diet in patients at high cardiovascular risk: An in-depth review of the PREDIMED. Nutr. Diabetes 2018, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomone, F.; Godos, J.; Zelber-Sagi, S. Natural antioxidants for non-alcoholic fatty liver disease: Molecular targets and clinical perspectives. Liver Int. 2016, 36, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Parker, H.M.; Johnson, N.A.; Burdon, C.A.; Cohn, J.S.; O’Connor, H.T.; George, J. Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 2012, 56, 944–951. [Google Scholar] [CrossRef] [Green Version]
- Abenavoli, L.; Greco, M.; Milic, N.; Accattato, F.; Foti, D.; Gulletta, E.; Luzza, F. Effect of Mediterranean diet and antioxidant formulation in non-alcoholic fatty liver disease: A randomized study. Nutrients 2017, 9, 870. [Google Scholar] [CrossRef]
- Saavedra, Y.; Mena, V.; Priken, K. Effect of the Mediterranean diet on histological indicators and imaging tests in non-alcoholic fatty liver disease. Gastroenterol. Hepatol. 2022, 45, 350–360. [Google Scholar] [CrossRef]
- Mascaró, C.M.; Bouzas, C.; Montemayor, S.; Casares, M.; Llompart, I.; Ugarriza, L.; Borràs, P.A.; Martínez, J.A.; Tur, J.A. Effect of a Six-Month Lifestyle Intervention on the Physical Activity and Fitness Status of Adults with NAFLD and Metabolic Syndrome. Nutrients 2022, 14, 1813. [Google Scholar] [CrossRef]
- Coelho-Júnior, H.J.; Trichopoulou, A.; Panza, F. Cross-sectional and longitudinal associations between adherence to Mediterranean diet with physical performance and cognitive function in older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2021, 70, 101395. [Google Scholar] [CrossRef]
- Longhi, R.; Santos, A.S.e.A.d.C.; López-Yerena, A.; Rodrigues, A.P.S.; de Oliveira, C.; Silveira, E.A. The Effectiveness of Extra Virgin Olive Oil and the Traditional Brazilian Diet in Reducing the Inflammatory Profile of Individuals with Severe Obesity: A Randomized Clinical Trial. Nutrients 2021, 13, 4139. [Google Scholar] [CrossRef]
- Dixon, J.B.; O’Brien, P.E. Obesity and the white blood cell count: Changes with sustained weight loss. Obes. Surg. 2006, 16, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Di Castelnuovo, A.; De Curtis, A.; Costanzo, S.; Persichillo, M.; Donati, M.B.; Cerletti, C.; Iacoviello, L.; De Gaetano, G. Adherence to the Mediterranean diet is associated with lower platelet and leukocyte counts: Results from the Moli-sani study. Blood J. Am. Soc. Hematol. 2014, 123, 3037–3044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorska, P.; Gorna, I.; Przyslawski, J. Mediterranean diet and oxidative stress. Nutr. Food Sci. 2021, 51, 677–689. [Google Scholar] [CrossRef]
