Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extract Preparation
2.2. HPLC-PDA-ESI-QTOF-MS Analysis of Phenolic Compounds
2.3. Spectrophotometric Analysis of Total Phenolic Content (TPC)
2.4. Antioxidant Capacity
2.5. Antimicrobial Activity against Foodborne Pathogens and Spoilage Bacteria
2.6. Statistical Analyses
3. Results and Discussion
3.1. Isolation and Chemical Characterization of Extracts
3.2. Antioxidant Activity
3.3. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Generalić Mekinić, I.; Gotovac, M.; Skroza, D.; Ljubenkov, I.; Burčul, F.; Katalinić, V. Effect of the Extraction Solvent on the Oleuropein Content and Antioxidant Properties of Olive Leaf (Cv. Oblica, Lastovka and Levantinka) Extracts. Croat. J. Food Sci. Technol. 2014, 6, 7–14. [Google Scholar]
- Del Contreras, M.M.; Lama-Muñoz, A.; Gutiérrez-Pérez, J.M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Integrated Process for Sequential Extraction of Bioactive Phenolic Compounds and Proteins from Mill and Field Olive Leaves and Effects on the Lignocellulosic Profile. Foods 2019, 8, 531. [Google Scholar] [CrossRef] [PubMed]
- Medfai, W.; del Contreras, M.M.; Lama-Muñoz, A.; Mhamdi, R.; Oueslati, I.; Castro, E. How Cultivar and Extraction Conditions Affect Antioxidants Type and Extractability for Olive Leaves Valorization. ACS Sustain. Chem. Eng. 2020, 8, 5107–5118. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Crupi, P.; Annunziato, A.; Corbo, F. Innovative Extraction Technologies for Development of Functional Ingredients Based on Polyphenols from Olive Leaves. Foods 2022, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; McKeever, L.C.; Suo, Y.; Jin, T.Z.; Malik, N.S.A. Antimicrobial Activities of Olive Leaf Extract and Its Potential Use in Food Industry. In Natural and Bio-Based Antimicrobials for Food Applications; American Chemical Society: Washington, DC, USA, 2018; pp. 119–132. [Google Scholar] [CrossRef]
- Borjan, D.; Leitgeb, M.; Knez, Ž.; Hrnčič, M.K. Microbiological and Antioxidant Activity of Phenolic Compounds in Olive Leaf Extract. Molecules 2020, 25, 5946. [Google Scholar] [CrossRef]
- Pasković, I.; Lukić, I.; Žurga, P.; Majetić Germek, V.; Brkljača, M.; Koprivnjak, O.; Major, N.; Grozić, K.; Franić, M.; Ban, D.; et al. Temporal Variation of Phenolic and Mineral Composition in Olive Leaves Is Cultivar Dependent. Plants 2020, 9, 1099. [Google Scholar] [CrossRef]
- Salama, Z.A.; Aboul-Enein, A.M.; Gaafar, A.A.; Asker, M.S.; Aly, H.F.; Ahmed, H.A. In-Vitro Antioxidant, Antimicrobial and Anticancer Activities of Banana Leaves (Musa Acuminata) and Olive Leaves (Olea Europaea L.) as by-Products. Res. J. Pharm. Technol. 2020, 13, 687. [Google Scholar] [CrossRef]
- Baysal, G.; Kasapbaşı, E.E.; Yavuz, N.; Hür, Z.; Genç, K.; Genç, M. Determination of Theoretical Calculations by DFT Method and Investigation of Antioxidant, Antimicrobial Properties of Olive Leaf Extracts from Different Regions. J. Food Sci. Technol. 2021, 58, 1909–1917. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, C.; Liu, L.; Xu, Z.; Chen, T.; Zhou, L.; Yuan, M.; Li, T.; Ding, C. Comparison of Phenolic Compounds in Olive Leaves by Different Drying and Storage Methods. Separations 2021, 8, 156. [Google Scholar] [CrossRef]
