Dryopteris juxtapostia Root and Shoot: Determination of Phytochemicals; Antioxidant, Anti-Inflammatory, and Hepatoprotective Effects; and Toxicity Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Its Preparation
2.2. Quantification of Total Phenolic and Flavonoid Contents
2.3. Antioxidant Activity
2.4. Anti-Inflammatory Activity
2.4.1. Urease Inhibition Assay (In Vitro)
2.4.2. Carrageenan- and Formaldehyde-Induced Paw Oedema (In Vivo)
2.5. Brine Shrimp Lethality Assay
2.6. Cytotoxic Activity
2.7. Hepatoprotective Studies
2.7.1. Assessment of Liver Functions
2.7.2. Histopathology of Liver
2.8. LC-ESI-MS/MS Analysis of Active Crude Extracts
2.9. Statistical Analysis
3. Results
3.1. Phytochemical Constituents and Antioxidant Activity of Dryopteris juxtapostia (DJ) Crude Extracts
3.2. In Vitro Anti-Inflammatory Activity
3.3. In Vivo Anti-Inflammatory Activity
3.4. Brine Shrimp Lethality Assay
3.5. Cytotoxic Activity of Various D. juxtapostia Crude Extracts Using MTT Assay
3.6. Hepatoprotective Activity
3.7. Mass Spectrometry Analysis of Various Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayachitra, A.; Krithiga, N. Study on antioxidant property in selected medicinal plant extract. Int. J. Med. Aromat. Plants 2010, 2, 495–500. [Google Scholar]
- Hiransai, P.; Tangpong, J.; Kumbuar, C.; Hoonheang, N.; Rodpech, O.; Sangsuk, P.; Kajklangdon, U.; Inkaow, W. Anti-nitric oxide production, antiproliferation and antioxidant effects of the aqueous extract from Tithonia diversifolia. Asian Pac. J. Trop. Biomed. 2016, 6, 950–956. [Google Scholar] [CrossRef]
- Qamar, M.; Akhtar, S.; Ismail, T.; Wahid, M.; Barnard, R.T.; Esatbeyoglu, T.; Ziora, Z.M. The chemical composition and health-promoting effects of the Grewia species—A systematic review and meta-analysis. Nutrients 2021, 13, 4565. [Google Scholar] [CrossRef] [PubMed]
- Qamar, M.; Akhtar, S.; Ismail, T.; Wahid, M.; Abbas, M.W.; Mubarak, M.S.; Esatbeyoglu, T. Phytochemical Profile, Biological Properties, and Food Applications of the Medicinal Plant Syzygium cumini. Foods 2022, 11, 378. [Google Scholar] [CrossRef]
- Maehre, H.K.; Jensen, I.J.; Elvevoll, E.O.; Eilertsen, K.E. ω-3 Fatty acids and cardiovascular diseases: Effects, mechanisms and dietary relevance. Int. J. Mol. Sci. 2015, 16, 22636–22661. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.R.; Patel, P.R.; Kajal, S.S. Antioxidant activity of some selected medicinal plants in western region of India. Adv. Biol. Res. 2010, 4, 23–26. [Google Scholar]
- Mustafa, G.; Arif, R.; Atta, A.; Sharif, S.; Jamil, A. Bioactive compounds from medicinal plants and their importance in drug discovery in Pakistan. Matrix Sci. Pharma 2017, 1, 17–26. [Google Scholar] [CrossRef]
- Ahmad, S.S. Medicinal wild plants from Lahore-Islamabad motorway (M-2). Pak. J. Bot. 2007, 39, 355–375. [Google Scholar]
- Sher, H.; Ali, A.; Ullah, Z.; Sher, H. Alleviation of Poverty through Sustainable Management and Market Promotion of Medicinal and Aromatic Plants in Swat, Pakistan: Alleviation of Poverty through Sustainable Management. Ethnobot. Res. Appl. 2022, 23, 1–19. [Google Scholar]