- Chatzianagnostou, K.; Del Turco, S.; Pingitore, A.; Sabatino, L.; Vassalle, C. The Mediterranean Lifestyle as a Non-Pharmacological and Natural Antioxidant for Healthy Aging. Antioxidants 2015, 4, 719–736. [Google Scholar] [CrossRef]
- Razquin, C.; Martinez, J.A.; Martinez-Gonzalez, M.A.; Mitjavila, M.T.; Estruch, R.; Marti, A. A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur. J. Clin. Nutr. 2009, 63, 1387–1393. [Google Scholar] [CrossRef] [Green Version]
- Sureda, A.; Bibiloni, M.d.M.; Martorell, M.; Buil-Cosiales, P.; Marti, A.; Pons, A.; Tur, J.A.; Martinez-Gonzalez, M.Á. Mediterranean diets supplemented with virgin olive oil and nuts enhance plasmatic antioxidant capabilities and decrease xanthine oxidase activity in people with metabolic syndrome: The PREDIMED study. Mol. Nutr. Food Res. 2016, 60, 2654–2664. [Google Scholar] [CrossRef]
- Bekkouche, L.; Bouchenak, M.; Malaisse, W.J.; Yahia, D.A. The mediterranean diet adoption improves metabolic, oxidative, and inflammatory abnormalities in algerian metabolic syndrome patients. Horm. Metab. Res. 2014, 46, 274–282. [Google Scholar] [CrossRef]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401. [Google Scholar] [CrossRef] [Green Version]
- Borato, D.C.K.; Parabocz, G.C.; Ribas, J.T.; Netto, H.P.; Erdmann, F.C.; Wiecheteck, L.D.; Manente, F.A.; De Almeida Mello, L.R.; Belló, C.; André Dos Santos, F.; et al. Biomarkers in Obesity: Serum Myeloperoxidase and Traditional Cardiac Risk Parameters. Exp. Clin. Endocrinol. Diabetes 2016, 124, 49–54. [Google Scholar] [CrossRef]
- Pulli, B.; Wojtkiewicz, G.; Iwamoto, Y.; Ali, M.; Zeller, M.W.; Bure, L.; Wang, C.; Choi, Y.; Masia, R.; Guimaraes, A.R.; et al. Molecular MR imaging of myeloperoxidase distinguishes steatosis from steatohepatitis in nonalcoholic fatty liver disease. Radiology 2017, 284, 390–400. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.W.; Hwang, H.J.; Hong, H.C.; Choi, H.Y.; Yoo, H.J.; Baik, S.H.; Choi, K.M. Resolvin D1 reduces ER stress-induced apoptosis and triglyceride accumulation through JNK pathway in HepG2 cells. Mol. Cell. Endocrinol. 2014, 391, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Abbate, M.; Montemayor, S.; Mascaró, C.M.; Casares, M.; Tejada, S.; Abete, I.; Zulet, M.A.; Tur, J.A.; et al. Oxidative stress and pro-inflammatory status in patients with non-alcoholic fatty liver disease. Antioxidants 2020, 9, 759. [Google Scholar] [CrossRef] [PubMed]
