Effects of Thermally-Oxidized Frying Oils (Corn Oil and Lard) on Gut Microbiota in Hamsters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Preparation
2.2. Diet Preparation
2.3. Peroxide Value of Oil and Fats
2.4. Fatty Acid Analyses
2.5. Animals
2.6. Plasma Lipid Profile Analysis
2.7. Atherosclerotic Plaque Quantification
2.8. Analysis of Plasma LPS, IL-10, and IL-6
2.9. Analysis of Fecal Short-Chain Fatty Acids (SCFA)
2.10. 16S rRNA Gene Sequencing
2.11. Statistical Analysis
3. Results
3.1. Fatty Acid Profile and Peroxide Value of Oil and Fats
3.2. Food Intake and Weights of Body, Organ, and Fecal Output
3.3. Plasma Lipid Profiles
3.4. Atherosclerotic Plaque Area
3.5. Plasma LPS, IL-10, and IL-6
3.6. Fecal SCFA
3.7. Operational Taxonomic Units (OTUs)
3.8. Alpha Diversity
3.9. Principal Component Analysis (PCA)
3.10. Phyla Abundance
3.11. Family Abundance
3.12. Genus Abundance
3.13. Correlation of Genus Abundance with Metabolic Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skog, K.; Viklund, G. Processing Contaminants: Acrylamide. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Waltham, MA, USA, 2014; pp. 363–370. ISBN 978-0-12-378613-5. [Google Scholar]
- Ozkoc, S.O.; Sumnu, G.; Sahin, S. Chapter 20—Recent Developments in Microwave Heating. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D.-W., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 361–383. ISBN 978-0-12-411479-1. [Google Scholar]
- Choe, E.; Min, D.B. Chemistry of Deep-Fat Frying Oils. J. Food Sci. 2007, 72, R77–R86. [Google Scholar] [CrossRef] [PubMed]
- Sébédio, J.-L.; Juaneda, P. 5-Isomeric and Cyclic Fatty Acids as a Result of Frying. In Deep Frying, 2nd ed.; Erickson, M.D., Ed.; AOCS Press: Chicago, IL, USA, 2007; pp. 57–86. ISBN 978-1-893997-92-9. [Google Scholar]
- Dana, D.; Blumenthal, M.M.; Saguy, I.S. The Protective Role of Water Injection on Oil Quality in Deep Fat Frying Conditions. Eur. Food Res. Technol. 2003, 217, 104–109. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Cheng, Y.; Liu, Y. Effect of Frying Oils’ Fatty Acid Profile on Quality, Free Radical and Volatiles over Deep-Frying Process: A Comparative Study Using Chemometrics. LWT-Food Sci. Technol. 2019, 101, 331–341. [Google Scholar] [CrossRef]
- Scott, M.P.; Emery, M. Maize: Overview. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Barrera-Arellano, D.; Badan-Ribeiro, A.P.; Serna-Saldivar, S.O. Chapter 21—Corn Oil: Composition, Processing, and Utilization. In Corn, 3rd ed.; Serna-Saldivar, S.O., Ed.; AACC International Press: Oxford, UK, 2019; pp. 593–613. ISBN 978-0-12-811971-6. [Google Scholar]
- Mushtaq, Z.; Imran, M.; Ahmad, N.; Khan, M.K.; Asghar, N. Chapter 16—Cold Pressed Corn (Zea Mays) Oil. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 191–195. ISBN 978-0-12-818188-1. [Google Scholar]