- Lorini, A.; Aranha, B.C.; da Antunes, B.F.; Otero, D.M.; Jacques, A.C.; Zambiazi, R.C. Metabolic Profile of Olive Leaves of Different Cultivars and Collection Times. Food Chem. 2021, 345, 128758. [Google Scholar] [CrossRef]
- Sánchez-Gutiérrez, M.; Bascón-Villegas, I.; Rodríguez, A.; Pérez-Rodríguez, F.; Fernández-Prior, Á.; Rosal, A.; Carrasco, E. Valorisation of Olea Europaea L. Olive Leaves through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity. Foods 2021, 10, 966. [Google Scholar] [CrossRef] [PubMed]
- Akli, H.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P.; Calokerinos, A.; Mati, A.; Lydakis-Simantiris, N. Extraction of Polyphenols from Olive Leaves Employing Deep Eutectic Solvents: The Application of Chemometrics to a Quantitative Study on Antioxidant Compounds. Appl. Sci. 2022, 12, 831. [Google Scholar] [CrossRef]
- Cör Andrejč, D.; Butinar, B.; Knez, Ž.; Tomažič, K.; Knez Marevci, M. The Effect of Drying Methods and Extraction Techniques on Oleuropein Content in Olive Leaves. Plants 2022, 11, 865. [Google Scholar] [CrossRef] [PubMed]
- Mujić, I.; Živković, J.; Nikolić, G.; Vidović, S.; Trutić, N.; Kosić, U.; Jokić, S.; Ruznic, A. Phenolic Compounds in Olive Leaf Extract as a Source of Useful Antioxidants. Croat. J. Food Technol. Biotechnol. Nutr. 2011, 6, 129–133. [Google Scholar]
- Cukrov, M.; Žurga, P.; Majetić-Germek, V.; Brkljača, M.; Ban, D.; Lukić, I.; Goreta Ban, S.; Pasković, I. Effect of Olive (Olea Europaea L.) Variety on Leaf Biophenolic Profile. Agric. Conspec. Sci. 2021, 86, 277–282. [Google Scholar]
- Majetić Germek, V.; Žurga, P.; Koprivnjak, O.; Grozić, K.; Previšić, I.; Marcelić, Š.; Goreta Ban, S.; Pasković, I. Phenolic Composition of Croatian Olive Leaves and Their Infusions Obtained by Hot and Cold Preparation. Czech J. Food Sci. 2021, 39, 393–401. [Google Scholar] [CrossRef]
- Giacometti, J.; Žauhar, G.; Žuvić, M. Optimization of Ultrasonic-Assisted Extraction of Major Phenolic Compounds from Olive Leaves (Olea Europaea L.) Using Response Surface Methodology. Foods 2018, 7, 149. [Google Scholar] [CrossRef]
- Hannachi, H.; Benmoussa, H.; Saadaoui, E.; Saanoun, I.; Negri, N.; Elfalleh, W. Optimization of Ultrasound and Microwave-Assisted Extraction of Phenolic Compounds from Olive Leaves by Response Surface Methodology. Res. J. Biotechnol. 2019, 14, 28–37. [Google Scholar]
- Del Contreras, M.M.; Lama-Muñoz, A.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Valorization of Olive Mill Leaves through Ultrasound-Assisted Extraction. Food Chem. 2020, 314, 126218. [Google Scholar] [CrossRef]
- Kırbaşlar, Ş.İ.; Şahin, S. Recovery of Bioactive Ingredients from Biowaste of Olive Tree (Olea Europaea) Using Microwave-Assisted Extraction: A Comparative Study. Biomass Convers. Biorefinery 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Darvishzadeh, P.; Orsat, V. Microwave-Assisted Extraction of Antioxidant Compounds from Russian Olive Leaves and Flowers: Optimization, HPLC Characterization and Comparison with Other Methods. J. Appl. Res. Med. Aromat. Plants 2022, 27, 100368. [Google Scholar] [CrossRef]
