The Catechins Profile of Green Tea Extracts Affects the Antioxidant Activity and Degradation of Catechins in DHA-Rich Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Quantification of Major Catechins in GTE
2.3. Oxidative Stability Test
2.4. Evaluation of Oxidative Status
2.5. Quantification of the Catechins Content in Oil Samples
2.6. Identification of Catechins Degradation Products
2.7. Quantification of Fatty Acids
2.8. Statistical Analysis
3. Results
3.1. Catechins Content of Green Tea Extracts
3.2. Oxidative Status of Oil during Storage
3.2.1. Peroxide Value
3.2.2. p-Anisidine Value
3.3. Changes in Fatty Acid Content of Oil during Storage
3.4. Depletion of Catechins
3.5. Degradation Product of Epigallocatechin Gallate or an Intermediate Product in Its Antioxidant Activity?
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.S.; Lambert, J.D.; Sang, S. Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch. Toxicol. 2009, 83, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.-W.; Makey, K.L.; Tucker, K.B.; Chinchar, E.; Mao, X.; Pei, I.; Thomas, E.Y.; Miele, L. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc. Cell 2013, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Siriphap, A.; Kiddee, A.; Duangjai, A.; Yosboonruang, A.; Pook-In, G.; Saokaew, S.; Sutheinkul, O.; Rawangkan, A. Antimicrobial Activity of the Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) against Clinical Isolates of Multidrug-Resistant Vibrio cholerae. Antibiotics 2022, 11, 518. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-C.; Wu, C.-J.; Chien, C.-Y.; Chien, C.-T. Green Tea Polyphenol Catechins Inhibit Coronavirus Replication and Potentiate the Adaptive Immunity and Autophagy-Dependent Protective Mechanism to Improve Acute Lung Injury in Mice. Antioxidants 2021, 10, 928. [Google Scholar] [CrossRef]
- Kim, A.; Chiu, A.; Barone, M.K.; Avino, D.; Wang, F.; Coleman, C.I.; Phung, O.J. Green tea catechins decrease total and low-density lipoprotein cholesterol: A systematic review and meta-analysis. J. Am. Diet. Assoc. 2011, 111, 1720–1729. [Google Scholar] [CrossRef]
- Zang, L.; Shimada, Y.; Nakayama, H.; Katsuzaki, H.; Kim, Y.; Chu, D.-C.; Juneja, L.R.; Kuroyanagi, J.; Nishimura, N. Preventive Effects of Green Tea Extract against Obesity Development in Zebrafish. Molecules 2021, 26, 2627. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Xie, Z.; Zhou, Y.; Zhang, Y.; Wan, X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur. J. Clin. Nutr. 2014, 68, 1075–1087. [Google Scholar] [CrossRef]
- Donà, M.; Dell’Aica, I.; Calabrese, F.; Benelli, R.; Morini, M.; Albini, A.; Garbisa, S. Neutrophil Restraint by Green Tea: Inhibition of Inflammation, Associated Angiogenesis, and Pulmonary Fibrosis. J. Immunol. 2003, 170, 4335. [Google Scholar] [CrossRef]
- Peluso, I.; Serafini, M. Antioxidants from black and green tea: From dietary modulation of oxidative stress to pharmacological mechanisms. Br. J. Pharmacol. 2017, 174, 1195–1208. [Google Scholar] [CrossRef]
- Forester, S.C.; Lambert, J.D. The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol. Nutr. Food Res. 2011, 55, 844–854. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.R.; Liu, Z.S.; Xu, Y.R.; Hu, Y.L. A study on chemical composition of two special green teas (Camellia sinensis). J. Sci. Food Agric. 1990, 53, 541–548. [Google Scholar] [CrossRef]