- List, G.R. 2—Oilseed Composition and Modification for Health and Nutrition. In Functional Dietary Lipids; Sanders, T.A.B., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2016; pp. 23–46. ISBN 978-1-78242-247-1. [Google Scholar]
- Suresh, K.S.; Suresh, P.V.; Kudre, T.G. 4—Prospective Ecofuel Feedstocks for Sustainable Production. In Advances in Eco-Fuels for a Sustainable Environment; Azad, K., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2019; pp. 89–117. ISBN 978-0-08-102728-8. [Google Scholar]
- Carvalho, A.P.; Moreira, M.M.; Delerue-Matos, C.; Gomes, A.M.; Freitas, A.C.; Grosso, C. Chapter 4—Valorization of Lipid by-Products. In Lipids and Edible Oils; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 133–174. ISBN 978-0-12-817105-9. [Google Scholar]
- Guallar-Castillón, P.; Rodríguez-Artalejo, F.; Lopez-Garcia, E.; León-Muñoz, L.M.; Amiano, P.; Ardanaz, E.; Arriola, L.; Barricarte, A.; Buckland, G.; Chirlaque, M.-D.; et al. Consumption of Fried Foods and Risk of Coronary Heart Disease: Spanish Cohort of the European Prospective Investigation into Cancer and Nutrition Study. BMJ 2012, 344, e363. [Google Scholar] [CrossRef] [PubMed]
- Sayon-Orea, C.; Martinez-Gonzalez, M.A.; Gea, A.; Flores-Gomez, E.; Basterra-Gortari, F.J.; Bes-Rastrollo, M. Consumption of Fried Foods and Risk of Metabolic Syndrome: The SUN Cohort Study. Clin. Nutr. 2014, 33, 545–549. [Google Scholar] [CrossRef]
- Reeves, P.G. Components of the AIN-93 Diets as Improvements in the AIN-76A Diet. J. Nutr. 1997, 127, 838S–841S. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Zhu, H.; Chen, J.; Kwek, E.; He, Z.; Liu, J.; Ma, N.; Ma, K.Y.; Chen, Z.-Y. Wild Melon Seed Oil Reduces Plasma Cholesterol and Modulates Gut Microbiota in Hypercholesterolemic Hamsters. J. Agric. Food Chem. 2020, 68, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Kwek, E.; Zhu, H.; Ding, H.; He, Z.; Hao, W.; Liu, J.; Ma, K.Y.; Chen, Z.-Y. Peony Seed Oil Decreases Plasma Cholesterol and Favorably Modulates Gut Microbiota in Hypercholesterolemic Hamsters. Eur. J. Nutr. 2022, 61, 2341–2356. [Google Scholar] [CrossRef]
- Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhao, Y.; Zhu, H.; Liang, N.; Ma, K.Y.; Lei, L.; He, W.-S.; et al. Beneficial Effects of Tea Water Extracts on the Body Weight and Gut Microbiota in C57BL/6J Mice Fed with a High-Fat Diet. Food Funct. 2019, 10, 2847–2860. [Google Scholar] [CrossRef]
- Kwek, E.; Yan, C.; Ding, H.; Hao, W.; He, Z.; Liu, J.; Ma, K.Y.; Zhu, H.; Chen, Z.-Y. Effects of Hawthorn Seed Oil on Plasma Cholesterol and Gut Microbiota. Nutr. Metab. 2022, 19, 55. [Google Scholar] [CrossRef]
- Willis, A.D. Rarefaction, Alpha Diversity, and Statistics. Front. Microbiol. 2019, 10, 2407. [Google Scholar] [CrossRef] [PubMed]
- Scrosati, R.A.; Knox, A.S.; Valdivia, N.; Molis, M. Species Richness and Diversity across Rocky Intertidal Elevation Gradients in Helgoland: Testing Predictions from an Environmental Stress Model. Helgol. Mar. Res. 2011, 65, 91–102. [Google Scholar] [CrossRef]