- Suárez Montenegro, Z.J.; Álvarez-Rivera, G.; Mendiola, J.A.; Ibáñez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. [Google Scholar] [CrossRef] [PubMed]
- Dauber, C.; Carreras, T.; González, L.; Gámbaro, A.; Valdés, A.; Ibañez, E.; Vieitez, I. Characterization and Incorporation of Extracts from Olive Leaves Obtained through Maceration and Supercritical Extraction in Canola Oil: Oxidative Stability Evaluation. LWT 2022, 160, 113274. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Athanasiadis, V.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Optimization of Pulsed Electric Field as Standalone “Green” Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves. Antioxidants 2021, 10, 1554. [Google Scholar] [CrossRef]
- Skaltsounis, A.L.; Argyropoulou, A.; Aligiannis, N.; Xynos, N. Recovery of High Added Value Compounds from Olive Tree Products and Olive Processing Byproducts. In Olive and Olive Oil Bioactive Constituents; AOCS Press: Urbana, IL, USA, 2015; pp. 333–356. [Google Scholar]
- Cavaca, L.A.S.; López-Coca, I.M.; Silvero, G.; Afonso, C.A.M. The Olive-Tree Leaves as a Source of High-Added Value Molecules: Oleuropein. In Studies in Natural Products Chemistry; Atta-Ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 131–180. [Google Scholar] [CrossRef]
- Abi-Khattar, A.M.; Rajha, H.N.; Abdel-Massih, R.M.; Maroun, R.G.; Louka, N.; Debs, E. Intensification of Polyphenol Extraction from Olive Leaves Using Ired-Irrad®, an Environmentally-Friendly Innovative Technology. Antioxidants 2019, 8, 227. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Xi, J. Recent Advances in High Voltage Electric Discharge Extraction of Bioactive Ingredients from Plant Materials. Food Chem. 2019, 277, 246–260. [Google Scholar] [CrossRef]
- Žuntar, I.; Putnik, P.; Bursać Kovačević, D.; Nutrizio, M.; Šupljika, F.; Poljanec, A.; Dubrović, I.; Barba, F.; Režek Jambrak, A. Phenolic and Antioxidant Analysis of Olive Leaves Extracts (Olea europaea L.) Obtained by High Voltage Electrical Discharges (HVED). Foods 2019, 8, 248. [Google Scholar] [CrossRef]
- Čagalj, M.; Skroza, D.; del Razola-Díaz, M.C.; Verardo, V.; Bassi, D.; Frleta, R.; Generalić Mekinić, I.; Tabanelli, G.; Šimat, V. Variations in the Composition, Antioxidant and Antimicrobial Activities of Cystoseira Compressa during Seasonal Growth. Mar. Drugs 2022, 20, 64. [Google Scholar] [CrossRef]
- Verni, M.; Pontonio, E.; Krona, A.; Jacob, S.; Pinto, D.; Rinaldi, F.; Verardo, V.; Díaz-de-Cerio, E.; Coda, R.; Rizzello, C.G. Bioprocessing of Brewers’ Spent Grain Enhances Its Antioxidant Activity: Characterization of Phenolic Compounds and Bioactive Peptides. Front. Microbiol. 2020, 11, 1831. [Google Scholar] [CrossRef]
- Amerine, M.A.; Ough, C.S. Methods for Analysis of Musts and Wines; Wiley: Hoboken, NJ, USA, 1980. [Google Scholar]
- Skroza, D.; Generalić Mekinić, I.; Svilović, S.; Šimat, V.; Katalinić, V. Investigation of the Potential Synergistic Effect of Resveratrol with Other Phenolic Compounds: A Case of Binary Phenolic Mixtures. J. Food Compos. Anal. 2015, 38, 13–18. [Google Scholar] [CrossRef]
