Linum lewisii Adventitious and Hairy-Roots Cultures as Lignan Plant Factories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultures
2.2. Growth Measurement and Kinetics of HRL and ARL
2.3. Elicitor and Precursor Feeding Treatments
2.4. Lignans Extraction
2.5. Total Phenolic Contents and DPPH Radical Scavenging Activity
2.6. Chromatographic Analysis
2.7. NMR Structural Characterization of Extracts
2.8. Roots Cultivation in Bioreactor System
3. Results
3.1. Adventitious Roots and Hairy Root Cultures Lines Analysis and Selection
3.2. Growth Kinetic of HRL6 and ARL1 and Accumulation of Justicidin B
3.3. NMR Structural Characterization of HRL6 and ARL1 Extracts
3.4. Effects of Elicitors and/or Precursor Feeding Treatments on Phenols and Antioxidant Activity
3.5. Effect of Elicitors on Justicidin B Accumulation
3.6. Cultivation of Roots Cultures in Bioreactor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wink, M. Plant Breeding: Importance of Plant Secondary Metabolites for Protection against Pathogens and Herbivores. Theoret. Appl. Genet. 1988, 75, 225–233. [Google Scholar] [CrossRef]
- Teponno, R.B.; Kusari, S.; Spiteller, M. Recent Advances in Research on Lignans and Neolignans. Nat. Prod. Rep. 2016, 33, 1044–1092. [Google Scholar] [CrossRef] [Green Version]
- Landete, J.M. Plant and Mammalian Lignans: A Review of Source, Intake, Metabolism, Intestinal Bacteria and Health. Food Res. Int. 2012, 46, 410–424. [Google Scholar] [CrossRef]
- Ford, J.D.; Davin, L.B.; Lewis, N.G. Plant Lignans and Health: Cancer Chemoprevention and Biotechnological Opportunities. In Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology; Gross, G.G., Hemingway, R.W., Yoshida, T., Branham, S.J., Eds.; Basic Life Sciences; Springer: Boston, MA, USA, 1999; pp. 675–694. ISBN 978-1-4615-4139-4. [Google Scholar]
- De Silva, S.F.; Alcorn, J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals 2019, 12, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDill, J.; Repplinger, M.; Simpson, B.B.; Kadereit, J.W. The Phylogeny of Linum and Linaceae Subfamily Linoideae, with Implications for Their Systematics, Biogeography, and Evolution of Heterostyly. Sbot 2009, 34, 386–405. [Google Scholar] [CrossRef]
- Konuklugil, B.; Ionkova, I.; Vasilev, N.; Schmidt, T.J.; Windhövel, J.; Fuss, E.; Alfermann, A.W. Lignans from Linum Species of Sections Syllinum and Linum. Nat. Prod. Res. 2007, 21, 1–6. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Klaes, M.; Sendker, J. Lignans in Seeds of Linum Species. Phytochemistry 2012, 82, 89–99. [Google Scholar] [CrossRef]
- Kamal, A.; Ali Hussaini, S.M.; Rahim, A.; Riyaz, S. Podophyllotoxin Derivatives: A Patent Review (2012–2014). Expert Opin. Ther. Pat. 2015, 25, 1025–1034. [Google Scholar] [CrossRef]
- Kamal, A.; Hussaini, S.M.A.; Malik, M.S. Recent Developments towards Podophyllotoxin Congeners as Potential Apoptosis Inducers. Anticancer. Agents Med. Chem. 2015, 15, 565–574. [Google Scholar] [CrossRef]
- Mohagheghzadeh, A.; Schmidt, T.J.; Alfermann, A.W. Arylnaphthalene Lignans from in Vitro Cultures of Linum Austriacum. J. Nat. Prod. 2002, 65, 69–71. [Google Scholar] [CrossRef]
