High-Intensity Exercise Training Alters the Effect of N-Acetylcysteine on Exercise-Related Muscle Ionic Shifts in Men
Abstract
:1. Introduction
2. Methods and Materials
2.1. Subjects and Ethics
2.2. Study Design
2.3. Preliminary Procedures
2.4. Experimental Setup
2.4.1. Experimental Day 1
2.4.2. Experimental Day 2
2.5. Training Intervention
2.6. Measurements and Data Analysis
2.6.1. Body Composition
2.6.2. Blood Samples and Blood Flow
2.6.3. Calculations
2.6.4. Muscle Biopsies
2.6.5. High-Resolution Respirometry
2.6.6. Immunoblotting
2.6.7. Muscle Lactate−
2.6.8. Muscle pH and Buffer Capacity
2.6.9. Muscle Lactate− and H+ Gradients
2.7. Statistical Analysis
3. Results
3.1. Exercise Performance
3.2. Body Composition
3.3. Femoral Plasma Flow
3.4. Plasma Lactate− Shifts
3.5. Plasma pH Shifts
3.6. Plasma HCO3− Shifts
3.7. Plasma K+ Shifts
3.8. Plasma Na+ Shifts
3.9. Cumulated Leg Lactate−, H+, K+, and Na+ Exchange during Submaximal and Intense Exercise
3.10. Muscle Lactate− and pH at Exhaustion and Buffer Capacity
3.11. Muscle Content of Ion-Handling Proteins and Antioxidant Enzymes
3.12. Muscle Phosphorylation of FXYD1
3.13. Mitochondrial Respiratory Capacity
3.14. Relationship between Training-Induced Changes in Main Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal muscle fatigue: Cellular mechanisms. Physiol. Rev. 2008, 88, 287–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cairns, S.P.; Lindinger, M.I. Do multiple ionic interactions contribute to skeletal muscle fatigue? J. Physiol. 2008, 586, 4039–4054. [Google Scholar] [CrossRef] [PubMed]
- Hostrup, M.; Bangsbo, J. Limitations in intense exercise performance of athletes—Effect of speed endurance training on ion handling and fatigue development. J. Physiol. 2017, 595, 2897–2913. [Google Scholar] [CrossRef] [PubMed]
- Hostrup, M.; Cairns, S.P.; Bangsbo, J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr. Physiol. 2021, 11, 1895–1959. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.J.; Bangsbo, J.; Renaud, J.M. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: Implications for fatigue. J. Appl. Physiol. (1985) 2008, 104, 288–295. [Google Scholar] [CrossRef]
- Gunnarsson, T.P.; Christensen, P.M.; Thomassen, M.; Nielsen, L.R.; Bangsbo, J. Effect of intensified training on muscle ion kinetics, fatigue development, and repeated short-term performance in endurance-trained cyclists. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R811–R821. [Google Scholar] [CrossRef] [Green Version]
- Juel, C.; Klarskov, C.; Nielsen, J.J.; Krustrup, P.; Mohr, M.; Bangsbo, J. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E245–E251. [Google Scholar] [CrossRef] [Green Version]
- McKenna, M.J.; Heigenhauser, G.J.; McKelvie, R.S.; MacDougall, J.D.; Jones, N.L. Sprint training enhances ionic regulation during intense exercise in men. J. Physiol. 1997, 501 Pt 3, 687–702. [Google Scholar] [CrossRef]
- Nielsen, J.J.; Mohr, M.; Klarskov, C.; Kristensen, M.; Krustrup, P.; Juel, C.; Bangsbo, J. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J. Physiol. 2004, 554, 857–870. [Google Scholar] [CrossRef]