- Zheng, X.-Q.; Nie, Y.; Gao, Y.; Huang, B.; Ye, J.-H.; Lu, J.-L.; Liang, Y.-R. Screening the cultivar and processing factors based on the flavonoid profiles of dry teas using principal component analysis. J. Food Compos. Anal. 2018, 67, 29–37. [Google Scholar] [CrossRef]
- Lee, L.-S.; Kim, S.-H.; Kim, Y.-B.; Kim, Y.-C. Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules 2014, 19, 9173–9186. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, J.-R.; Li, H.-B.; Wu, D.-T.; Geng, F.; Corke, H.; Wei, X.-L.; Gan, R.-Y. Green Extraction of Antioxidant Polyphenols from Green Tea (Camellia sinensis). Antioxidants 2020, 9, 785. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Helliwell, K. Epimerisation of catechins in green tea infusions. Food Chem. 2000, 70, 337–344. [Google Scholar] [CrossRef]
- Liu, X.; Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4841–4880. [Google Scholar] [CrossRef]
- Baldi, A.; Abramovič, H.; Poklar Ulrih, N.; Daglia, M. Tea Catechins. In Handbook of Dietary Phytochemicals; Xiao, J., Sarker, S.D., Asakawa, Y., Eds.; Springer: Singapore, 2020; pp. 1–46. [Google Scholar]
- Liu, Z.; Bruins, M.E.; de Bruijn, W.J.C.; Vincken, J.-P. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. J. Food Compos. Anal. 2020, 86, 103385. [Google Scholar] [CrossRef]
- Yoshino, S.; Mitoma, T.; Tsuruta, K.; Todo, H.; Sugibayashi, K. Effect of emulsification on the skin permeation and UV protection of catechin. Pharm. Dev. Technol. 2014, 19, 395–400. [Google Scholar] [CrossRef]
- Senanayake, S.P.J.N. Green tea extract: Chemistry, antioxidant properties and food applications—A review. J. Funct. Foods 2013, 5, 1529–1541. [Google Scholar] [CrossRef]
- Colon, M.; Nerín, C. Synergistic, antagonistic and additive interactions of green tea polyphenols. Eur. Food Res. Technol. 2015, 242. [Google Scholar] [CrossRef]
- He, Y.; Shahidi, F. Antioxidant Activity of Green Tea and Its Catechins in a Fish Meat Model System. J. Agric. Food Chem. 1997, 45, 4262–4266. [Google Scholar] [CrossRef]
- Wanasundara, U.N.; Shahidi, F. Stabilization of seal blubber and menhaden oils with green tea catechins. J. Am. Oil Chem. Soc. 1996, 73, 1183–1190. [Google Scholar] [CrossRef]
- Amarowicz, R.; Shahidi, F. Antioxidant activity of green tea catechins in a β-carotene-linoleate model system. J. Food Lipids 1995, 2, 47–56. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Chan, P.T. Antioxidative activity of green tea catechins in canola oil. Chem. Phys. Lipids 1996, 82, 163–172. [Google Scholar] [CrossRef]
- Huang, S.-W.; Frankel, E.N. Antioxidant Activity of Tea Catechins in Different Lipid Systems. J. Agric. Food Chem. 1997, 45, 3033–3038. [Google Scholar] [CrossRef]