- Barden, A.; Shinde, S.; Tsai, I.J.; Croft, K.D.; Beilin, L.J.; Puddey, I.B.; Mori, T.A. Effect of weight loss on neutrophil resolvins in the metabolic syndrome. Prostaglandins Leukot. Essent. Fat. Acids 2019, 148, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Popov, S.S.; Kryl’skii, E.D.; Shulgin, K.K.; Raskina, E.A.; Popova, T.N.; Pashkov, A.N.; Kuptsova, G.N. Inflammation is associated with impairment of oxidative status, carbohydrate and lipid metabolism in type 2 diabetes complicated by non-alcoholic fatty liver disease. Minerva Endocrinol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Popko, K.; Gorska, E.; Stelmaszczyk-Emmel, A.; Plywaczewski, R.; Stoklosa, A.; Gorecka, D.; Pyrzak, B.; Demkow, U. Proinflammatory cytokines IL-6 and TNF-α and the development of inflammation in obese subjects. Eur. J. Med. Res. 2010, 15, 120–122. [Google Scholar] [CrossRef]
- Lee, H.; Lee, S.; Cho, I.-H.; Joong Lee, S. Toll-like receptors: Sensor molecules for detecting damage to the nervous system. Curr. Protein Pept. Sci. 2013, 14, 33–42. [Google Scholar] [CrossRef]
- Holland, W.L.; Bikman, B.T.; Wang, L.P.; Yuguang, G.; Sargent, K.M.; Bulchand, S.; Knotts, T.A.; Shui, G.; Clegg, D.J.; Wenk, M.R.; et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Investig. 2011, 121, 1858–1870. [Google Scholar] [CrossRef] [Green Version]
- Vespasiani-Gentilucci, U.; Carotti, S.; Perrone, G.; Mazzarelli, C.; Galati, G.; Onetti-Muda, A.; Picardi, A.; Morini, S. Hepatic toll-like receptor 4 expression is associated with portal inflammation and fibrosis in patients with NAFLD. Liver Int. 2015, 35, 569–581. [Google Scholar] [CrossRef]
- Armandi, A.; Rosso, C.; Nicolosi, A.; Caviglia, G.P.; Abate, M.L.; Olivero, A.; D’amato, D.; Vernero, M.; Gaggini, M.; Saracco, G.M.; et al. Crosstalk between Irisin Levels, Liver Fibrogenesis and Liver Damage in Non-Obese, Non-Diabetic Individuals with Non-Alcoholic Fatty Liver Disease. J. Clin. Med. 2022, 11, 635. [Google Scholar] [CrossRef]
Gene | Gene Accession No. | Primer | Conditions | |
---|---|---|---|---|
18S | NM_001002.4 | Fw: 5′-ATgTgAAgTCACTgTgCCAg Rv: 5′-gTgTAATCCgTCTCCACAgA | 95 °C 60 °C 72 °C | 10 s 10 s 15 s |
TLR4 | NM_138554.5 | Fw: 5′-ggTCACCTTTTCTTgATTCCA Rv: 5′-TCAgAggTCCATCAAACATCAC | 95 °C 60 °C 72 °C | 10 s 10 s 15 s |
CAT | NM_001752.4 | Fw: 5′-TTTggCTACTTTgAggTCAC Rv: 5′-TCCCCATTTgCATTAACCAg | 95 °C 60 °C 72 °C | 10 s 10 s 15 s |
GPX | NM_000581.4 | Fw: 5′-TTC CCg TgC AAC Cag TTT g Rv: 5′-TTC ACC TCg CAC TTC TCg AA | 95 °C 63 °C 72 °C | 10 s 10 s 15 s |
CuZnSOD | NM_000454.5 | Fw: 5′-TCAggAgACCATTgCATCATT Rv: 5′-CgCTTTCCTgTCTTTgTACTTTCTTC | 95 °C 63 °C 72 °C | 10 s 10 s 15 s |