- Vasilev, N.P.; Ionkova, I. Cytotoxic Activity of Extracts from Linum Cell Cultures. Fitoterapia 2005, 76, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Mohagheghzadeh, A.; Dehshahri, S.; Hemmati, S. Accumulation of Lignans by in Vitro Cultures of Three Linum Species. Z. Nat. C 2009, 64, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. Studies on Disease-Modifying Antirheumatic Drugs: Synthesis of Novel Quinoline and Quinazoline Derivatives and Their Anti-Inflammatory Effect. J. Med. Chem. 1996, 39, 5176–5182. [Google Scholar] [CrossRef] [PubMed]
- Apers, S.; Vlietinck, A.; Pieters, L. Lignans and Neolignans as Lead Compounds. Phytochem. Rev. 2003, 2, 201–217. [Google Scholar] [CrossRef]
- Ionkova, I.; Sasheva, P.; Ionkov, T.; Momekov, G. Linum Narbonense: A New Valuable Tool for Biotechnological Production of a Potent Anticancer Lignan Justicidine B. Pharmacogn. Mag. 2013, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Ilieva, Y.; Zhelezova, I.; Atanasova, T.; Zaharieva, M.M.; Sasheva, P.; Ionkova, I.; Konstantinov, S. Cytotoxic Effect of the Biotechnologically-Derived Justicidin B on Human Lymphoma Cells. Biotechnol. Lett. 2014, 36, 2177–2183. [Google Scholar] [CrossRef]
- Gertsch, J.; Tobler, R.T.; Brun, R.; Sticher, O.; Heilmann, J. Antifungal, Antiprotozoal, Cytotoxic and Piscicidal Properties of Justicidin B and a New Arylnaphthalide Lignan from Phyllanthus piscatorum. Planta Med. 2003, 69, 420–424. [Google Scholar] [CrossRef]
- Momekov, G.; Konstantinov, S.; Dineva, I.; Ionkova, I. Effect of Justicidin B—A Potent Cytotoxic and pro-Apoptotic Arylnaphtalene Lignan on Human Breast Cancer-Derived Cell Lines. Neoplasma 2011, 58, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Hemmati, S.; Seradj, H. Justicidin B: A Promising Bioactive Lignan. Molecules 2016, 21, 820. [Google Scholar] [CrossRef]
- Fuss, E. Lignans in Plant Cell and Organ Cultures: An Overview. Phytochem. Rev. 2003, 2, 307–320. [Google Scholar] [CrossRef]
- Giri, C.C.; Zaheer, M. Chemical Elicitors versus Secondary Metabolite Production in Vitro Using Plant Cell, Tissue and Organ Cultures: Recent Trends and a Sky Eye View Appraisal. Plant Cell Tissue Organ Cult. 2016, 126, 1–18. [Google Scholar] [CrossRef]
- Nabi, N.; Singh, S.; Saffeullah, P. Responses of in Vitro Cell Cultures to Elicitation: Regulatory Role of Jasmonic Acid and Methyl Jasmonate: A Review. In Vitro Cell. Dev. Biol.-Plant 2021, 57, 341–355. [Google Scholar] [CrossRef]
- Malik, S.; Bíba, O.; Grúz, J.; Arroo, R.R.J.; Strnad, M. Biotechnological Approaches for Producing Aryltetralin Lignans from Linum Species. Phytochem. Rev. 2014, 13, 893–913. [Google Scholar] [CrossRef]
- Mulabagal, V.; Tsay, H.-S. Plant Cell Cultures—An Alternative and Efficient Source for the Production of Biologically Important Secondary Metabolites. Int. J. Appl. Sci. Eng. 2004, 2, 29–48. [Google Scholar] [CrossRef]
- Ramirez-Estrada, K.; Vidal-Limon, H.; Hidalgo, D.; Moyano, E.; Golenioswki, M.; Cusidó, R.M.; Palazon, J. Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules 2016, 21, 182. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.-D.; Fang, X.; Chen, X.-Y.; Mao, Y.-B. Plant Specialized Metabolism Regulated by Jasmonate Signaling. Plant Cell Physiol. 2019, 60, 2638–2647. [Google Scholar] [CrossRef]