- Banerjee, S.; Chatterjee, J. Efficient extraction strategies of tea (Camellia sinensis) biomolecules. J. Food Sci. Technol. 2015, 52, 3158–3168. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, D.; Chen, Y. Preparation and Antioxidant Activity of Green Tea Extract Enriched in Epigallocatechin (EGC) and Epigallocatechin Gallate (EGCG). J. Agric. Food Chem. 2009, 57, 1349–1353. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Kukuła-Koch, W.; Czop, M.; Helon, P.; Gumbarewicz, E. The Role of Extracting Solvents in the Recovery of Polyphenols from Green Tea and Its Antiradical Activity Supported by Principal Component Analysis. Molecules 2020, 25, 2173. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. Biomed. Res. Int. 2018, 2018, 9105261. [Google Scholar] [CrossRef] [PubMed]
- Amrouche, Z.; Blecker, C.; Laribi-Habchi, H.; Fauconnier, M.-L.; El-Hadi, D. Antioxydant Activity, Oxidative Stability Properties of Colza Oil, Comparison of Mechanical Agitated and Ultrasonic Extraction on Green Tea Catechins of Camellia sinensis L. Alger. J. Environ. Sci. Technol. 2021, 7, 2167–2176. [Google Scholar]
- Zhang, C.; Suen, C.L.-C.; Yang, C.; Quek, S.Y. Antioxidant capacity and major polyphenol composition of teas as affected by geographical location, plantation elevation and leaf grade. Food Chem. 2018, 244, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-N.; Liang, C.-M.; Lai, J.-R.; Tsai, Y.-J.; Tsay, J.-S.; Lin, J.-K. Capillary Electrophoretic Determination of Theanine, Caffeine, and Catechins in Fresh Tea Leaves and Oolong Tea and Their Effects on Rat Neurosphere Adhesion and Migration. J. Agric. Food Chem. 2003, 51, 7495–7503. [Google Scholar] [CrossRef] [PubMed]
- Nain, C.W.; Berdal, G.; Thao, P.T.P.; Mignolet, E.; Buchet, M.; Page, M.; Larondelle, Y. Green Tea Extract Enhances the Oxidative Stability of DHA-Rich Oil. Antioxidants 2021, 10, 982. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis (Method 965.33): Oils and Fats, 17th ed.; Firestone, D., Yurawecz, M.P., Eds.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOCS, F.D. Official methods and recommended practices of the American Oil Chemists’ Society. AOCS 1998, 5, 2–93. [Google Scholar]
- Mellery, J.; Geay, F.; Tocher, D.R.; Kestemont, P.; Debier, C.; Rollin, X.; Larondelle, Y. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet. PLoS ONE 2016, 11, e0164478. [Google Scholar] [CrossRef]
- Kozłowska, M.; Żbikowska, A.; Szpicer, A.; Półtorak, A. Oxidative stability of lipid fractions of sponge-fat cakes after green tea extracts application. J. Food Sci. Technol. 2019, 56, 2628–2638. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Obuchowski, W.; Gośliński, M. Evaluation of antioxidant activity of green tea extract and its effect on the biscuits lipid fraction oxidative stability. J. Food Sci. 2009, 74, S362–S370. [Google Scholar] [CrossRef]
- Tian, L.; Huang, J.a. Antioxidant effects of tea catechins on the shelf life of raw minced duck meat. Food Sci. Technol. 2019, 39, 59–65. [Google Scholar] [CrossRef]
- Boroski, M.; Giroux, H.; Visentainer, J.; Dubé, P.; Desjardins, Y.; Britten, M. Tea catechin role in decreasing the oxidation of dairy beverages containing linseed oil. Int. J. Vitam. Nutr. Res. 2020, 91, 461–468. [Google Scholar] [CrossRef]
- Shen, C.-Y.; Ankolekar, C.; Ban, L. Comparison of Oil Soluble Green Tea Extract with Common Antioxidantive Ingredients in Bulk Oil under Different Storage Conditions. J. Am. Oil Chem. Soc. 2021, 98, 65–72. [Google Scholar] [CrossRef]