MnSOD | NM_000636.4 | Fw: 5′-CgTgCTCCCACACATCAATC Rv: 5′-TgAACgTCACCgAggAgAAg | 95 °C 60 °C 72 °C | 10 s 10 s 12 s |
Nrf2 | NM_006164.5 | Fw: 5′-gCgACggAAAgAgTATgAgC Rv: 5′-gTTggCAgATCCACTggTTT | 95 °C 60 °C 72 °C | 10 s 10 s 15 s |
Under Median Value (<50%) | Above Median Value (≥50%) | |||
---|---|---|---|---|
Baseline (n = 31) | 6 months (n = 31) | Baseline (n = 36) | 6 months (n = 36) | |
Not receive hypertension treatment | 60% | 58.6% | 58.3% | 51.4% |
Receive hypertension treatment | 40% | 41.1% | 41.7% | 48.6% |
Not receive diabetes treatment | 60% | 58.6% | 83.3% | 82.9% |
Receive diabetes treatment | 40% | 41.4% | 16.7% | 17.1% |
Under Median Value (<50%) | Above Median Value (≥50%) | ANOVA | |||||
---|---|---|---|---|---|---|---|
Baseline (n = 31) | 6 Months (n = 31) | Baseline (n = 36) | 6 Months (n = 36) | AMD | T | AMD × T | |
Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | ||||
Weight (kg) | 95.3 ± 2.0 | 91.9 ± 1.0 | 94.2 ± 1.7 | 88.7 ± 1.5 | 0.220 | 0.011 | 0.541 |
BMI (kg/m2) | 34.2 ± 0.5 | 33.1 ± 0.5 | 33.3 ± 0.5 | 31.4 ±0.4 # | 0.004 | 0.002 | 0.429 |
Systolic blood pressure (mmHg) | 134.3 ± 2.3 | 133.8 ± 2.0 | 140.4 ± 1.8 | 132.9 ± 1.5 # | 0.166 | 0.035 | 0.070 |
Diastolic blood pressure (mmHg) | 80.3 ± 0.9 | 80.5 ± 0.9 | 83.3 ± 1.1 | 81.6 ± 0.9 | 0.038 | 0.440 | 0.297 |
Glucose (mg/dL) | 116.6 ± 4.9 | 117.9 ± 6.0 | 107.4 ± 2.0 | 101.8 ± 2.0 * | 0.001 | 0.581 | 0.381 |
HbA1c (%) | 6.15 ± 0.15 | 5.94 ± 0.11 | 5.87 ± 0.07 | 5.71 ± 0.06 | 0.009 | 0.066 | 0.857 |
Triglycerides (mg/dL) | 250.1 ± 49.1 | 184.5 ± 13.5 | 187.9 ± 7.7 | 168.8 ± 13.5 | 0.119 | 0.090 | 0.352 |
HDL-cholesterol (mg/dL) | 42.7 ± 1.5 | 43.8 ± 1.6 | 41.2 ± 0.7 | 43.5 ± 1.1 | 0.473 | 0.182 | 0.637 |
LDL-cholesterol (mg/dL) | 124.7 ± 3.9 | 126.4 ± 4.1 | 127.4 ± 4.0 | 121.7 ± 4.2 | 0.809 | 0.628 | 0.358 |
Total Cholesterol (mg/dL) | 214.0 ± 7.9 | 204.9 ± 4.8 | 206.1 ± 4.6 | 196.6 ± 4.7 | 0.144 | 0.096 | 0.974 |
AST (U/L) | 23.8 ± 0.9 | 22.0 ± 0.7 | 26.0 ± 0.8 | 23.6 ± 0.9 # | 0.022 | 0.015 | 0.703 |
ALT (U/L) | 31.4 ± 2.1 | 25.4 ± 1.6 | 38.5 ± 2.2 * | 30.7 ± 1.6 # | 0.001 | <0.001 | 0.630 |
GGT (U/L) | 44.1 ± 3.4 | 35.5 ± 2.7# | 43.7 ± 2.6 | 34.8 ± 2.4 # | 0.843 | 0.002 | 0.943 |
CRP (mg/dL) | 0.51 ± 0.06 | 0.42 ± 0.04 | 0.51 ± 0.07 | 0.38 ± 0.06 | 0.735 | 0.065 | 0.818 |
Under Median Value (<50%) | Above Median Value (≥50%) | ANOVA | |||||
---|---|---|---|---|---|---|---|
Baseline (n = 31) | 6 Months (n = 31) | Baseline (n = 36) | 6 Months (n = 36) | AMD | T | AMD × T | |
Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | ||||
Haematocrit (%) | 43.4 ± 0.5 | 43.1 ± 0.4 | 44.3 ± 0.4 | 44.8 ± 0.3 * | <0.001 | 0.777 | 0.289 |