- Milat, A.M.; Boban, M.; Teissedre, P.L.; Šešelja-Perišin, A.; Jurić, D.; Skroza, D.; Generalić-Mekinić, I.; Ljubenkov, I.; Volarević, J.; Rasines-Perea, Z.; et al. Effects of Oxidation and Browning of Macerated White Wine on Its Antioxidant and Direct Vasodilatory Activity. J. Funct. Foods 2019, 59, 138–147. [Google Scholar] [CrossRef]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of Diffusion and Dilution Methods to Determine the Antibacterial Activity of Plant Extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Ghomari, O.; Sounni, F.; Massaoudi, Y.; Ghanam, J.; Drissi Kaitouni, L.B.; Merzouki, M.; Benlemlih, M. Phenolic Profile (HPLC-UV) of Olive Leaves According to Extraction Procedure and Assessment of Antibacterial Activity. Biotechnol. Rep. 2019, 23, e00347. [Google Scholar] [CrossRef] [PubMed]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of Phenolic Compounds of ‘Sikitita’ Olive Leaves by HPLC-DAD-TOF-MS. Comparison with Its Parents ‘Arbequina’ and ‘Picual’ Olive Leaves. LWT Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Tóth, G.; Alberti, Á.; Sólyomváry, A.; Barabás, C.; Boldizsár, I.; Noszál, B. Phenolic Profiling of Various Olive Bark-Types and Leaves: HPLC–ESI/MS Study. Ind. Crops Prod. 2015, 67, 432–438. [Google Scholar] [CrossRef]
- Medina, E.; Romero, C.; García, P.; Brenes, M. Characterization of Bioactive Compounds in Commercial Olive Leaf Extracts, and Olive Leaves and Their Infusions. Food Funct. 2019, 10, 4716–4724. [Google Scholar] [CrossRef]
- Hashemi, P.; Delfan, B.; Ghiasvand, A.R.; Alborzi, M.; Raeisi, F. A Study of the Effects of Cultivation Variety, Collection Time, and Climate on the Amount of Oleuropein in Olive Leaves. Acta Chromatogr. 2010, 22, 133–140. [Google Scholar] [CrossRef]
- Ghelichkhani, G.; Modaresi, M.H.; Rashidi, L.; Shariatifar, N.; Homapour, M.; Arabameri, M. Effect of the Spray and Freeze Dryers on the Bioactive Compounds of Olive Leaf Aqueous Extract by Chemometrics of HCA and PCA. J. Food Meas. Charact. 2019, 13, 2751–2763. [Google Scholar] [CrossRef]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds: Oleuropein, Phenolic Acids, Phenolic Alcohols and Flavonoids from Olive Leaves and Evaluation of Its Antioxidant Activities. Ind. Crops Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Romero, C.; Medina, E.; Mateo, M.A.; Brenes, M. Quantification of Bioactive Compounds in Picual and Arbequina Olive Leaves and Fruit. J. Sci. Food Agric. 2017, 97, 1725–1732. [Google Scholar] [CrossRef]
- Kabbash, E.M.; Ayoub, I.M.; Abdel-Shakour, Z.T.; El-Ahmady, S.H. A Phytochemical Study on Olea Europaea L. Olive Leaf Extract (Cv. Koroneiki) Growing in Egypt. Arch. Pharm. Sci. Ain Shams Univ. 2019, 3, 99–105. [Google Scholar] [CrossRef]
- Debib, A.; Boukhatem, M.N. Phenolic Content, Antioxidant and Antimicrobial Activities of “Chemlali” Olive Leaf (Olea Europaea L.) Extracts. Int. J. Pharmacol. Phytochem. Ethnomed. 2017, 6, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Moudache, M.; Colon, M.; Nerín, C.; Zaidi, F. Phenolic Content and Antioxidant Activity of Olive By-Products and Antioxidant Film Containing Olive Leaf Extract. Food Chem. 2016, 212, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, J.I.; Sperlinga, E.; Siracusa, L.; Spagna, G.; Parafati, L.; Todaro, A.; Palmeri, R. Water as a Solvent of Election for Obtaining Oleuropein-Rich Extracts from Olive (Olea europaea) Leaves. Agronomy 2021, 11, 465. [Google Scholar] [CrossRef]