- Michalak, A. Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Toschi, T.G.; Bordoni, A.; Hrelia, S.; Bendini, A.; Lercker, G.; Biagi, P.L. The protective role of different green tea extracts after oxidative damage is related to their catechin composition. J. Agric. Food Chem. 2000, 48, 3973–3978. [Google Scholar] [CrossRef]
- Higdon, J.V.; Frei, B. Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef]
- Valcic, S.; Burr, J.A.; Timmermann, B.N.; Liebler, D.C. Antioxidant chemistry of green tea catechins. New oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin from their reactions with peroxyl radicals. Chem. Res. Toxicol. 2000, 13, 801–810. [Google Scholar] [CrossRef]
- Xu, J.Z.; Yeung, S.Y.; Chang, Q.; Huang, Y.; Chen, Z.Y. Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. Br. J. Nutr. 2004, 91, 873–881. [Google Scholar] [CrossRef]
- Zhao, C.; Li, C.; Liu, S.; Yang, L. The Galloyl Catechins Contributing to Main Antioxidant Capacity of Tea Made from Camellia sinensis in China. Sci. World J. 2014, 2014, 863984. [Google Scholar] [CrossRef] [PubMed]
- Devasagayam, T.; Kamat, J.; Mohan, H.; Kesavan, P. Caffeine as an antioxidant: Inhibition of lipid peroxidation induced by reactive oxygen species. Biochim. Biophys. Acta (BBA)-Biomembr. 1996, 1282, 63–70. [Google Scholar] [CrossRef]
- León-Carmona, J.R.; Galano, A. Is caffeine a good scavenger of oxygenated free radicals? J. Phys. Chem. B 2011, 115, 4538–4546. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Sun, X.; Zheng, W.; Luo, X.; Zhang, Y.; Yin, L.; Jia, Q.; Fu, Y. Screening of highly effective mixed natural antioxidants to improve the oxidative stability of microalgal DHA-rich oil. RSC Adv. 2021, 11, 4991–4999. [Google Scholar] [CrossRef]
- Wen, Y.-Q.; Xue, C.-H.; Zhang, H.-W.; Xu, L.-L.; Wang, X.-H.; Bi, S.-J.; Xue, Q.-Q.; Xue, Y.; Li, Z.-J.; Velasco, J.; et al. Recombination of oxidized samples of DHA and purified sunflower oil reproduces the odor profile of impaired algae oil from Schizochytrium sp. and reveals the odor contribution of fatty acids other than DHA. LWT 2022, 160, 113291. [Google Scholar] [CrossRef]
- Tan, J.; de Bruijn, W.J.C.; van Zadelhoff, A.; Lin, Z.; Vincken, J.-P. Browning of Epicatechin (EC) and Epigallocatechin (EGC) by Auto-Oxidation. J. Agric. Food Chem. 2020, 68, 13879–13887. [Google Scholar] [CrossRef]
- Ananingsih, V.K.; Sharma, A.; Zhou, W. Green tea catechins during food processing and storage: A review on stability and detection. Food Res. Int. 2013, 50, 469–479. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, W. Stability of Tea Catechins in the Breadmaking Process. J. Agric. Food Chem. 2004, 52, 8224–8229. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; He, Y.; Ho, C.-T.; Wang, J.; Wang, S.; Yang, Y.; Gao, L.; Xia, T. Effect of interaction of epigallocatechin gallate and flavonols on color alteration of simulative green tea infusion after thermal treatment. J. Food Sci. Technol. 2017, 54, 2919–2928. [Google Scholar] [CrossRef]
- Kondo, K.; Kurihara, M.; Miyata, N.; Suzuki, T.; Toyoda, M. Scavenging mechanisms of (-)-epigallocatechin gallate and (-)-epicatechin gallate on peroxyl radicals and formation of superoxide during the inhibitory action. Free. Radic. Biol. Med. 1999, 27, 855–863. [Google Scholar] [CrossRef]