- Plassais, J.; Gbikpi-Benissan, G.; Figarol, M.; Scheperjans, F.; Gorochov, G.; Derkinderen, P.; Cervino, A.C.L. Gut Microbiome Alpha-Diversity Is Not a Marker of Parkinson’s Disease and Multiple Sclerosis. Brain Commun. 2021, 3, fcab113. [Google Scholar] [CrossRef]
- Opstelten, J.L.; Plassais, J.; van Mil, S.W.C.; Achouri, E.; Pichaud, M.; Siersema, P.D.; Oldenburg, B.; Cervino, A.C.L. Gut Microbial Diversity Is Reduced in Smokers with Crohn’s Disease. Inflamm. Bowel Dis. 2016, 22, 2070–2077. [Google Scholar] [CrossRef] [PubMed]
- Tuddenham, S.A.; Koay, W.L.A.; Zhao, N.; White, J.R.; Ghanem, K.G.; Sears, C.L.; HIV Microbiome Re-analysis Consortium. The Impact of Human Immunodeficiency Virus Infection on Gut Microbiota α-Diversity: An Individual-Level Meta-Analysis. Clin. Infect. Dis. 2020, 70, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Zouiouich, S.; Loftfield, E.; Huybrechts, I.; Viallon, V.; Louca, P.; Vogtmann, E.; Wells, P.M.; Steves, C.J.; Herzig, K.-H.; Menni, C.; et al. Markers of Metabolic Health and Gut Microbiome Diversity: Findings from Two Population-Based Cohort Studies. Diabetologia 2021, 64, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.-M.; Kennedy, S.; et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kim, M.; Bakshi, U.; Cunningham, K.Y.; Davis, J.M.; Lazaridis, K.N.; Nelson, H.; Chia, N.; Sung, J. A Predictive Index for Health Status Using Species-Level Gut Microbiome Profiling. Nat. Commun. 2020, 11, 4635. [Google Scholar] [CrossRef]
- Ignacio, A.; Fernandes, M.R.; Rodrigues, V.A.A.; Groppo, F.C.; Cardoso, A.L.; Avila-Campos, M.J.; Nakano, V. Correlation between Body Mass Index and Faecal Microbiota from Children. Clin. Microbiol. Infect. 2016, 22, 258.e1–258.e8. [Google Scholar] [CrossRef]
- Arowolo, F.K.; Willis, K.A.; Karabayir, I.; Akbiligic, O.; Blaser, M.; Booth, J.; Pierre, J.F.; Shanmuganayagam, D. Dietary Lipid Oxidization Products Alter Growth, Adiposity and Gut Microbial Ecology in Prepubertal Porcine Model. bioRxiv 2022. [Google Scholar] [CrossRef]
- Turek, J.J.; Watkins, B.A.; Schoenlein, I.A.; Allen, K.G.D.; Hayek, M.G.; Aldrich, C.G. Oxidized Lipid Depresses Canine Growth, Immune Function, and Bone Formation. J. Nutr. Biochem. 2003, 14, 24–31. [Google Scholar] [CrossRef]
- David, R.O.; Sánchez-Muniz, F.J.; Bastida, S.; Benedi, J.; González-Muñoz, M.J. Gastric Emptying and Short-Term Digestibility of Thermally Oxidized Sunflower Oil Used for Frying in Fasted and Nonfasted Rats. J. Agric. Food Chem. 2010, 58, 9242–9248. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Ruiz, G.; Pérez-Camino, M.C.; Dobarganes, M.C. Evaluation of Hydrolysis and Absorption of Thermally Oxidized Olive Oil in Non-Absorbed Lipids in the Rat. ANM 1993, 37, 121–128. [Google Scholar] [CrossRef]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef]