- Alam, F.; Khan, S.H.A.; Asad, M.H.H.B. Phytochemical, antimicrobial, antioxidant and enzyme inhibitory potential of medicinal plant Dryopteris ramosa (Hope) C. Chr. BMC Complement. Med. Ther. 2021, 21, 197. [Google Scholar] [CrossRef]
- Kathirvel, A.; Rai, A.K.; Maurya, G.S.; Sujatha, V. Dryopteris cochleata rhizome: A nutritional source of essential elements, phytochemicals, antioxidants and antimicrobials. Int. J. Pharm. Pharm. Sci. 2014, 6, 179–188. [Google Scholar]
- Ahmad, M.; Jahan, N.; Mehjabeen, A.B.R.; Ahmad, M.; Ullah, O.; Mohammad, N. Differential inhibitory potencies of alcoholic extract of different parts of Dryopteris chrysocoma on inflammation in mice and rats. Pak. J. Pharm. Sci. 2011, 24, 559–563. [Google Scholar]
- Khan, M.S.; Ullah, S. Analgesic, anti-inflammatory, antioxidant activity and phytochemical screening of Dryopteris blanfordii plant. J. Pharmacogn. Phytochem. 2018, 7, 536–541. [Google Scholar]
- Erhirhie, E.O.; Emeghebo, C.N.; Ilodigwe, E.E.; Ajaghaku, D.L.; Umeokoli, B.O.; Eze, P.M.; Okoye, F.B.G.C. Dryopteris filix-mas (L.) Schott ethanolic leaf extract and fractions exhibited profound anti-inflammatory activity. Avicenna J. Phytomed. 2019, 9, 396–409. [Google Scholar] [PubMed]
- Liu, Z.D.; Zhao, D.D.; Jiang, S.; Xue, B.; Zhang, Y.L.; Yan, X.F. Anticancer phenolics from Dryopteris fragrans (L.) Schott. Molecules 2018, 23, 680. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Nho, Y.H.; Yun, S.K.; Hwang, Y.S. Anti-invasive and anti-tumor effects of Dryopteris crassirhizoma extract by disturbing actin polymerization. Integr. Cancer Ther. 2019, 18, 1534735419851197. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Pekal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Qamar, M.; Akhtar, S.; Ismail, T.; Yuan, Y.; Ahmad, N.; Tawab, A.; Ziora, Z.M. Syzygium cumini (L.), Skeels fruit extracts: In vitro and in vivo anti-inflammatory properties. J. Ethnopharmacol. 2021, 271, 113805. [Google Scholar] [CrossRef]
- Weatherburn, M. Enzymic method for urea in urine. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Morris, C.J. Carrageenan-induced paw edema in the rat and mouse. Methods Mol. Biol. 2003, 225, 115–121. [Google Scholar] [PubMed]
- NRC National Research Council. Guide for the Care and Use of Laboratory Animals; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Brownlee, G. Effect of deoxycortone and ascorbic acid on formaldehyde-induced arthritis in normal and adrenalectomised rats. Lancet 1950, 255, 157–159. [Google Scholar] [CrossRef]
- Meyer, B.; Ferrigni, N.; Putnam, J.; Jacobsen, L.; Nichols, D.; McLaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for Testing of Chemicals, Section 4 Test No. 423: Acute Oral Toxicity—Acute Toxic Class Method; OECD: Paris, France, 2001. [Google Scholar]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Keiding, R.; Hörder, M.; Denmark, W.G.; Pitkänen, E.; Tenhunen, R.; Strömme, J.H.; Westlund, L. Recommended methods for the determination of four enzymes in blood. Scand. J. Clin. Lab. Investig. 1974, 33, 291–306. [Google Scholar] [CrossRef]
- Tietz, N.W.; Burtis, C.A.; Duncan, P.; Ervin, K.; Petitclerc, C.J.; Rinker, A.D.; Zygowicz, E.R. A reference method for measurement of alkaline phosphatase activity in human serum. Clin. Chem. 1983, 29, 751–761. [Google Scholar] [CrossRef]