- Valcic, S.; Muders, A.; Jacobsen, N.E.; Liebler, D.C.; Timmermann, B.N. Antioxidant Chemistry of Green Tea Catechins. Identification of Products of the Reaction of (-)-Epigallocatechin Gallate with Peroxyl Radicals. Chem. Res. Toxicol. 1999, 12, 382–386. [Google Scholar] [CrossRef]
GTE1 | GTE2 | |||
---|---|---|---|---|
Catechins | Absolute (mg/g Extract) | Relative (% Total Catechins) | Absolute (mg/g Extract) | Relative (% Total Catechins) |
Epigallocatechin (EGC) | 147.2 ± 1.4 | 58.0 | 99.2 ± 4.1 | 17.7 |
Epicatechin (EC) | 20.0 ± 0.9 | 7.9 | 54.7 ± 2.8 | 9.8 |
Epigallocatechin gallate (EGCG) | 76.4 ± 7.9 | 30.1 | 338.8 ± 25.5 | 60.6 |
Epicatechin gallate (ECG) | 10.0 ± 3.4 | 3.9 | 66.2 ± 5.2 | 11.8 |
Total | 253.6 ± 11.2 | 100.0 | 558.9 ± 37.7 | 100.0 |
p-AV | ||||
---|---|---|---|---|
Treatment | Day 0 | Day 7 | Day 14 | Day 21 |
Control | 2.8 ± 0.6 aD | 15.9 ± 2.8 aC | 47.9 ± 1.5 aB | 100.6 ± 8.2 aA |
GTE1 | 0.0 ± 0.0 bA | 0.0 ± 0.0 cA | 0.3 ± 0.5 deA | 0.32 ± 0.3 cA |
CatMix1 | 0.0 ± 0.0 bA | 0.0 ± 0.0 cA | 0.0 ± 0.0 eA | 0.0 ± 0.0 cA |
GTE2 | 3.3 ± 0.5 aA | 0.0 ± 0.0 cC | 1.2 ± 0.8 deB | 0.0 ± 0.0 cC |
CatMix2 | 2.9 ± 0.78 aA | 1.1 ± 0.9 cAB | 2.1 ± 1.0 deA | 0.0 ± 0.0 cB |
EGC250 | 3.2 ± 0.5 aA | 1.3 ± 1.2 cB | 3.6 ± 0.5 dA | 0.0 ± 0.0 cC |
EC250 | 3.5 ± 0.1 aD | 13.2 ± 3.9 abC | 28.0 ± 1.8 bB | 93.1 ± 6.4 aA |
EGCG250 | 2.6 ± 0.4 aA | 1.2 ± 1.1 cA | 3.2 ± 2.2 deA | 0.0 ± 0.0 cB |
ECG250 | 3.4 ± 0.3 aC | 8.9 ± 1.7 bC | 15.3 ± 1.1 cB | 69.6 ± 4.2 bA |
Storage Time (Days) | Concentration (µg EGCG Equivalent/g Oil) | ||
---|---|---|---|
GTE2 | CatMix2 | EGCG250 | |
0 | 3.2 ± 0.2 c | 4.5 ± 0.7 b,c | 10.7 ± 0.6 b,* |
7 | 11.7 ± 0.8 a | 13.1 ± 1.8 a | 27.0 ± 3.1 a,* |
14 | 9.3 ± 1.0 b | 7.2 ± 1.2 b | 14.3 ± 3.7 b,* |
21 | 8.1 ± 1.0 b,* | 2.1 ± 0.3 c | 2.1 ± 0.2 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nain, C.W.; Mignolet, E.; Herent, M.-F.; Quetin-Leclercq, J.; Debier, C.; Page, M.M.; Larondelle, Y. The Catechins Profile of Green Tea Extracts Affects the Antioxidant Activity and Degradation of Catechins in DHA-Rich Oil. Antioxidants 2022, 11, 1844. https://doi.org/10.3390/antiox11091844
Nain CW, Mignolet E, Herent M-F, Quetin-Leclercq J, Debier C, Page MM, Larondelle Y. The Catechins Profile of Green Tea Extracts Affects the Antioxidant Activity and Degradation of Catechins in DHA-Rich Oil. Antioxidants. 2022; 11(9):1844. https://doi.org/10.3390/antiox11091844
Chicago/Turabian StyleNain, Caroline Waingeh, Eric Mignolet, Marie-France Herent, Joëlle Quetin-Leclercq, Cathy Debier, Melissa M. Page, and Yvan Larondelle. 2022. "The Catechins Profile of Green Tea Extracts Affects the Antioxidant Activity and Degradation of Catechins in DHA-Rich Oil" Antioxidants 11, no. 9: 1844. https://doi.org/10.3390/antiox11091844
APA StyleNain, C. W., Mignolet, E., Herent, M. -F., Quetin-Leclercq, J., Debier, C., Page, M. M., & Larondelle, Y. (2022). The Catechins Profile of Green Tea Extracts Affects the Antioxidant Activity and Degradation of Catechins in DHA-Rich Oil. Antioxidants, 11(9), 1844. https://doi.org/10.3390/antiox11091844