- Luo, H.; Zhu, Y.; Song, J.; Xu, L.; Sun, C.; Zhang, X.; Xu, Y.; He, L.; Sun, W.; Xu, H.; et al. Transcriptional Data Mining of Salvia Miltiorrhiza in Response to Methyl Jasmonate to Examine the Mechanism of Bioactive Compound Biosynthesis and Regulation. Physiol. Plant. 2014, 152, 241–255. [Google Scholar] [CrossRef]
- Rahnamaie-Tajadod, R.; Loke, K.-K.; Goh, H.-H.; Mohd Noor, N. Differential Gene Expression Analysis in Polygonum Minus Leaf Upon 24 Hours of Methyl Jasmonate Elicitation. Front. Plant Sci. 2017, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Weiler, E.W.; Kutchan, T.M.; Gorba, T.; Brodschelm, W.; Niesel, U.; Bublitz, F. The Pseudomonas Phytotoxin Coronatine Mimics Octadecanoid Signalling Molecules of Higher Plants. FEBS Lett. 1994, 345, 9–13. [Google Scholar] [CrossRef]
- Koda, Y.; Takahashi, K.; Kikuta, Y.; Greulich, F.; Toshima, H.; Ichihara, A. Similarities of the Biological Activities of Coronatine and Coronafacic Acid to Those of Jasmonic Acid. Phytochemistry 1996, 41, 93–96. [Google Scholar] [CrossRef]
- Singh, A.; Dwivedi, P. Methyl-Jasmonate and Salicylic Acid as Potent Elicitors for Secondary Metabolite Production in Medicinal Plants: A Review. J. Pharmacogn. Phytochem. 2018, 7, 750–757. [Google Scholar]
- Chamkhi, I.; Benali, T.; Aanniz, T.; El Menyiy, N.; Guaouguaou, F.-E.; El Omari, N.; El-Shazly, M.; Zengin, G.; Bouyahya, A. Plant-Microbial Interaction: The Mechanism and the Application of Microbial Elicitor Induced Secondary Metabolites Biosynthesis in Medicinal Plants. Plant Physiol. Biochem. 2021, 167, 269–295. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, L.G.; Knorr, D. Effects of Ferulic Acid Treatment on Growth and Flavor Development of Cultured Vanilla Planifolia Cells. Food Biotechnol. 1988, 2, 93–104. [Google Scholar] [CrossRef]
- Matam, P.; Parvatam, G.; Shetty, N.P. Enhanced Production of Vanillin Flavour Metabolites by Precursor Feeding in Cell Suspension Cultures of Decalepis Hamiltonii Wight & Arn., in Shake Flask Culture. 3 Biotech. 2017, 7, 376. [Google Scholar] [CrossRef]
- Inyai, C.; Yusakul, G.; Komaikul, J.; Kitisripanya, T.; Likhitwitayawuid, K.; Sritularak, B.; Putalun, W. Improvement of Stilbene Production by Mulberry Morus Alba Root Culture via Precursor Feeding and Co-Elicitation. Bioprocess Biosyst. Eng. 2021, 44, 653–660. [Google Scholar] [CrossRef]
- Sivanandhan, G.; Selvaraj, N.; Ganapathi, A.; Manickavasagam, M. Enhanced Biosynthesis of Withanolides by Elicitation and Precursor Feeding in Cell Suspension Culture of Withania Somnifera (L.) Dunal in Shake-Flask Culture and Bioreactor. PLoS ONE 2014, 9, e104005. [Google Scholar] [CrossRef] [Green Version]
- Gajula, H.; Kumar, V.; Vijendra, P.D.; Rajashekar, J.; Sannabommaji, T.; Basappa, G. A Combination of Elicitor and Precursor Enhances Psoralen Production in Psoralea Corylifolia Linn. Suspension Cultures. Ind. Crop. Prod. 2018, 124, 685–691. [Google Scholar] [CrossRef]