- Hayes, J.E.; Allen, P.; Brunton, N.; O’Grady, M.N.; Kerry, J.P. Phenolic Composition and in Vitro Antioxidant Capacity of Four Commercial Phytochemical Products: Olive Leaf Extract (Olea europaea L.), Lutein, Sesamol and Ellagic Acid. Food Chem. 2011, 126, 948–955. [Google Scholar] [CrossRef]
- Papoti, V.; Papageorgiou, M.; Dervisi, K.; Alexopoulos, E.; Apostolidis, K.; Petridis, D. Screening Olive Leaves from Unexploited Traditional Greek Cultivars for Their Phenolic Antioxidant Dynamic. Foods 2018, 7, 197. [Google Scholar] [CrossRef]
- Chinnici, F.; Bendini, A.; Gaiani, A.; Riponi, C. Radical Scavenging Activities of Peels and Pulps from Cv. Golden Delicious Apples as Related to Their Phenolic Composition. J. Agric. Food Chem. 2004, 52, 4684–4689. [Google Scholar] [CrossRef]
- Sudjana, A.N.; D’Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Riley, T.V.; Hammer, K.A. Antimicrobial Activity of Commercial Olea Europaea (Olive) Leaf Extract. Int. J. Antimicrob. Agents 2009, 33, 461–463. [Google Scholar] [CrossRef]
- Liu, Y.; McKeever, L.C.; Malik, N.S.A. Assessment of the Antimicrobial Activity of Olive Leaf Extract Against Foodborne Bacterial Pathogens. Front. Microbiol. 2017, 8, 113. [Google Scholar] [CrossRef]
- Martín-García, B.; De Montijo-Prieto, S.; Jiménez-Valera, M.; Carrasco-Pancorbo, A.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 558. [Google Scholar] [CrossRef]
- Testa, B.; Lombardi, S.J.; Macciola, E.; Succi, M.; Tremonte, P.; Iorizzo, M. Efficacy of Olive Leaf Extract (Olea Europaea L. Cv Gentile Di Larino) in Marinated Anchovies (Engraulis encrasicolus, L.) Process. Heliyon 2019, 5, e01727. [Google Scholar] [CrossRef] [PubMed]
- Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial Effect of Different Herbal Plant Extracts against Different Microbial Population. Saudi J. Biol. Sci. 2020, 27, 3221–3227. [Google Scholar] [CrossRef] [PubMed]
- Topuz, S.; Bayram, M. Oleuropein Extraction from Leaves of Three Olive Varieties (Olea europaea L.): Antioxidant and Antimicrobial Properties of Purified Oleuropein and Oleuropein Extracts. J. Food Process. Preserv. 2022, 46, e15697. [Google Scholar] [CrossRef]
Quantification (mg/g Dry Leaf Extract) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lastovka | Levatinka | Oblica | Moraiolo | Frantoio | Nostrana di Brisighella | ||||||||
Compounds | x | SD | x | SD | x | SD | x | SD | x | SD | x | SD | |
1 | Hydroxytyrosol-hexose | 0.070 | 0.001 | 0.152 | 0.009 | 0.617 | 0.020 | 0.079 | 0.008 | 0.102 | 0.006 | 0.197 | 0.008 |
2 | Oleoside | 0.098 | n.d. | <LOQ | 0.387 | 0.012 | 0.104 | n.d. | 0.113 | 0.002 | 0.119 | 0.006 | |
3 | Hydroxytyrosol | 0.009 | 0.002 | 0.021 | 0.005 | 0.090 | 0.004 | 0.123 | n.d. | 0.117 | 0.006 | 0.155 | 0.004 |
4 | Oleoside/secologanoside | 0.061 | 0.003 | <LOQ | 0.466 | 0.006 | 0.266 | 0.037 | 0.154 | 0.011 | 0.184 | 0.014 | |
5 | Gallocatechin | <LOQ | <LOQ | <LOQ | 0.107 | 0.021 | <LOQ | <LOQ | |||||