- Ren, Q.; Quan, X.G.; Wang, Y.L.; Wang, H.Y. Isolation and identification of phloroglucinol derivatives from Dryopteris crassirhizoma by HPLC-LTQ-Orbitrap Mass Spectrometry. Chem. Nat. Compd. 2016, 52, 1137–1140. [Google Scholar] [CrossRef]
- Ren, Q. Mass spectral fragmentation pattern and spectroscopic rules of phloroglucinol constituents in plants of Dryopteris Adanson. Chin. Tradit. Herb. Drugs 2015, 24, 932–937. [Google Scholar]
- Qamar, M.; Akhtar, S.; Ismail, T.; Sestili, P.; Tawab, A.; Ahmed, N. Anticancer and anti-inflammatory perspectives of Pakistan’s indigenous berry Grewia asiatica Linn (Phalsa). J. Berry Res. 2020, 10, 115–131. [Google Scholar] [CrossRef]
- Qamar, M.; Akhtar, S.; Ismail, T.; Wahid, M.; Ali, S.; Nazir, Y.; Murtaza, S.; Abbas, M.W.; Ziora, Z.M. Syzygium cumini (L.) Skeels extracts; in vivo anti-nociceptive, anti-inflammatory, acute and subacute toxicity assessment. J. Ethnopharmacol. 2022, 287, 114919. [Google Scholar] [CrossRef] [PubMed]
- Baloch, R.; Uzair, M.; Chauhdary, B. Phytochemical analysis, antioxidant and cytotoxic activities of Dryopteris ramosa. Biomed. Res. J. 2019, 30, 764–769. [Google Scholar]
- Dawidowicz, A.L.; Olszowy, M. The importance of solvent type in estimating antioxidant properties of phenolic compounds by ABTS assay. Eur. Food Res. Technol. 2013, 236, 1099–1105. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Olszowy, M. Antioxidant properties of BHT estimated by ABTS assay in systems differing in pH or metal ion or water concentration. Eur. Food Res. Technol. 2011, 232, 837–842. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Olszowy, M. Influence of some experimental variables and matrix components in the determination of antioxidant properties by β-carotene bleaching assay: Experiments with BHT used as standard antioxidant. Eur. Food Res. Technol. 2010, 231, 835–840. [Google Scholar] [CrossRef]
- Ahmad, N.; Qamar, M.; Yuan, Y.; Nazir, Y.; Wilairatana, P.; Mubarak, M.S. Dietary Polyphenols: Extraction, Identification, Bioavailability, and Role for Prevention and Treatment of Colorectal and Prostate Cancers. Molecules 2022, 27, 2831. [Google Scholar] [CrossRef]
- Abbas, M.W.; Hussain, M.; Qamar, M.; Ali, S.; Shafiq, Z.; Wilairatana, P.; Mubarak, M.S. Antioxidant and Anti-Inflammatory Effects of Peganum harmala Extracts: An In Vitro and In Vivo Study. Molecules 2021, 26, 6084. [Google Scholar] [CrossRef]
- Osawa, T.; Uritani, I.; Garcia, V.V.; Mendoza, E.M. Postharvest Biochemistry of Plant Food-Materials in the Tropics; Japan Scientific Societies Press: Tokyo, Japan, 1994; p. 241. [Google Scholar]
- Valizadeh, H.; Sonboli, A.; Kordi, F.M.; Dehghan, H.; Bahadori, M.B. Cytotoxicity, antioxidant activity and phenolic content of eight fern species, from north of Iran. Pharm. Sci. 2016, 21, 18–24. [Google Scholar] [CrossRef]
- Kathirvel, A.; Sujatha, V. Phytochemical studies, antioxidant activities and identification of active compounds using GC-MS of Dryopteris cochleata leaves. Arab. J. Chem. 2016, 9, S1435–S1442. [Google Scholar] [CrossRef]
