Phytochemical Composition, Antimicrobial, Anticancer Properties, and Antioxidant Potential of Green Husk from Several Walnut Varieties (Juglans regia L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Composition of Walnut Husk Powder
2.3. Preparation of Apolar and Polar Extracts for Chemical Analysis
2.4. Qualitative Analysis of Apolar Extract by GC-MS
2.5. Fatty Acid Profiles
2.6. Qualitative and Semi-Quantitative Analysis of Polar Extract by UHPLC-PDA-HRMS/MS
2.7. Total Phenolic Content
2.8. Total Antioxidant Activity by DPPH Assay
2.9. Total Antioxidant Power by PAOT Technology
2.10. In Vitro Antimicrobial Analysis by Broth Microdilution Protocol
2.11. Anticancer Activity Analysis by MTT Assay
2.12. Statistical Analysis
3. Results and Discussion
3.1. Hulling Rate
3.2. Chemical Analysis
3.3. Analysis of Non-Polar Extract by GC-MS
3.4. GC and GC-MS Fatty Acid Profiles
3.5. Analysis of Polar Extract by UHPLC-PDA-HRMS/MS
3.6. Total Phenolic Content
3.7. Total Antioxidant Activity by DPPH Assay
3.8. Total Antioxidant Power by PAOT Technology
3.9. In Vitro Antimicrobial Properties
3.10. Anticancer Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadidi, M.; Orellana-Palacios, J.C.; Aghababaei, F.; Gonzalez-Serrano, D.J.; Moreno, A.; Lorenzo, J.M. Plant by-product antioxidants: Control of protein-lipid oxidation in meat and meat products. LWT 2022, 169, 114003. [Google Scholar] [CrossRef]
- Stampar, F.; Solar, A.; Hudina, M.; Veberic, R.; Colaric, M. Traditional walnut liqueur–cocktail of phenolics. Food Chem. 2006, 95, 627–631. [Google Scholar] [CrossRef]
- Asgari, K.; Labbafi, M.; Khodaiyan, F.; Kazemi, M.; Hosseini, S.S. High-methylated pectin from walnut processing wastes as a potential resource: Ultrasound assisted extraction and physicochemical, structural and functional analysis. Int. J. Biol. Macromol. 2019, 152, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Seabra, I.J.; Braga, M.E.; Oliveira, R.A.; de Sousa, H.C. Two-step high pressure solvent extraction of walnut (Juglans regia L.) husks: ScCO2+ CO2/ethanol/H2O. J. CO2 Util. 2019, 34, 375–385. [Google Scholar] [CrossRef]
- Shahidi, F. Antioxidants: Principles and Applications. In Handbook of Antioxidants for Food Preservation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–14. [Google Scholar]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A comprehensive review on the chemical constituents and functional uses of walnut (Juglans spp.) husk. Int. J. Mol. Sci. 2019, 20, 3920. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, I.; Sousa, A.; Ferreira, I.C.; Bento, A.; Estevinho, L.; Pereira, J.A. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem. Toxicol. 2008, 46, 2326–2331. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentao, P.; Andrade, P.; González-Álvarez, J.; Pereira, J. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crops Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Zhang, Q. Effects of extraction solvents on phytochemicals and antioxidant activities of walnut (Juglans regia L.) green husk extracts. Eur. Food Res. Technol. 2015, 3, 15–21. [Google Scholar]
- Hermund, D.B. Antioxidant properties of seaweed-derived substances. In Bioactive Seaweeds for Food Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 201–221. [Google Scholar]
- Amorati, R.; Valgimigli, L. Methods to measure the antioxidant activity of phytochemicals and plant extracts. J. Agric. Food Chem. 2018, 66, 3324–3329. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta. 2008, 613, 1–19. [Google Scholar] [CrossRef]