6 | Elenolic acid glucoside isomer a | <LOQ | <LOQ | 0.067 | 0.004 | 0.003 | n.d. | <LOQ | 0.013 | 0.001 | |||
7 | Elenolic acid glucoside isomer b | 0.085 | n.d. | 0.024 | 0.006 | 0.097 | 0.001 | 0.100 | 0.007 | 0.082 | 0.001 | 0.086 | n.d. |
8 | Elenolic acid glucoside isomer c | <LOQ | <LOQ | <LOQ | <LOQ * | <LOQ | <LOQ | ||||||
9 | Oleuropein aglycon | 0.093 | 0.002 | <LOQ | 0.093 | 0.004 | 0.010 | 0.014 | 0.004 | 0.006 | 0.085 | 0.006 | |
10 | Luteolin rutinoside isomer a | 0.061 | n.d. | 0.096 | 0.003 | 0.090 | n.d. | 0.046 | 0.003 | 0.067 | 0.001 | 0.061 | 0.003 |
11 | Luteolin-diglucoside isomer a | 0.157 | 0.003 | 0.179 | 0.004 | 0.205 | 0.002 | 0.119 | n.d. | 0.106 | 0.001 | 0.173 | 0.012 |
12 | Elenolic acid glucoside isomer d | <LOQ | <LOQ | 0.081 | 0.003 | 0.049 | n.d. | <LOQ | <LOQ | ||||
13 | Luteolin-diglucoside isomer b | 0.036 | n.d. | 0.059 | 0.001 | 0.082 | n.d. | 0.020 | 0.001 | 0.019 | n.d. | 0.084 | 0.005 |
14 | Demethyloleuropein | <LOQ | <LOD | 0.037 | 0.005 | 0.081 | 0.002 | 0.284 | 0.024 | 0.046 | 0.007 | ||
15 | Rutin | 0.146 | 0.018 | 0.179 | 0.006 | 0.399 | 0.024 | 0.266 | 0.015 | 0.227 | 0.010 | 0.271 | n.d. |
16 | Hydroxyoleuropein isomer a | 0.208 | 0.002 | 0.089 | 0.016 | 0.037 | 0.001 | 0.313 | 0.011 | 0.171 | 0.003 | 0.250 | 0.003 |
17 | Hydroxyoleuropein isomer b | 0.203 | 0.007 | 0.088 | 0.013 | 0.033 | 0.002 | 0.333 | 0.010 | 0.178 | 0.004 | 0.248 | 0.002 |
18 | Hydroxyoleuropein isomer c | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
19 | Luteolin rutinoside isomer b | 0.083 | 0.001 | 0.097 | 0.001 | 0.079 | 0.001 | 0.073 | n.d. | 0.035 | n.d. | 0.086 | 0.005 |
20 | Luteolin glucoside isomer a | 0.424 | 0.002 | 0.473 | 0.016 | 0.557 | 0.003 | 0.459 | 0.015 | 0.478 | 0.008 | 0.464 | 0.016 |
21 | Luteolin rutinoside isomer c | 0.115 | 0.003 | 0.163 | 0.006 | 0.099 | 0.005 | 0.176 | 0.008 | 0.078 | 0.001 | 0.089 | 0.004 |
22 | Hydroxyoleuropein isomer d | <LOQ | <LOQ | <LOQ | 0.004 | 0.001 | <LOQ | 0.015 | 0.005 | ||||
23 | Verbascoside isomer a | <LOQ | <LOQ | 0.860 | 0.047 | 0.562 | 0.018 | 0.595 | 0.053 | 0.970 | 0.022 | ||
24 | Hydroxyoleuropein isomer e | <LOQ | <LOQ | <LOQ | 0.010 | 0.004 | <LOQ | 0.004 | 0.005 | ||||
25 | Hydroxyoleuropein isomer f | <LOQ | <LOQ | <LOQ | <LOQ | 0.025 | 0.003 | <LOQ | |||||
26 | Luteolin glucoside isomer b | 0.051 | 0.001 | 0.063 | 0.004 | 0.191 | 0.012 | 0.170 | 0.010 | 0.099 | 0.004 | 0.063 | 0.002 |
27 | Oleuropein glucoside isomer a | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
28 | Apigenin rutinoside isomer a | 0.167 | n.d. | 0.195 | 0.001 | 0.120 | n.d. | 0.096 | 0.002 | 0.113 | 0.001 | 0.127 | 0.006 |
29 | Luteolin rutinoside isomer d | 0.022 | 0.001 | 0.030 | 0.003 | 0.077 | 0.001 | 0.053 | 0.002 | 0.001 | n.d. | 0.091 | 0.004 |
30 | Luteolin glucoside isomer c | 0.409 | 0.001 | 0.459 | 0.013 | 0.507 | 0.006 | 0.478 | 0.016 | 0.530 | 0.001 | 0.461 | 0.001 |
31 | Verbascoside isomer b | <LOD | <LOD | 0.224 | 0.024 | <LOD | 0.004 | 0.001 | 0.008 | 0.002 | |||
32 | Apigenin glucoside | 0.219 | 0.007 | 0.323 | 0.015 | 0.257 | 0.003 | 0.140 | 0.008 | 0.222 | n.d. | 0.183 | 0.005 |
33 | Oleuropein glucoside isomer b | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