- Stingl, K.; Altendorf, K.; Bakker, E.P. Acid survival of Helicobacter pylori: How does urease activity trigger cytoplasmic pH homeostasis? Trends Microbiol. 2002, 10, 70–74. [Google Scholar] [CrossRef]
- Amtul, Z.; Siddiqui, R.; Choudhary, M. Chemistry and mechanism of urease inhibition. Curr. Med. Chem. 2002, 9, 1323–1348. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.J.; Laraia, L.; Spring, D.R. Chemical genetics. Chem. Soc. Rev. 2011, 40, 4332–4345. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lee, G.J.; Yoon, D.H.; Yu, T.; Oh, J.; Jeong, D.; Lee, J.; Kim, S.H.; Kim, T.W.; Cho, J.Y. ERK1-and TBK1-targeted anti-inflammatory activity of an ethanol extract of Dryopteris crassirhizoma. J. Ethnopharmacol. 2013, 145, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Bai, R.-F.; Li, P.; Han, X.-Y.; Wang, H.; Zhu, C.-C.; Zeng, Z.-P.; Chai, X.-Y. Two new glycosides from Dryopteris fragrans with anti-inflammatory activities. J. Asian Nat. Prod. Res. 2016, 18, 59–64. [Google Scholar] [CrossRef]
- Salemcity, A.; Attah, A.; Oladimeji, O.; Olajuyin, A.; Usifo, G.; Audu, T. Comparative study of membrane-stabilizing activities of kolaviron Dryopteris filix-mas and Ocimum gratissimum extracts. Egypt. Pharm. J. 2016, 15, 6–9. [Google Scholar] [CrossRef]
- Wills, A.L. Release of histamin, kinin and prostaglandins during carrageenin induced inflammation of the rats. Prostaglandins Pept. Amines 1969, 31–48. [Google Scholar]
- Wheeler-Aceto, H.; Cowan, A. Neurogenic and tissue-mediated components of formalin-induced edema: Evidence for supraspinal regulation. Agents Actions 1991, 34, 264–269. [Google Scholar] [CrossRef]
- Piao, C.H.; Bui, T.T.; Fan, Y.J.; Nguyen, T.V.; Shin, D.U.; Song, C.H.; Chai, O.H. In vivo and in vitro anti allergic and anti inflammatory effects of Dryopteris crassirhizoma through the modulation of the NF ĸB signaling pathway in an ovalbumin induced allergic asthma mouse model. Mol. Med. Rep. 2020, 22, 3597–3606. [Google Scholar] [CrossRef]
- Lee, K.K.; Kim, J.H.; Cho, J.J.; Choi, J.D. Inhibitory effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects. Int. J. Cosmet. Sci. 1999, 21, 71–82. [Google Scholar] [CrossRef]
- Ali, M.S.; Mostafa, K.; Raihan, M.O.; Rahman, M.K.; Aslam, M. Antioxidant and Cytotoxic activities of Methanolic extract of Dryopteris filix-mas (L.) Schott Leaves. Int. J. Drug Dev. Res. 2012, 4, 223–229. [Google Scholar]
- Chang, S.-H.; Bae, J.-H.; Hong, D.-P.; Choi, K.-D.; Kim, S.-C.; Her, E.; Kim, S.-H.; Kang, C.-D. Dryopteris crassirhizoma has anti-cancer effects through both extrinsic and intrinsic apoptotic pathways and G0/G1 phase arrest in human prostate cancer cells. J. Ethnopharmacol. 2010, 130, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, L.; Duan, D.-H.; Zhang, Y.-H.; Huang, S.-X.; Chang, Y. Cytotoxicity-guided isolation of two new phenolic derivatives from Dryopteris fragrans (L.) Schott. Molecules 2018, 23, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, R.S.; Ahirwar, B. Ethno pharmacological evaluation of medicinal plants for cytotoxicity against various cancer cell lines. Int. J. Pharm. Pharm. Sci. 2017, 9, 198–202. [Google Scholar] [CrossRef] [Green Version]
Group No. | Treatment n = 4 | Ten-Day Regimen | |
---|---|---|---|