- Lichtenstein, A.H. Trans Fatty Acids, Plasma Lipid Levels, and Risk of Developing Cardiovascular Disease. Circulation 1997, 95, 2588–2590. [Google Scholar] [CrossRef]
- Katan, M.B.; Zock, P.L.; Mensink, R.P. Trans Fatty Acids and Their Effects on Lipoproteins in Humans. Annu. Rev. Nutr. 1995, 15, 473–493. [Google Scholar] [CrossRef]
- Tsuzuki, W.; Matsuoka, A.; Ushida, K. Formation of Trans Fatty Acids in Edible Oils during the Frying and Heating Process. Food Chem. 2010, 123, 976–982. [Google Scholar] [CrossRef]
- Cassagno, N.; Palos-Pinto, A.; Costet, P.; Breilh, D.; Darmon, M.; Bérard, A.M. Low Amounts of Trans 18:1 Fatty Acids Elevate Plasma Triacylglycerols but Not Cholesterol and Alter the Cellular Defence to Oxidative Stress in Mice. Br. J. Nutr. 2005, 94, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Gabay, C. Interleukin-6 and Chronic Inflammation. Arthritis Res. 2006, 8, S3. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in Inflammation, Autoimmunity and Cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; O’Garra, A. The Regulation of IL-10 Production by Immune Cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef]
- Wang, I.-K.; Wu, Y.-Y.; Yang, Y.-F.; Ting, I.-W.; Lin, C.-C.; Yen, T.-H.; Chen, J.-H.; Wang, C.-H.; Huang, C.-C.; Lin, H.-C. The Effect of Probiotics on Serum Levels of Cytokine and Endotoxin in Peritoneal Dialysis Patients: A Randomised, Double-Blind, Placebo-Controlled Trial. Benef. Microbes 2015, 6, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, B.; Wang, T.; Gao, L.; Yang, Z.; Wang, F.; Shang, H.; Hua, R.; Xu, J. Biological Characteristics of IL-6 and Related Intestinal Diseases. Int. J. Biol. Sci. 2021, 17, 204–219. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.; Thiemermann, C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Front. Immunol. 2021, 11, 594150. [Google Scholar] [CrossRef]
- Fatkhullina, A.R.; Peshkova, I.O.; Koltsova, E.K. The Role of Cytokines in the Development of Atherosclerosis. Biochemistry 2016, 81, 1358–1370. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Sniffen, S.; Percy, K.M.; Chidipi, B.B.; Pallaval, V.B. The Gut Dysbiosis and Immune System in Atherosclerotic Cardiovascular Disease (ACVD). Microorganisms 2021, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wu, W.; Chen, L.; Yang, W.; Huang, X.; Ma, C.; Chen, F.; Xiao, Y.; Zhao, Y.; Ma, C.; et al. Microbiota-Derived Short-Chain Fatty Acids Promote Th1 Cell IL-10 Production to Maintain Intestinal Homeostasis. Nat Commun 2018, 9, 3555. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, J.; Kim, M. Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation. Immune Netw. 2014, 14, 277–288. [Google Scholar] [CrossRef]