- Consonni, R.; Ottolina, G. NMR Characterization of Lignans. Molecules 2022, 27, 2340. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In Vitro Plant Tissue Culture: Means for Production of Biological Active Compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Mascheretti, I.; Alfieri, M.; Lauria, M.; Locatelli, F.; Consonni, R.; Cusano, E.; Dougué Kentsop, R.A.; Laura, M.; Ottolina, G.; Faoro, F.; et al. New Insight into Justicidin B Pathway and Production in Linum Austriacum. Int. J. Mol. Sci. 2021, 22, 2507. [Google Scholar] [CrossRef]
- Alfieri, M.; Mascheretti, I.; Dougué Kentsop, R.A.; Consonni, R.; Locatelli, F.; Mattana, M.; Ottolina, G. Enhanced Aryltetralin Lignans Production in Linum Adventiious Root Cultures. Molecules 2021, 26, 5189. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant Activity of Apple Peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Moore, J.; Yu, L. (Lucy) High-Throughput Relative DPPH Radical Scavenging Capacity Assay. J. Agric. Food Chem. 2006, 54, 7429–7436. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, N.; Nedialkov, P.; Ionkova, I.; Ninov, S. HPTLC Densitomeric Determination of Justicidin B in Linum In Vitro Cultures. Pharmazie 2004, 59, 528–529. [Google Scholar]
- Hano, C.F.; Dinkova-Kostova, A.T.; Davin, L.B.; Cort, J.R.; Lewis, N.G. Editorial: Lignans: Insights Into Their Biosynthesis, Metabolic Engineering, Analytical Methods and Health Benefits. Front. Plant Sci. 2021, 11, 630327. [Google Scholar] [CrossRef]
- Parveen, A.; Parveen, B.; Parveen, R.; Ahmad, S. Challenges and Guidelines for Clinical Trial of Herbal Drugs. J. Pharm. Bioallied Sci. 2015, 7, 329. [Google Scholar] [CrossRef]
- Wu, T.; Kerbler, S.M.; Fernie, A.R.; Zhang, Y. Plant Cell Cultures as Heterologous Bio-Factories for Secondary Metabolite Production. Plant Commun. 2021, 2, 100235. [Google Scholar] [CrossRef]
- Hussain, M.J.; Abbas, Y.; Nazli, N.; Fatima, S.; Drouet, S.; Hano, C.; Abbasi, B.H. Root Cultures, a Boon for the Production of Valuable Compounds: A Comparative Review. Plants 2022, 11, 439. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dandin, V.S.; Paek, K.-Y. Tools for Biotechnological Production of Useful Phytochemicals from Adventitious Root Cultures. Phytochem. Rev. 2016, 15, 129–145. [Google Scholar] [CrossRef]
- Onrubia, M.; Moyano, E.; Bonfill, M.; Cusidó, R.M.; Goossens, A.; Palazón, J. Coronatine, a More Powerful Elicitor for Inducing Taxane Biosynthesis in Taxus Media Cell Cultures than Methyl Jasmonate. J. Plant Physiol. 2013, 170, 211–219. [Google Scholar] [CrossRef]
- Ho, T.-T.; Murthy, H.N.; Park, S.-Y. Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures. Int. J. Mol. Sci. 2020, 21, 716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayat, Q.; Hayat, S.; Irfan, M.; Ahmad, A. Effect of Exogenous Salicylic Acid under Changing Environment: A Review. Environ. Exp. Bot. 2010, 68, 14–25. [Google Scholar] [CrossRef]
- Cai, Z.; Riedel, H.; Saw, N.M.M.T.; Mewis, I.; Reineke, K.; Knorr, D.; Smetanska, I. Effects of Elicitors and High Hydrostatic Pressure on Secondary Metabolism of Vitis Vinifera Suspension Culture. Process Biochem. 2011, 46, 1411–1416. [Google Scholar] [CrossRef]