Days 1–7 | Days 8–10 | ||
1 | Normal saline (negative control) | Normal saline | Normal saline |
2 | Paracetamol (2 g/kg) (positive control) | Normal saline | Paracetamol (2 g/kg) |
3 | Silymarin (standard) (10 mg/kg) | 10 mg/kg | Silymarin + Paracetamol |
4 | DJ DCM root (300 mg/kg) | 300 mg/kg | DJ DCM root (300 mg/kg) + paracetamol |
5 | DJ DCM root (500 mg/kg) | 500 mg/kg | DJ DCM root (500 mg/kg) + paracetamol |
6 | DJ MeOH root (300 mg/kg) | 300 mg/kg | DJ MeOH root (300 mg/kg) + paracetamol |
7 | DJ MeOH root (500 mg/kg) | 500 mg/kg | DJ MeOH root (500 mg/kg) + paracetamol |
8 | DJ DCM shoot (300 mg/kg) | 300 mg/kg | DJ DCM shoot (300 mg/kg) + paracetamol |
9 | DJ DCM shoot (500 mg/kg) | 500 mg/kg | DJ DCM shoot (500 mg/kg) + paracetamol |
10 | DJ MeOH shoot (300 mg/kg) | 300 mg/kg | DJ MeOH shoot (300 mg/kg) + paracetamol |
11 | DJ MeOH shoot (500 mg/kg) | 500 mg/kg | DJ MeOH shoot (500 mg/kg) + paracetamol |
Type of Extract | Dose mg/kg | 0 h | 1 h | 2 h | 3 h |
---|---|---|---|---|---|
% Inhibition | % Inhibition | % Inhibition | % Inhibition | ||
Control | - | - | - | - | - |
Indomethacin | 100 | 23.3 * | 38.9 ** | 40.6 ** | 77.6 **** |
DJ root DCM extract | 200 | 16.2 ns | 18.5 ns | 39.5 ** | 61.7 *** |
DJ root MeOH extract | 200 | 17.0 ns | 22.8 * | 28.8 * | 43.9 ** |
DJ shoot DCM extract | 200 | 9.30 ns | 14.2 ns | 20.4 * | 24.4 * |
DJ shoot MeOH extract | 200 | 3.10 ns | 7.4 ns | 10.4 ns | 16.3 ns |
Type of Extract | Dose mg/kg | 1 h | 3 h | 6 h | 12 h | 24 h |
---|---|---|---|---|---|---|
% Inhibition | % Inhibition | % Inhibition | % Inhibition | % Inhibition | ||
Control | - | - | - | - | - | - |
Indomethacin | 100 | 68.7 *** | 71.2 *** | 76.6 *** | 80.2 *** | 86.3 **** |
DJ root DCM extract | 200 | 53.2 ** | 57.6 ** | 61.5 ** | 65.2 *** | 67.3 *** |
DJ root MeOH extract | 200 | 29.9 * | 28.7 * | 34.5 * | 44.9 ** | 45.1 ** |
DJ shoot DCM extract | 200 | 15.5 ns | 19.2 ns | 23.5 ns | 25.5 * | 31.9 * |
DJ shoot MeOH extract | 200 | 3.08 ns | 0.96 ns | 14.4 ns | 10.8 ns | 22.11 ns |
Extract | Dose (µg/mL) | % Mortality | EC50 |
---|---|---|---|
DJ root DCM | 1000 | 100 ± 0.00 | 26.74 |
100 | 73.1 ± 2.45 | ||
10 | 10 ± 0.00 | ||
DJ root MeOH | 1000 | 20 ± 0.00 | 391.9 |
100 | 3.3 ± 1.55 | ||
10 | 00 ± 0.00 | ||
DJ shoot DCM | 1000 | 49.9 ± 2.73 | 69.17 |
100 | 20 ± 0.00 | ||
10 | 1.1 ± 1.55 | ||
DJ shoot MeOH | 1000 | 12.2 ± 1.55 | 208.8 |
100 | 5.5 ± 1.55 | ||
10 | 00 ± 0.00 | ||
Etoposide (standard drug) | 10 | 71 ± 1.41 | 19.29 |
Sample | Cell Line | % Inhibition | IC50 (µg/mL) |
---|---|---|---|
DJ root DCM | HeLa cervical cancer cell line | 76.7 ± 0.5 | 17.1 ± 1.3 |
DJ root MeOH | 62.9 ± 1.1 | 36.9 ± 0.9 | |
DJ shoot DCM | 34.4 ± 1.3 | 87.2 ± 1.1 | |
DJ shoot MeOH | 20.2 ± 0.9 | 143.6 ± 0.7 | |
Doxorobicin (standard) | 98.0 ± 1.1 | 0.90 ± 0.14 | |
DJ root DCM | Human prostate cancer cell line | 56.5 ± 0.1 | 45.2 ± 0.1 |
DJ root MeOH | 30.6 ± 0.2 | 98.3 ± 1.1 | |
DJ shoot DCM | 28.5 ± 1.4 | 101.2 ± 2.1 | |
DJ shoot MeOH | 18.3 ± 0.6 | 187.4 ± 0.1 | |
Doxorobicin (standard) | 89.9 ± 0.12 | 1.90 ± 0.3 |