- Pilegaard, H.; Domino, K.; Noland, T.; Juel, C.; Hellsten, Y.; Halestrap, A.P.; Bangsbo, J. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am. J. Physiol. 1999, 276, E255–E261. [Google Scholar] [CrossRef]
- Putman, C.T.; Jones, N.L.; Heigenhauser, G.J. Effects of short-term training on plasma acid-base balance during incremental exercise in man. J. Physiol. 2003, 550, 585–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juel, C. Oxidative stress (glutathionylation) and Na,K-ATPase activity in rat skeletal muscle. PLoS ONE 2014, 9, e110514. [Google Scholar] [CrossRef] [PubMed]
- Kourie, J.I. Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. 1998, 275, C1–C24. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C.; Stavrinou, P.; Fatouros, I.G.; Philippou, A.; Chatzinikolaou, A.; Draganidis, D.; Ermidis, G.; Maridaki, M. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem. Toxicol. 2013, 61, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Hellsten, Y.; Apple, F.S.; Sjodin, B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J. Appl. Physiol. (1985) 1996, 81, 1484–1487. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.J.; Medved, I.; Goodman, C.A.; Brown, M.J.; Bjorksten, A.R.; Murphy, K.T.; Petersen, A.C.; Sostaric, S.; Gong, X. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans. J. Physiol. 2006, 576, 279–288. [Google Scholar] [CrossRef]
- Medved, I.; Brown, M.J.; Bjorksten, A.R.; McKenna, M.J. Effects of intravenous N-acetylcysteine infusion on time to fatigue and potassium regulation during prolonged cycling exercise. J. Appl. Physiol. (1985) 2004, 96, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Medved, I.; Brown, M.J.; Bjorksten, A.R.; Murphy, K.T.; Petersen, A.C.; Sostaric, S.; Gong, X.; McKenna, M.J. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J. Appl. Physiol. (1985) 2004, 97, 1477–1485. [Google Scholar] [CrossRef]
- Medved, I.; Brown, M.J.; Bjorksten, A.R.; Leppik, J.A.; Sostaric, S.; McKenna, M.J. N-acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. J. Appl. Physiol. (1985) 2003, 94, 1572–1582. [Google Scholar] [CrossRef] [Green Version]
- Fiorenza, M.; Lemminger, A.K.; Marker, M.; Eibye, K.; Iaia, F.M.; Bangsbo, J.; Hostrup, M. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: Implications for exercise performance. FASEB J. 2019, 33, 8976–8989. [Google Scholar] [CrossRef]
- Granata, C.; Oliveira, R.S.; Little, J.P.; Renner, K.; Bishop, D.J. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB J. 2016, 30, 3413–3423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissow, J.; Jacobsen, K.J.; Gunnarsson, T.P.; Jessen, S.; Hostrup, M. Effects of Follicular and Luteal Phase-Based Menstrual Cycle Resistance Training on Muscle Strength and Mass. Sports Med. 2022, 52, 2813–2819. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, D.; Eibye, K.H.; Rasmussen, V.; Voldbye, H.M.; Thomassen, M.; Nyberg, M.; Gunnarsson, T.G.; Skovgaard, C.; Lindskrog, M.S.; Bishop, D.J. Cycling with blood flow restriction improves performance and muscle K+ regulation and alters the effect of anti-oxidant infusion in humans. J. Physiol. 