- Wang, J.-J.; Zhang, Q.-M.; Ni, W.-W.; Zhang, X.; Li, Y.; Li, A.-L.; Du, P.; Li, C.; Yu, S.-S. Modulatory Effect of Lactobacillus Acidophilus KLDS 1.0738 on Intestinal Short-Chain Fatty Acids Metabolism and GPR41/43 Expression in β-Lactoglobulin-Sensitized Mice. Microbiol. Immunol. 2019, 63, 303–315. [Google Scholar] [CrossRef]
- Tedelind, S.; Westberg, F.; Kjerrulf, M.; Vidal, A. Anti-Inflammatory Properties of the Short-Chain Fatty Acids Acetate and Propionate: A Study with Relevance to Inflammatory Bowel Disease. World J. Gastroenterol. 2007, 13, 2826–2832. [Google Scholar] [CrossRef] [PubMed]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Knight, R.; Gordon, J.I. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Sci. Transl. Med. 2009, 1, 6ra14. [Google Scholar] [CrossRef]
- Zeng, M.Y.; Inohara, N.; Nuñez, G. Mechanisms of Inflammation-Driven Bacterial Dysbiosis in the Gut. Mucosal. Immunol. 2017, 10, 18–26. [Google Scholar] [CrossRef]
- Marcus, J.B. Chapter 6—Lipids Basics: Fats and Oils in Foods and Health: Healthy Lipid Choices, Roles and Applications in Nutrition, Food Science and the Culinary Arts. In Culinary Nutrition; Marcus, J.B., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 231–277. ISBN 978-0-12-391882-6. [Google Scholar]
- Dobarganes, C.; Márquez-Ruiz, G. Possible Adverse Effects of Frying with Vegetable Oils. Br. J. Nutr. 2015, 113, S49–S57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredients (g/kg) | CF | CO | LF | LO |
---|---|---|---|---|
Corn Starch | 508.0 | 508.0 | 508.0 | 508.0 |
Casein | 242.0 | 242.0 | 242.0 | 242.0 |
Sucrose | 119.0 | 119.0 | 119.0 | 119.0 |
Corn Oil—Fresh | 155.0 | - | - | - |
Corn Oil—Oxidized | - | 155.0 | - | - |
Lard—Fresh | - | - | 155.0 | - |
Lard—Oxidized | - | - | - | 155.0 |
Mineral Mix | 40.0 | 40.0 | 40.0 | 40.0 |
Vitamin Mix | 20.0 | 20.0 | 20.0 | 20.0 |
Gelatin | 20.0 | 20.0 | 20.0 | 20.0 |
DL-Methionine | 1.0 | 1.0 | 1.0 | 1.0 |
Cholesterol (0.04%) | 0.4 | 0.4 | 0.4 | 0.4 |
CF | CO | LF | LO | |
---|---|---|---|---|
(a) Fatty Acids (%) | ||||
14:0 | 1.68 | 3.06 | 1.75 | 3.20 |
16:0 | 11.48 | 17.02 | 25.86 | 35.97 |
18:0 | 1.65 | 2.56 | 16.90 | 18.87 |
Total SFA | 14.82 | 22.65 | 44.52 | 58.05 |
18:1n-9 | 29.98 | 38.11 | 37.46 | 27.31 |
Total MUFA | 29.98 | 38.11 | 37.46 | 27.31 |
18:2n-6 | 51.76 | 33.36 | 9.98 | 0.71 |
18:3n-3 | 0.83 | 0.23 | 0.75 | 0.42 |
Total PUFA | 52.60 | 33.59 | 10.74 | 1.14 |
(b) Peroxide value (mEq peroxide/kg sample) | 5.34 ± 0.22 c | 33.15 ± 1.91 a | 2.65 ± 0.08 c | 12.51 ± 0.55 b |
CF | CO | LF | LO | p-Value | |
---|---|---|---|---|---|
Daily Food Intake (g) | 7.83 ± 0.59 | 7.30 ± 0.36 | 7.25 ± 0.48 | 7.79 ± 0.21 | 0.137 |
Body Weight (g) | |||||
Initial | 107.88 ± 6.38 | 109.00 ± 6.57 | 108.88 ± 7.20 | 106.75 ± 9.51 | 0.926 |
Final | 137.00 ± 8.04 a | 115.88 ± 8.13 c | 135.57 ± 7.04 a | 125.71 ± 7.50 b | <0.001 |
Organ Weights (g/100 g Body Weight) | |||||