- Wang, J.; Qian, J.; Yao, L.; Lu, Y. Enhanced Production of Flavonoids by Methyl Jasmonate Elicitation in Cell Suspension Culture of Hypericum Perforatum. Bioresour. Bioprocess. 2015, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Sasheva, P.; Ionkova, I.; Stoilova, N. Methyl Jasmonate Induces Enhanced Podophyllotoxin Production in Cell Cultures of Thracian Flax (Linum Thracicum ssp. Thracicum). Nat. Prod. Commun. 2015, 10, 1934578X1501000722. [Google Scholar] [CrossRef] [Green Version]
- Renouard, S.; Corbin, C.; Drouet, S.; Medvedec, B.; Doussot, J.; Colas, C.; Maunit, B.; Bhambra, A.S.; Gontier, E.; Jullian, N.; et al. Investigation of Linum Flavum (L.) Hairy Root Cultures for the Production of Anticancer Aryltetralin Lignans. Int. J. Mol. Sci. 2018, 19, 990. [Google Scholar] [CrossRef] [Green Version]
- Day, S.-H.; Lin, Y.-C.; Tsai, M.-L.; Tsao, L.-T.; Ko, H.-H.; Chung, M.-I.; Lee, J.-C.; Wang, J.-P.; Won, S.-J.; Lin, C.-N. Potent Cytotoxic Lignans from Justicia Procumbens and Their Effects on Nitric Oxide and Tumor Necrosis Factor-α Production in Mouse Macrophages. J. Nat. Prod. 2002, 65, 379–381. [Google Scholar] [CrossRef]
- Stefanik, M.; Strakova, P.; Haviernik, J.; Miller, A.D.; Ruzek, D.; Eyer, L. Antiviral Activity of Vacuolar ATPase Blocker Diphyllin against SARS-CoV-2. Microorganisms 2021, 9, 471. [Google Scholar] [CrossRef]
- Martinez-Lopez, A.; Persaud, M.; Chavez, M.P.; Zhang, H.; Rong, L.; Liu, S.; Wang, T.T.; Sarafianos, S.G.; Diaz-Griffero, F. Glycosylated Diphyllin as a Broad-Spectrum Antiviral Agent against Zika Virus. EBioMedicine 2019, 47, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Pičmanová, M.; Møller, B.L. Apiose: One of Nature’s Witty Games. Glycobiology 2016, 26, 430–442. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, S.; Yang, J.; Kang, C.; Huang, L.; Guo, L. Glycosylation of Plant Secondary Metabolites: Regulating from Chaos to Harmony. Environ. Exp. Bot. 2022, 194, 104703. [Google Scholar] [CrossRef]
Justicidin B | |||
---|---|---|---|
mg | mg/L | ||
ARL1 | Ctrl | 49.3 | 75.8 |
MeJA | 99.2 | 152.7 | |
HRL6 | Ctrl | 53.4 | 82.2 |
MeJA | 132.6 | 204.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dougué Kentsop, R.A.; Consonni, R.; Alfieri, M.; Laura, M.; Ottolina, G.; Mascheretti, I.; Mattana, M. Linum lewisii Adventitious and Hairy-Roots Cultures as Lignan Plant Factories. Antioxidants 2022, 11, 1526. https://doi.org/10.3390/antiox11081526
Dougué Kentsop RA, Consonni R, Alfieri M, Laura M, Ottolina G, Mascheretti I, Mattana M. Linum lewisii Adventitious and Hairy-Roots Cultures as Lignan Plant Factories. Antioxidants. 2022; 11(8):1526. https://doi.org/10.3390/antiox11081526
Chicago/Turabian StyleDougué Kentsop, Roméo Arago, Roberto Consonni, Michela Alfieri, Marina Laura, Gianluca Ottolina, Iride Mascheretti, and Monica Mattana. 2022. "Linum lewisii Adventitious and Hairy-Roots Cultures as Lignan Plant Factories" Antioxidants 11, no. 8: 1526. https://doi.org/10.3390/antiox11081526
APA StyleDougué Kentsop, R. A., Consonni, R., Alfieri, M., Laura, M., Ottolina, G., Mascheretti, I., & Mattana, M. (2022). Linum lewisii Adventitious and Hairy-Roots Cultures as Lignan Plant Factories. Antioxidants, 11(8), 1526. https://doi.org/10.3390/antiox11081526