2019, 597, 2421–2444. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Bjorksten, A.; Medved, I.; McKenna, M. Pharmacokinetics of intravenous N-acetylcysteine in men at rest and during exercise. Eur. J. Clin. Pharmacol. 2004, 60, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Krustrup, P.; Gonzalez-Alonso, J.; Boushel, R.; Saltin, B. Muscle oxygen kinetics at onset of intense dynamic exercise in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R899–R906. [Google Scholar] [CrossRef] [Green Version]
- Berg, H.E.; Tedner, B.; Tesch, P.A. Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol. Scand 1993, 148, 379–385. [Google Scholar] [CrossRef]
- Cerniglia, L.M.; Delmonico, M.J.; Lindle, R.; Hurley, B.F.; Rogers, M.A. Effects of acute supine rest on mid-thigh cross-sectional area as measured by computed tomography. Clin. Physiol. Funct Imaging 2007, 27, 249–253. [Google Scholar] [CrossRef]
- Nana, A.; Slater, G.J.; Hopkins, W.G.; Burke, L.M. Effects of daily activities on dual-energy X-ray absorptiometry measurements of body composition in active people. Med. Sci. Sports Exerc. 2012, 44, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, M.; Christensen, P.M.; Mortensen, S.P.; Hellsten, Y.; Bangsbo, J. Infusion of ATP increases leg oxygen delivery but not oxygen uptake in the initial phase of intense knee-extensor exercise in humans. Exp. Physiol. 2014, 99, 1399–1408. [Google Scholar] [CrossRef]
- Lindinger, M.I.; Spriet, L.L.; Hultman, E.; Putman, T.; McKelvie, R.S.; Lands, L.C.; Jones, N.L.; Heigenhauser, G.J. Plasma volume and ion regulation during exercise after low- and high-carbohydrate diets. Am. J. Physiol. 1994, 266, R1896–R1906. [Google Scholar] [CrossRef]
- Siggaard-Andersen, O. The van Slyke equation. Scand J. Clin. Lab. Investig. Suppl. 1977, 146, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Pesta, D.; Gnaiger, E. High-Resolution Respirometry: OXPHOS Protocols for Human Cells and Permeabilized Fibers from Small Biopsies of Human Muscle; Springer: Berlin/Heidelberg, Germany, 2012; Volume 810, pp. 25–58. [Google Scholar] [CrossRef]
- Pesta, D.; Hoppel, F.; Macek, C.; Messner, H.; Faulhaber, M.; Kobel, C.; Parson, W.; Burtscher, M.; Schocke, M.; Gnaiger, E. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R1078–R1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomassen, M.; Hostrup, M.; Murphy, R.M.; Cromer, B.A.; Skovgaard, C.; Gunnarsson, T.P.; Christensen, P.M.; Bangsbo, J. Abundance of ClC-1 chloride channel in human skeletal muscle: Fiber type specific differences and effect of training. J. Appl. Physiol. (1985) 2018, 125, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Mannion, A.F.; Jakeman, P.M.; Willan, P.L. Determination of human skeletal muscle buffer value by homogenate technique: Methods of measurement. J. Appl. Physiol. (1985) 1993, 75, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Sjogaard, G.; Adams, R.P.; Saltin, B. Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am. J. Physiol. 1985, 248, R190–R196. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Gollnick, P.D.; Graham, T.E.; Juel, C.; Kiens, B.; Mizuno, M.; Saltin, B. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J. Physiol. 1990, 422, 539–559. [Google Scholar] [CrossRef]