- Joël, P.; Mouna-Messaouda, K.; Claire, K.; Jessica, T.; Raymond, E.E.; Smail, M. PAOT-Liquid® technology: An easy electrochemical method for evaluating antioxidant capacity of wines. Diseases 2019, 7, 10. [Google Scholar]
- Kaci, M.; Belhaffef, A.; Meziane, S.; Dostert, G.; Menu, P.; Velot, E.; Desobry, S.; Arab-Tehrany, E. Nanoemulsions and topical creams for the safe and effective delivery of lipophilic antioxidant coenzyme Q10. Colloids Surf. B. 2018, 167, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Poutaraud, A.; Guilloteau, L.; Gros, C.; Lobstein, A.; Meziani, S.; Steyer, D.; Moisan, M.-P.; Foury, A.; Lansade, L. Lavender essential oil decreases stress response of horses. Environ. Chem. Lett. 2018, 16, 539–544. [Google Scholar] [CrossRef]
- Gerasimova, E.; Gazizullina, E.; Kolbaczkaya, S.; Ivanova, A. The novel potentiometric approach to antioxidant capacity assay based on the reaction with stable radical 2, 2′-diphenyl-1-picrylhydrazyl. Antioxidants 2022, 11, 1974. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Chen, Q.; Du, Y.; Han, C.; Fu, M.; Jiang, H.; Chen, X. Effects of hulling methods on the odor, taste, nutritional compounds, and antioxidant activity of walnut fruit. LWT 2020, 120, 108938. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Official, A. Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Momen, A.A.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A. Use of fractional factorial design for optimization of digestion procedures followed by multi-element determination of essential and non-essential elements in nuts using ICP-OES technique. Talanta 2007, 71, 443–451. [Google Scholar] [CrossRef]
- Medic, A.; Jakopic, J.; Hudina, M.; Solar, A.; Veberic, R. Identification and quantification of the major phenolic constituents in Juglans regia L. peeled kernels and pellicles, using HPLC–MS/MS. Food Chem. 2021, 352, 129404. [Google Scholar] [CrossRef]
- Goli, S.A.H.; Sahri, M.M.; Kadivar, M. Enzymatic interesterification of structured lipids containing conjugated linoleic acid with palm stearin for possible margarine production. Eur. J. Lipid Sci. Technol. 2008, 110, 1102–1108. [Google Scholar] [CrossRef]
- Vieira, V.; Pereira, C.; Abreu, R.M.; Calhelha, R.C.; Alves, M.J.; Coutinho, J.A.; Ferreira, O.; Barros, L.; Ferreira, I.C. Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food Chem. Toxicol. 2020, 137, 111189. [Google Scholar] [CrossRef]
- Park, I.-S.; Kim, S.; Yim, Y.; Park, G.; Choi, J.; Won, C.; Min, D.-H. Multifunctional synthetic nano-chaperone for peptide folding and intracellular delivery. Nat. Commun. 2022, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jha, N.N.; Ghosh, D.; Das, S.; Anoop, A.; Jacob, R.S.; Singh, P.K.; Ayyagari, N.; Namboothiri, I.N.; Maji, S.K. Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity. Sci. Rep. 2016, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Soto-Maldonado, C.; Vergara-Castro, M.; Jara-Quezada, J.; Caballero-Valdés, E.; Müller-Pavez, A.; Zúñiga-Hansen, M.E.; Altamirano, C. Polyphenolic extracts of walnut (Juglans regia) green husk containing juglone inhibit the growth of HL-60 cells and induce apoptosis. Electron. J. Biotechnol. 2019, 39, 1–7. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W. n-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau. Org. Geochem. 2016, 99, 10–22. [Google Scholar] [CrossRef]