Erythrocytes (106/μL) | 4.91 ± 0.06 | 4.92 ± 0.05 | 4.96 ± 0.04 | 5.00 ± 0.04 | 0.131 | 0.515 | 0.686 |
Leukocytes (103/μL) | 7.44 ± 0.18 | 7.31 ± 0.20 | 7.24 ± 0.23 | 6.81 ± 0.21 | 0.087 | 0.180 | 0.478 |
Platelets (103/μL) | 236.7 ± 5.9 | 236.5 ± 6.3 | 230.8 ± 5.1 | 222.8 ± 5.8 | 0.088 | 0.477 | 0.501 |
Neutrophils (103/μL) | 4.09 ± 0.12 | 4.02 ± 0.13 | 3.82 ± 0.15 | 3.57 ± 0.15 * | 0.010 | 0.245 | 0.529 |
Lymphocytes (103/μL) | 2.43 ± 0.07 | 2.28 ± 0.07 | 2.55 ± 0.10 | 2.44 ± 0.08 | 0.090 | 0.111 | 0.789 |
Monocytes (103/μL) | 0.61 ± 0.02 | 0.59 ± 0.02 | 0.63 ± 0.03 | 0.56 ± 0.02 | 0.999 | 0.066 | 0.352 |
Eosinophils (103/μL) | 0.26 ± 0.02 | 0.22 ± 0.01 | 0.25 ± 0.02 | 0.19 ± 0.01 * | 0.002 | 0.199 | 0.481 |
Basophils (103/μL) | 0.058 ± 0.003 | 0.052 ± 0.003 | 0.062 ± 0.003 | 0.054 ± 0.003 # | 0.253 | 0.027 | 0.946 |
Under Median Value (<50%) | Above Median Value (≥50%) | ANOVA | |||||
---|---|---|---|---|---|---|---|
Baseline (n = 31) | 6 Months (n = 31) | Baseline (n = 36) | 6 Months (n = 36) | AMD | T | AMD × T | |
Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | ||||
Plasma activity | |||||||
CAT (kat/L blood) | 50.6 ± 2.1 | 47.9 ± 3.8 | 49.3 ± 1.6 | 45.2 ± 3.0 | 0.458 | 0.206 | 0.775 |
SOD (pkat/L blood) | 288.2 ± 9.0 | 307.9 ± 9.9 | 282.0 ± 8.9 | 305.4 ± 5.4 # | 0.606 | 0.011 | 0.823 |
PBMCs activity | |||||||
CAT (kat/109 cells) | 149.0 ± 18.7 | 153.7 ± 8.6 | 120.9 ± 8.4 | 173.2 ± 8.3 # | 0.702 | 0.012 | 0.036 |
SOD (nkat/109 cells) | 148.3 ± 13.7 | 163.2 ± 10.6 | 102.3 ± 10.7 | 180.9 ± 9.7 # | 0.251 | <0.001 | 0.010 |
PBMCs mRNA expression | |||||||
TLR4 (%) | 100.0 ± 12.9 | 92.8 ± 10.9 | 97.7 ± 12.7 | 64.0 ± 8.0 # | 0.157 | 0.042 | 0.227 |
Nrf2 (%) | 100.0 ± 16.3 | 101.8 ± 15.5 | 85.5 ± 12.3 | 112.2 ± 16.5 | 0.906 | 0.398 | 0.461 |
CAT (%) | 100.0 ± 19.2 | 183.7 ± 18.9 # | 87.8 ± 10.7 | 179.4 ± 24.8 # | 0.724 | <0.001 | 0.865 |
GPX (%) | 100.0 ± 15.8 | 97.6 ± 9.0 | 100.8 ± 10.9 | 168.9 ± 23.4 #* | 0.042 | 0.064 | 0.047 |
Cu,ZnSOD (%) | 100.0 ± 23.4 | 93.4 ± 18.3 | 91.7 ± 12.4 | 141.8 ± 26.7 | 0.237 | <0.001 | 0.224 |
MnSOD (%) | 100.0 ± 19.0 | 109.2 ± 22.5 | 127.3 ± 16.7 | 147.1 ± 20.1 | 0.358 | 0.916 | 0.759 |
Under Median Value (<50%) | Above Median Value (≥50%) | ANOVA | |||||
---|---|---|---|---|---|---|---|
Baseline (n = 31) | 6 Months (n = 31) | Baseline (n = 36) | 6 Months (n = 36) | AMD | T | AMD × T | |
Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | ||||
tGSH (mM/L blood) | 3.27 ± 0.35 | 4.33 ± 0.28 | 3.27 ± 0.21 | 4.99 ± 0.25 # | 0.237 | <0.001 | 0.224 |
GSSG (mM/L blood) | 0.345 ± 0.011 | 0.370 ± 0.011 | 0.342 ± 0.012 | 0.386 ± 0.014 | 0.585 | 0.007 | 0.457 |