- Andrews, N.P.; Prasad, A.; Quyyumi, A.A. N-acetylcysteine improves coronary and peripheral vascular function. J. Am. Coll. Cardiol. 2001, 37, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Marin, E.; Kretzschmar, M.; Arokoski, J.; Hanninen, O.; Klinger, W. Enzymes of glutathione synthesis in dog skeletal muscles and their response to training. Acta Physiol. Scand 1993, 147, 369–373. [Google Scholar] [CrossRef]
- Sen, C.K.; Marin, E.; Kretzschmar, M.; Hanninen, O. Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J. Appl. Physiol. (1985) 1992, 73, 1265–1272. [Google Scholar] [CrossRef]
- Clausen, T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol. Rev. 2003, 83, 1269–1324. [Google Scholar] [CrossRef]
- Thomassen, M.; Gunnarsson, T.P.; Christensen, P.M.; Pavlovic, D.; Shattock, M.J.; Bangsbo, J. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R659–R669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flagg, T.P.; Enkvetchakul, D.; Koster, J.C.; Nichols, C.G. Muscle KATP channels: Recent insights to energy sensing and myoprotection. Physiol. Rev. 2010, 90, 799–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangsbo, J.; Graham, T.; Johansen, L.; Strange, S.; Christensen, C.; Saltin, B. Elevated muscle acidity and energy production during exhaustive exercise in humans. Am. J. Physiol. 1992, 263, R891–R899. [Google Scholar] [CrossRef] [PubMed]
SET (n = 10) | CON (n = 10) | |
---|---|---|
Age (yr) | 23.0 ± 3.4 | 25.7 ± 3.7 |
Height (cm) | 186 ± 6 | 184 ± 6 |
Body mass (kg) | 79.6 ± 12.1 | 76.0 ± 8.1 |
BMI (kg·m−2) | 23.0 ± 2.5 | 22.4 ± 1.6 |
V̇O2max (mL·min−1·kg−1) | 50.2 ± 4.5 | 52.8 ± 6.4 |
Whole-Body | SET | CON | |||
---|---|---|---|---|---|
Body mass (kg) | Pre | 79.6 ± 12.1 | 76.0 ± 8.1 | ||
Post | 79.5 ± 11.6 | 75.9 ± 8.1 | |||
Body fat mass (kg) # | Pre | 16.2 ± 5.3 | 11.6 ± 3.4 | ||
Post | 15.6 ± 4.9 | 11.5 ± 3.6 | |||
Body fat percent (%) | Pre | 20.0 ± 4.8 | 15.4 ± 5.2 | ||
Post | 19.4 ± 4.7 * | 15.2 ± 5.2 | |||
Body lean mass (kg) | Pre | 60.4 ± 9.0 | 61.6 ± 8.6 | ||
Post | 60.9 ± 8.9 | 61.5 ± 8.4 | |||
Thigh | SETSaline | SETNAC | CONSaline | CONNAC | |
Thigh mass (g) | Pre | 8817 ± 1621 | 8929 ± 1478 | 8532 ± 1220 | 8299 ± 1104 |
Post | 8955 ± 1549 | 9085 ± 1380 * | 8497 ± 1244 | 8256 ± 1056 | |
Thigh fat mass (g) | Pre | 1609 ± 543 | 1650 ± 536 | 1209 ± 380 | 1190 ± 372 |
Post | 1566 ± 526 | 1606 ± 524 | 1198 ± 419 | 1194 ± 409 | |
Thigh fat percent (%) | Pre | 18.1 ± 4.2 | 18.4 ± 4.6 | 14.3 ± 4.8 | 14.6 ± 5.1 |
Post | 17.3 ± 4.3 * | 17.6 ± 4.6 | 14.2 ± 4.9 | 14.6 ± 5.1 | |
Thigh lean mass (g) | Pre | 6943 ± 1263 | 7013 ± 1196 | 7054 ± 1158 | 6846 ± 1104 |
Post | 7125 ± 1242 ** | 7214 ± 1136 ** | 7032 ± 1138 | 6799 ± 1019 |
Lactate− | H+ | K+ | Na+ | ||||||