- Medic, A.; Jakopic, J.; Solar, A.; Hudina, M.; Veberic, R. Walnut (J. regia) agro-residues as a rich source of phenolic compounds. Biology 2021, 10, 535. [Google Scholar] [CrossRef] [PubMed]
- Uquiche, E.; Jeréz, M.; Ortíz, J. Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innov. Food Sci. Emerg. Technol. 2008, 9, 495–500. [Google Scholar] [CrossRef]
- Saldeen, T.; Li, D.; Mehta, J.L. Differential effects of α-and γ-tocopherol on low-density lipoprotein oxidation, superoxide activity, platelet aggregation and arterial thrombogenesis. J. Am. Coll. Cardiol. 1999, 34, 1208–1215. [Google Scholar] [CrossRef] [Green Version]
- Bouabdallah, I.; Bouali, I.; Martínez-Force, E.; Albouchi, A.; Perez Camino, M.d.C.; Boukhchina, S. Composition of fatty acids, triacylglycerols and polar compounds of different walnut varieties (Juglans regia L.) from Tunisia. Nat. Prod. Res. 2014, 28, 1826–1833. [Google Scholar] [CrossRef] [Green Version]
- Medic, A.; Solar, A.; Hudina, M.; Veberic, R. Phenolic response to walnut anthracnose (Ophiognomonia leptostyla) infection in different parts of Juglans regia husks, using HPLC-MS/MS. Agriculture 2021, 11, 659. [Google Scholar] [CrossRef]
- Sheng, F.; Hu, B.; Jin, Q.; Wang, J.; Wu, C.; Luo, Z. The analysis of phenolic compounds in walnut husk and pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules 2021, 26, 3013. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, Z.; Dai, S.; Che, X.; Liu, W. Identification and quantification of bioactive compounds in Diaphragma juglandis fructus by UHPLC-Q-Orbitrap HRMS and UHPLC-MS/MS. J. Agric. Food Chem. 2019, 67, 3811–3825. [Google Scholar] [CrossRef] [PubMed]
- Razgonova, M.; Zakharenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Kislin, E.; Seryodkin, I.; Sabitov, A.; Kalenik, T. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr. Molecules 2021, 26, 3650. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.M.; Sampaio, T.R.; França, L.C.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. LC–MS bioanalytical method for simultaneous determination of latanoprost and minoxidil in the skin. Pharm. Biomed. Anal. 2020, 187, 113373. [Google Scholar] [CrossRef] [PubMed]
- Perin, E.C.; Crizel, R.L.; Galli, V.; da Silva Messias, R.; Rombaldi, C.V.; Chaves, F.C. Extraction and quantification of abscisic acid and derivatives in strawberry by LC-MS. Food Anal. Methods 2018, 11, 2547–2552. [Google Scholar] [CrossRef]
- Liu, P.; Li, L.; Song, L.; Sun, X.; Yan, S.; Huang, W. Characterisation of phenolics in fruit septum of Juglans regia Linn. by ultra performance liquid chromatography coupled with Orbitrap mass spectrometer. Food Chem. 2019, 286, 669–677. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, P.; Baquero, L.P.; Larrota, H.R. Flavonoids: Potential therapeutic agents by their antioxidant capacity. In Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 265–288. [Google Scholar]
- Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E. Extraction techniques for the determination of phenolic compounds in food. Compr. Sampl. Sample Prep. 2012, 4, 159–180. [Google Scholar] [CrossRef] [Green Version]
- Trouillas, P.; Fagnère, C.; Lazzaroni, R.; Calliste, C.; Marfak, A.; Duroux, J.-L. A theoretical study of the conformational behavior and electronic structure of taxifolin correlated with the free radical-scavenging activity. Food Chem. 2004, 88, 571–582. [Google Scholar] [CrossRef]