tGSH/GSSG | 9.81 ± 1.24 | 10.1 ± 0.78 | 11.9 ± 0.83 | 13.7 ± 0.96 # | 0.279 | 0.003 | 0.409 |
Under Median Value (<50%) | Above Median Value (≥50%) | ANOVA | |||||
---|---|---|---|---|---|---|---|
Baseline (n = 31) | 6 Months (n = 31) | Baseline (n = 36) | 6 Months (n = 36) | AMD | T | AMD × T | |
Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | ||||
Immunoassays | |||||||
MPO (ng/mL) | 3.87 ± 0.32 | 3.22 ± 0.20 | 4.57 ± 2.58 | 3.26 ± 0.15 # | 0.153 | <0.001 | 0.201 |
Resolvin D1 (pg/mL) | 133.7 ± 4.5 | 156.6 ± 6.1 # | 145.6 ± 3.82 | 162.7 ± 4.01 # | 0.055 | 0.000 | 0.527 |
Irisin (ng/mL) | 108.6 ± 10.0 | 98.3 ± 10.3 | 127.4 ± 11.6 | 109.3 ± 9.2 | 0.156 | 0.177 | 0.708 |
CK-18 (U/L) | 60.5 ± 5.3 | 47.7 ± 5.3 | 78.2 ± 6.0 | 48.2 ± 2.9 # | 0.073 | <0.001 | 0.089 |
IL-6 (pg/mL) | 4.27 ± 0.05 | 4.18 ± 0.05 | 4.31 ± 0.03 | 4.20 ±0.3 # | 0.410 | 0.013 | 0.723 |
TNFα (pg(mL) | 4.10 ± 0.20 | 4.03 ± 0.18 | 4.02 ± 0.07 | 3.93 ± 0.07 | 0.484 | 0.548 | 0.938 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Bouzas, C.; Montemayor, S.; Mascaró, C.M.; Casares, M.; Llompart, I.; Ugarriza, L.; Martínez, J.A.; Tur, J.A.; et al. Increased Adherence to the Mediterranean Diet after Lifestyle Intervention Improves Oxidative and Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants 2022, 11, 1440. https://doi.org/10.3390/antiox11081440
Monserrat-Mesquida M, Quetglas-Llabrés M, Bouzas C, Montemayor S, Mascaró CM, Casares M, Llompart I, Ugarriza L, Martínez JA, Tur JA, et al. Increased Adherence to the Mediterranean Diet after Lifestyle Intervention Improves Oxidative and Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants. 2022; 11(8):1440. https://doi.org/10.3390/antiox11081440
Chicago/Turabian StyleMonserrat-Mesquida, Margalida, Magdalena Quetglas-Llabrés, Cristina Bouzas, Sofía Montemayor, Catalina M. Mascaró, Miguel Casares, Isabel Llompart, Lucía Ugarriza, J. Alfredo Martínez, Josep A. Tur, and et al. 2022. "Increased Adherence to the Mediterranean Diet after Lifestyle Intervention Improves Oxidative and Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease" Antioxidants 11, no. 8: 1440. https://doi.org/10.3390/antiox11081440
APA StyleMonserrat-Mesquida, M., Quetglas-Llabrés, M., Bouzas, C., Montemayor, S., Mascaró, C. M., Casares, M., Llompart, I., Ugarriza, L., Martínez, J. A., Tur, J. A., & Sureda, A. (2022). Increased Adherence to the Mediterranean Diet after Lifestyle Intervention Improves Oxidative and Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants, 11(8), 1440. https://doi.org/10.3390/antiox11081440