---|---|---|---|---|---|---|---|---|---|
SETSaline | SETNAC | SETSaline | SETNAC | SETSaline | SETNAC | SETSaline | SETNAC | ||
Submaximal exercise (mmol) | Pre | 21.9 ± 8.3 | 23.0 ± 9.8 | 50.3 ± 15.6 | 57.1 ± 12.1 | 3.2 ± 2.2 | 4.9 ± 2.3 | 12.5 ± 53.7 | 41.6 ± 43.0 |
Post | 15.1 ± 5.7 ** | 14.9 ± 8.2** | 42.4 ± 16.9 * | 47.8 ± 10.2 * | 2.1 ± 2.3 | 2.5 ± 3.3 | −5.8 ± 45.7 | −2.6 ± 119.0 | |
Submaximal exercise (mmol·min−1) | Pre | 1.6 ± 0.6 | 1.7 ± 0.7 | 3.7 ± 1.0 | 4.1 ± 0.9 | 0.2 ± 0.2 | 0.3 ± 0.2 | 1.0 ± 4.1 | 3.0 ± 3.1 |
Post | 1.1 ± 0.4 ** | 1.1 ± 0.6 ** | 3.1 ± 1.2 * | 3.4 ± 0.7 * | 0.2 ± 0.2 | 0.2 ± 0.2 | −0.4 ± 3.3 | −0.1 ± 8.6 | |
Incremental exercise to exh. (mmol) | Pre | 4.2 ± 2.8 | 5.4 ± 4.6 | 6.7 ± 4.6 | 7.9 ± 5.5 | 0.6 ± 0.4 | 0.9 ± 0.7 | −6.3 ± 38.3 | −2.1 ± 8.4 |
Post | 11.8 ± 5.6 ** | 14.0 ± 6.1 ** | 14.2 ± 5.0 ** | 19.4 ± 7.0 ** | 1.1 ± 1.7 | 1.2 ± 2.6 | −17.0 ± 62.7 | −21.4 ± 99.3 | |
Incremental exercise to exh. (mmol·min−1) | Pre | 2.2 ± 1.3 | 2.6 ± 1.4 | 3.4 ± 1.9 | 3.6 ± 1.6 | 0.4 ± 0.3 | 0.4 ± 0.3 | 0.6 ± 15.1 | −1.2 ± 5.2 |
Post | 3.0 ± 1.6 | 3.3 ± 1.6 | 3.6 ± 1.1 | 4.5 ± 1.4 | 0.3 ± 0.4 | 0.2 ± 0.7 | −4.1 ± 14.3 | −7.8 ± 29.3 |
Pearson’s Correlation Coefficient (r) | p-Value | ||
---|---|---|---|
Time to exhaustion | Muscle pH | −0.52 | 0.189 |
Muscle lactate | 0.00 | 0.994 | |
Leg lean mass | −0.61 | 0.062 | |
NKA-α1 | 0.48 | 0.161 | |
NKA-α2 | 0.53 | 0.139 | |
NKA-β1 | −0.31 | 0.379 | |
FXYD1 | 0.04 | 0.914 | |
Venous plasma K+ during submaximal exercise (measured at 80% Wmax) | Leg lean mass | −0.57 | 0.088 |
NKA-α1 | 0.23 | 0.520 | |
NKA-α2 | 0.27 | 0.483 | |
NKA-β1 | 0.15 | 0.679 | |
FXYD1 | 0.01 | 0.985 | |
Mean net leg K+ release during submaximal exercise (measured at 80% Wmax) | Leg lean mass | −0.56 | 0.092 |
NKA-α1 | 0.17 | 0.640 | |
NKA-α2 | 0.32 | 0.399 | |
NKA-β1 | −0.44 | 0.199 | |
FXYD1 | 0.17 | 0.632 | |
Peak net leg K+ release at exhaustion | Leg lean mass | 0.20 | 0.579 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemminger, A.K.; Fiorenza, M.; Eibye, K.; Bangsbo, J.; Hostrup, M. High-Intensity Exercise Training Alters the Effect of N-Acetylcysteine on Exercise-Related Muscle Ionic Shifts in Men. Antioxidants 2023, 12, 53. https://doi.org/10.3390/antiox12010053
Lemminger AK, Fiorenza M, Eibye K, Bangsbo J, Hostrup M. High-Intensity Exercise Training Alters the Effect of N-Acetylcysteine on Exercise-Related Muscle Ionic Shifts in Men. Antioxidants. 2023; 12(1):53. https://doi.org/10.3390/antiox12010053
Chicago/Turabian StyleLemminger, Anders K., Matteo Fiorenza, Kasper Eibye, Jens Bangsbo, and Morten Hostrup. 2023. "High-Intensity Exercise Training Alters the Effect of N-Acetylcysteine on Exercise-Related Muscle Ionic Shifts in Men" Antioxidants 12, no. 1: 53. https://doi.org/10.3390/antiox12010053
APA StyleLemminger, A. K., Fiorenza, M., Eibye, K., Bangsbo, J., & Hostrup, M. (2023). High-Intensity Exercise Training Alters the Effect of N-Acetylcysteine on Exercise-Related Muscle Ionic Shifts in Men. Antioxidants, 12(1), 53. https://doi.org/10.3390/antiox12010053