34 | Oleuropein glucoside isomer c | <LOQ | <LOD | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
35 | Comselogoside | <LOQ | 0.024 | 0.006 | 0.039 | 0.004 | 0.004 | 0.005 | <LOQ | 0.013 | 0.003 | ||
36 | Verbascoside isomer c | <LOD | <LOD | 0.251 | 0.017 | 0.087 | 0.016 | 0.120 | 0.010 | 0.297 | 0.041 | ||
37 | Apigenin rutinoside isomer b | 0.040 | n.d. | 0.054 | 0.001 | 0.014 | 0.001 | 0.047 | 0.005 | 0.039 | 0.001 | 0.012 | 0.001 |
38 | Oleuropein glucoside isomer d | <LOQ | <LOQ | 0.125 | 0.007 | 0.023 | 0.003 | 0.017 | 0.001 | 0.117 | 0.011 | ||
39 | Oleuropein glucoside isomer e | 0.018 | 0.001 | 0.022 | 0.002 | 0.125 | 0.002 | 0.024 | 0.002 | 0.008 | 0.001 | 0.056 | 0.007 |
40 | Chrysoeriol-7-Oglucoside | 0.117 | 0.005 | 0.244 | 0.019 | 0.342 | 0.002 | 0.189 | 0.008 | 0.329 | 0.007 | 0.238 | 0.008 |
41 | Luteolin glucoside isomer d | 0.137 | 0.001 | 0.240 | 0.011 | 0.375 | 0.003 | 0.121 | 0.008 | 0.152 | 0.002 | 0.280 | 0.015 |
42 | Oleuropein glucoside isomer f | 0.075 | 0.003 | 0.059 | 0.008 | 0.279 | 0.001 | 0.227 | 0.002 | 0.086 | 0.001 | 0.241 | 0.020 |
43 | Oleuropein isomer a | <LOQ | <LOQ | 0.131 | 0.002 | <LOQ | <LOQ | <LOQ | |||||
44 | Hydro-oleuropein | <LOQ | <LOD | 0.097 | 0.002 | <LOQ | <LOQ | <LOQ | |||||
45 | Oleuropein isomer b | <LOQ | <LOQ | 0.171 | 0.003 | 0.022 | 0.003 | <LOQ | <LOQ | ||||
46 | 2″-Methoxyoleuropein isomer a | 0.042 | 0.001 | 0.018 | 0.009 | <LOQ | 0.174 | 0.019 | 0.113 | 0.002 | 0.007 | 0.002 | |
47 | 2″-Methoxyoleuropein isomer b | 0.040 | n.d. | 0.019 | 0.008 | 0.017 | n.d. | 0.187 | 0.020 | 0.122 | 0.002 | 0.020 | 0.002 |
48 | Oleuropein glucoside isomer g | <LOQ | <LOQ | 0.136 | 0.004 | 0.086 | 0.007 | 0.063 | 0.002 | 0.131 | 0.011 | ||
49 | Oleuropein isomer c | 0.414 | 0.037 | 0.325 | 0.055 | 10.217 | 0.148 | 3.162 | 0.082 | 2.928 | 0.017 | 4.146 | 0.106 |
50 | Oleuropein isomer d | <LOQ | <LOQ | 0.023 | 0.002 | 0.008 | 0.002 | <LOQ | <LOQ | ||||
51 | Oleuropein isomer e | <LOQ | <LOQ | 0.675 | 0.006 | 0.141 | 0.009 | 0.164 | 0.003 | 0.281 | 0.012 | ||
52 | Luteolin | 0.149 | 0.003 | 0.308 | 0.014 | <LOQ | 0.132 | 0.038 | 0.080 | 0.013 | 0.118 | 0.001 | |
53 | Oleuropein isomer f | 0.037 | 0.008 | 0.021 | 0.012 | 2.456 | 0.042 | 0.460 | 0.023 | 0.546 | 0.007 | 0.798 | 0.060 |
54 | Lucidumoside C isomer a | 0.136 | 0.006 | 0.051 | 0.013 | 0.139 | 0.005 | 0.257 | 0.019 | 0.248 | 0.001 | 0.063 | 0.009 |
55 | Lucidumoside C isomer b | 0.139 | 0.009 | 0.046 | 0.012 | 0.127 | n.d. | 0.266 | 0.015 | 0.241 | 0.008 | 0.069 | 0.008 |
56 | Ligstroside | 0.047 | 0.008 | 0.019 | 0.007 | 0.639 | 0.012 | 0.156 | 0.010 | 0.152 | 0.007 | 0.283 | 0.005 |
57 | Hydroxyoleuropein isomer g | <LOQ | <LOQ | <LOQ | 0.047 | 0.001 | <LOQ | <LOQ | |||||
58 | Lucidumoside C isomer c | 0.001 | 0.002 | <LOQ | 0.010 | 0.001 | 0.027 | 0.002 | 0.041 | 0.002 | <LOQ | ||
59 | Oleuroside methyl ether | <LOQ | <LOQ | 0.013 | 0.001 | <LOQ | <LOQ | <LOQ | |||||
60 | Resinoside isomer a | 0.054 | 0.003 | 0.005 | n.d. | 0.004 | n.d. | 0.012 | n.d. | <LOQ | 0.010 | 0.001 | |
61 | Oleuropein isomer g | 0.002 | 0.001 | <LOQ | <LOQ | 0.093 | n.d. | 0.015 | n.d. | <LOQ | |||