Heart | 0.80 ± 0.03 b | 0.90 ± 0.05 a | 0.81 ± 0.05 b | 0.84 ± 0.04 b | <0.001 |
Testis | 3.61 ± 0.25 b | 4.06 ± 0.30 a | 3.76 ± 0.41 ab | 3.67 ± 0.19 b | 0.025 |
Kidney | 1.30 ± 0.06 ab | 1.51 ± 0.08 c | 1.28 ± 0.05 a | 1.43 ± 0.06 b | <0.001 |
Liver | 5.33 ± 0.22 c | 6.06 ± 0.34 a | 5.18 ± 0.24 c | 5.66 ± 0.26 b | <0.001 |
Perirenal Adipose Tissue | 1.70 ± 0.31ab | 1.31 ± 0.11c | 1.81 ± 0.12 a | 1.55 ± 0.08 bc | <0.001 |
Epididymal Adipose Tissue | 2.25 ± 0.38 c | 1.88 ± 0.18 a | 2.45 ± 0.27 c | 2.02 ± 0.28 b | 0.002 |
Weekly Fecal Output (g) | 3.58 ± 0.61 b | 7.57 ± 0.97 a | 3.68 ± 0.64 b | 7.10 ± 0.63 a | <0.001 |
CF | CO | LF | LO | p-Value | |
---|---|---|---|---|---|
Week 0 | |||||
TC (mg/dL) | 144.96 ± 15.06 | 147.53 ± 13.48 | 144.66 ± 18.86 | 144.88 ± 23.96 | 0.988 |
HDL-C (mg/dL) | 114.15 ± 5.84 | 115.40 ± 12.78 | 117.01 ± 5.94 | 115.25 ± 7.35 | 0.925 |
nHDL-C (mg/dL) | 30.81 ± 17.73 | 32.13 ± 16.82 | 27.65 ± 19.95 | 29.63 ± 17.29 | 0.965 |
nHDL-C/HDL-C | 0.27 ± 0.17 | 0.29 ± 0.18 | 0.24 ± 0.17 | 0.25 ± 0.14 | 0.919 |
HDL-C/TC | 0.80 ± 0.10 | 0.79 ± 0.11 | 0.82 ± 0.12 | 0.81 ± 0.11 | 0.922 |
TG (mg/dL) | 91.25 ± 21.30 | 96.50 ± 43.56 | 102.42 ± 23.68 | 98.25 ± 21.52 | 0.894 |
Week 6 | |||||
TC (mg/dL) | 150.06 ± 15.32 bc | 137.56 ± 15.08 c | 189.18 ± 10.40 a | 164.43 ± 16.97 b | <0.001 |
HDL-C (mg/dL) | 133.88 ± 15.68 b | 134.18 ± 10.21 b | 156.16 ± 16.38 a | 145.10 ± 11.63 ab | 0.009 |
nHDL-C (mg/dL) | 16.18 ± 12.99 a | 3.38 ± 7.54 c | 33.01 ± 14.81 b | 19.33 ± 11.69 a | 0.001 |
nHDL-C/HDL-C | 0.13 ± 0.12 a | 0.02 ± 0.06 b | 0.22 ± 0.10 a | 0.13 ± 0.08 a | 0.003 |
HDL-C/TC | 0.89 ± 0.08 b | 0.98 ± 0.06 a | 0.83 ± 0.08 b | 0.89 ± 0.06 b | 0.002 |
TG (mg/dL) | 75.50 ± 25.45 c | 114.25 ± 30.82 b | 111.94 ± 21.13 b | 150.69 ± 30.84 a | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwek, E.; Yan, C.; Ding, H.; Hao, W.; He, Z.; Ma, K.Y.; Liu, J.; Zhu, H.; Chen, Z.-Y. Effects of Thermally-Oxidized Frying Oils (Corn Oil and Lard) on Gut Microbiota in Hamsters. Antioxidants 2022, 11, 1732. https://doi.org/10.3390/antiox11091732
Kwek E, Yan C, Ding H, Hao W, He Z, Ma KY, Liu J, Zhu H, Chen Z-Y. Effects of Thermally-Oxidized Frying Oils (Corn Oil and Lard) on Gut Microbiota in Hamsters. Antioxidants. 2022; 11(9):1732. https://doi.org/10.3390/antiox11091732
Chicago/Turabian StyleKwek, Erika, Chi Yan, Huafang Ding, Wangjun Hao, Zouyan He, Ka Ying Ma, Jianhui Liu, Hanyue Zhu, and Zhen-Yu Chen. 2022. "Effects of Thermally-Oxidized Frying Oils (Corn Oil and Lard) on Gut Microbiota in Hamsters" Antioxidants 11, no. 9: 1732. https://doi.org/10.3390/antiox11091732
APA StyleKwek, E., Yan, C., Ding, H., Hao, W., He, Z., Ma, K. Y., Liu, J., Zhu, H., & Chen, Z. -Y. (2022). Effects of Thermally-Oxidized Frying Oils (Corn Oil and Lard) on Gut Microbiota in Hamsters. Antioxidants, 11(9), 1732. https://doi.org/10.3390/antiox11091732