Sample | Liver Function Test | Total Protein | Lipid Profile | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tb (mg/dL) | SGPT/ALT (IU/L) | SGOT/AST (IU/L) | ALP (IU/L) | SM | SA | Gb | A/G Ratio | Cholesterol (mg/dL) | Triglycerides (mg/dL) | HDL (mg/dL) | LDL (mg/dL) | |
Control | 0.34 | 44 | 73.60 | 164 | 6.30 | 3.79 | 2.99 | 1.26 | 169 | 97 | 64 | 76 |
Paracetamol | 0.8 | 103 | 151 | 497 | 7.96 | 3.22 | 4.03 | 0.97 | 243 | 152 | 53 | 95 |
Silymarin | 0.49 | 66 | 104 | 241 | 7.16 | 3.62 | 3.01 | 1. 2 | 185 | 71 | 69 | 77 |
DJMR 300 mg | 0.69 | 83 | 119 | 301 | 7.13 | 3.45 | 3.8 | 0.9 | 183 | 148 | 61 | 83 |
DJMR 500 mg | 0.57 | 77 | 113 | 258 | 6.8 | 3.68 | 3.6 | 1.02 | 179 | 123 | 64 | 74 |
DJDR 300 mg | 0.71 | 96 | 134 | 339 | 7.12 | 3.10 | 3.64 | 0.85 | 193 | 146 | 59 | 79 |
DJDR 500 mg | 0.67 | 94 | 141 | 321 | 7.01 | 3.56 | 3.28 | 1.08 | 186 | 129 | 62 | 71 |
Sample Name | Compound | Average Mass (m/z) | ESI-MS/MSn (m/z) | Mode | Identification | References |
---|---|---|---|---|---|---|
DJDR | A | 433 | 432.3, 236.1, 196 | Positive | Albaspidin PP | [30] |
B | 445 | 445.2, 235.08, 223.08, 209.17 | Negative | Flavaspidic acid BB | [31] | |
C | 627 | 625, 417.2, 403.1, 221, | Negative | Filixic acid ABP | [31] | |
D | 641 | 429, 417.2, 403.1, 237 | Positive | Filixic acid ABB | [31] | |
E | 653 | 429, 417.2, 221.08 | Positive | Tris-desaspidin BBB | [31] | |
F | 667 | 666.4, 442.3, 431, 235, 223 | Positive | Tris-paraaspidin BBB | [31] | |
G | 863 | 866.4, 653.3, 625.3 | Positive | Tetra-flavaspidic BBBB | [31] | |
G | 419 | 419, 223, 209, 196.9 | Positive | Flavaspidic acid AB | [31] | |
I | 667 | 667.3, 653.4, 639.3, 431.1 | Positive | Tetra-albaspidin BBBB | [31] | |
DJMR | J | 290 | 289.1, 271.08, 247.08 | Positive | Catechin | [19] |
K | 291 | 273.1, 163.3, 139.08 | Positive | Epi-catechin | [32] | |
L | 191 | 191, 173, 127 | Positive | Quinic acid | [32] | |
M | 267 | 257, 237.1, 211.1, | Positive | Liquitrigenin | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, A.; Uzair, M.; Ali, S.; Qamar, M.; Ahmad, N.; Abbas, M.W.; Esatbeyoglu, T. Dryopteris juxtapostia Root and Shoot: Determination of Phytochemicals; Antioxidant, Anti-Inflammatory, and Hepatoprotective Effects; and Toxicity Assessment. Antioxidants 2022, 11, 1670. https://doi.org/10.3390/antiox11091670
Rani A, Uzair M, Ali S, Qamar M, Ahmad N, Abbas MW, Esatbeyoglu T. Dryopteris juxtapostia Root and Shoot: Determination of Phytochemicals; Antioxidant, Anti-Inflammatory, and Hepatoprotective Effects; and Toxicity Assessment. Antioxidants. 2022; 11(9):1670. https://doi.org/10.3390/antiox11091670
Chicago/Turabian StyleRani, Abida, Muhammad Uzair, Shehbaz Ali, Muhammad Qamar, Naveed Ahmad, Malik Waseem Abbas, and Tuba Esatbeyoglu. 2022. "Dryopteris juxtapostia Root and Shoot: Determination of Phytochemicals; Antioxidant, Anti-Inflammatory, and Hepatoprotective Effects; and Toxicity Assessment" Antioxidants 11, no. 9: 1670. https://doi.org/10.3390/antiox11091670
APA StyleRani, A., Uzair, M., Ali, S., Qamar, M., Ahmad, N., Abbas, M. W., & Esatbeyoglu, T. (2022). Dryopteris juxtapostia Root and Shoot: Determination of Phytochemicals; Antioxidant, Anti-Inflammatory, and Hepatoprotective Effects; and Toxicity Assessment. Antioxidants, 11(9), 1670. https://doi.org/10.3390/antiox11091670