62 | Oleuropein isomer h | 0.008 | 0.002 | <LOQ | <LOQ | 0.096 | 0.001 | 0.020 | 0.001 | <LOQ | |||
63 | Oleuropein isomer i | 0.009 | 0.003 | <LOQ | <LOQ | 0.072 | 0.005 | 0.008 | 0.001 | <LOQ | |||
64 | Oleuropein isomer j | 0.007 | n.d. | <LOQ | <LOQ | 0.065 | 0.003 | 0.005 | 0.001 | <LOQ | |||
65 | Resinoside isomer b | 0.082 | 0.007 | 0.041 | n.d. | 0.085 | 0.001 | 0.012 | 0.002 | 0.050 | 0.002 | 0.030 | 0.001 |
66 | Resinoside isomer c | 0.038 | 0.002 | 0.027 | n.d. | 0.030 | n.d. | 0.014 | 0.001 | 0.011 | n.d. | 0.019 | 0.001 |
Total | Simple Phenols | 0.079 | n.d. | 0.173 | 0.014 | 0.707 | 0.024 | 0.202 | 0.008 | 0.219 | n.d. | 0.352 | 0.011 |
Flavonoids | 2.508 | 0.047 | 3.234 | 0.066 | 3.514 | 0.036 | 2.730 | 0.064 | 2.635 | 0.003 | 2.861 | 0.081 | |
Secoiridoids | 1.638 | 0.079 | 0.779 | 0.148 | 16.472 | 0.242 | 6.720 | 0.258 | 5.705 | 0.023 | 7.177 | 0.271 | |
Elenolic acid derivatives | 0.085 | n.d. | 0.024 | 0.006 | 0.245 | 0.006 | 0.152 | 0.011 | 0.082 | 0.001 | 0.099 | 0.001 | |
Other phenolic compounds | n.d. | n.d. | n.d. | n.d. | 1.334 | 0.088 | 0.648 | 0.034 | 0.720 | 0.061 | 1.274 | 0.065 | |
Total phenols | 4.310 | 0.127 | 4.209 | 0.233 | 22.273 | 0.395 | 10.443 | 0.162 | 9.361 | 0.082 | 11.764 | 0.428 |
Olive Varieties | |||||||
---|---|---|---|---|---|---|---|
Lastovka | Levantinka | Oblica | Moraiolo | Frantoio | Nostrana di Brisighella | ||
S. aureus ATCC 25923 | MIC * | 2 | 4 | 2 | 4 | 4 | 2 |
MBC | 2 | 4 | 2 | 4 | 4 | 2 | |
L. innocua ŽM 39 | MIC | >8 | 8 | >8 | >4 | >8 | >8 |
MBC | >8 | 8 | >8 | >4 | >8 | >8 | |
B. cereus ŽMJ 164 | MIC | 4 | 8 | 8 | 8 | 8 | 8 |
MBC | 4 | 8 | 8 | 8 | 8 | 8 | |
E. coli ATCC 11229 | MIC | >8 | >8 | >8 | >8 | >8 | >8 |
MBC | >8 | >8 | >8 | >8 | >8 | >8 | |
S. Typhimurium ATCC 14028 | MIC | >8 | >8 | >8 | >8 | >8 | >8 |
MBC | >8 | >8 | >8 | >8 | >8 | >8 | |
C. jejuni NCTC 11168 | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
MBC | 1 | 1 | 0.5 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimat, V.; Skroza, D.; Tabanelli, G.; Čagalj, M.; Pasini, F.; Gómez-Caravaca, A.M.; Fernández-Fernández, C.; Sterniša, M.; Smole Možina, S.; Ozogul, Y.; et al. Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars. Antioxidants 2022, 11, 1656. https://doi.org/10.3390/antiox11091656
Šimat V, Skroza D, Tabanelli G, Čagalj M, Pasini F, Gómez-Caravaca AM, Fernández-Fernández C, Sterniša M, Smole Možina S, Ozogul Y, et al. Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars. Antioxidants. 2022; 11(9):1656. https://doi.org/10.3390/antiox11091656
Chicago/Turabian StyleŠimat, Vida, Danijela Skroza, Giulia Tabanelli, Martina Čagalj, Federica Pasini, Ana María Gómez-Caravaca, Carmen Fernández-Fernández, Meta Sterniša, Sonja Smole Možina, Yesim Ozogul, and et al. 2022. "Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars" Antioxidants 11, no. 9: 1656. https://doi.org/10.3390/antiox11091656
APA StyleŠimat, V., Skroza, D., Tabanelli, G., Čagalj, M., Pasini, F., Gómez-Caravaca, A. M., Fernández-Fernández, C., Sterniša, M., Smole Možina, S., Ozogul, Y., & Generalić Mekinić, I. (2022). Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars. Antioxidants, 11(9), 1656. https://doi.org/10.3390/antiox11091656