- Suchonwanit, P.; Thammarucha, S.; Leerunyakul, K. Minoxidil and its use in hair disorders: A review. Drug Des. Dev. Ther. 2019, 13, 2777. [Google Scholar] [CrossRef] [Green Version]
- Addicott, F.; Lyon, J.; Ohkuma, K.; Thiessen, W.; Carns, H.; Smith, O.; Cornforth, J.; Milborrow, B.; Ryback, G.; Wareing, P. Abscisic acid: A new name for abscisin II (dormin). Science 1968, 159, 1493. [Google Scholar] [CrossRef]
- Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Moldovan, C.; Popa, D.-S.; Tomuta, I.; Vlase, L. Process optimization for improved phenolic compounds recovery from walnut (Juglans regia L.) septum: Phytochemical profile and biological activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef]
- Kamran, G.; Yousef, G.; Abdollah, E.; Seyed, M.N.; Seyed, F.N.; Mohammad, A.E.; Fereshteh, P. Influence of environmental factors on antioxidant activity, phenol and flavonoids contents of walnut (Juglans regia L.) green husks. J. Med. Plant Res. 2011, 5, 1128–1133. [Google Scholar]
Name | RT [min] | Raw Formula | Name | RT [min] | Raw Formula | |
---|---|---|---|---|---|---|
Alkanes | ||||||
Heptane, 2,3-dimethyl- | 5.09 | C9H20 | Tetradecane | 37.32 | C14H30 | |
Octane, 4-methyl | 5.36 | C9H20 | Pentadecane | 43.39 | C15H32 | |
Octane, 3-methyl | 5.62 | C9H20 | Hexadecane | 49.14 | C16H34 | |
Nonane | 6.69 | C9H20 | Octadecane | 59.82 | C18H38 | |
Octane, 2,5-dimethyl- | 7.73 | C10H22 | Nonadecane | 63.04 | C19H40 | |
Octane, 2,6-dimethyl- | 8.14 | C10H22 | Eicosane | 67.76 | C20H42 | |
Heptane, 3-ethyl-2-methyl- | 8.46 | C10H22 | Heneicosane | 69.70 | C21H44 | |
Nonane, 4-methyl- | 9.53 | C10H22 | Docosane | 78.44 | C22H46 | |
Nonane, 2-methyl- | 9.67 | C10H22 | Tricosane | 82.64 | C23H48 | |
Nonane, 3-methyl- | 10.0 | C10H22 | Tetracosane | 86.66 | C24H50 | |
Decane | 11.62 | C10H22 | Pentacosane | 90.53 | C25H52 | |
Undecane | 17.78 | C11H24 | Hexacosane | 94.27 | C26H54 | |
Dodecane | 24.40 | C12H26 | Heptacosane | 97.88 | C27H56 | |
Tridecane | 30.99 | C13H28 | Octacosane | 101.34 | C28H58 | |
Alkene | ||||||
1,19-Eicosadiene | 95.15 | C20H38 | ||||
Naphthoquinone | ||||||
Juglone | 43.83 | C10H6O3 | ||||
Terpenes | ||||||
β-Limonene | 13.83 | C10H16 | β-Tocopherol | 109.31 | C28H48O2 | |
Dl-Limonene | 13.60 | C10H16 | γ-Tocopherol | 109.77 | C28H48O2 | |
Squalen | 102.13 | C30H50 | α-Tocopherol | 112.25 | C29H50O2 | |
Sterols | ||||||
γ-Sitosterol | 117.50 | C29H50O | Lupeol | 119.77 | C30H50O | |
Fatty acids | ||||||
Tetradecanoic acid, | 34.87 | C15H30O2 | 9. 12, 15-Octadecatrienoic acid (Z,Z,Z)- | 84.21 | C19H32 | |
Hexadecanoic acid, | 69.36 | C17H34O2 | 9-Octadecenoic acid (Z) | 74.17 | C19H36O2 | |
Octadecanoic acid | 73.12 | C19H38O2 | 9,12-Octadecadienoic acid (Z,Z) | 77.12 | C19H34O2 | |
Other compounds | ||||||
1H-Indene | 7.42 | C9H16 | Phenol, 2,4-bis (1,1-dimethylethyl) | 45.88 | C17H30OSi |
Methylated Fatty Acid | RT [min] | Aytak | Chandler | Dena | Raha 3 | Raha 4 | Raha 6 | Saman Green | Saman Brown |
---|---|---|---|---|---|---|---|---|---|
Myristic | 8.40 | 2.2 bc ± 0.1 | 1.4 e ± 0.0 | 2.1 c ± 0.0 | 2.8 b ± 0.0 | 1.5 d ± 0.0 | 2.1 c ± 0.1 | 1.5 d ± 0.0 | 4.5 a ± 0.9 |
Palmitic | 9.30 | 20.1 c ± 0.1 | 18.5 e ± 0.1 | 21.5 b ± 0.1 | 19.1 d ± 0.1 | 20.7 c ± 0.0 | 21.0 b ± 0.1 | 20.3 c ± 0.2 | 24.2 a ± 0.5 |
Stearic | 10.70 | 8.9 c ± 0.1 | 10.0 b ± 0.2 | 8.7 c ± 0.1 | 8.7 c ± 0.4 | 9.0 c ± 0.2 | 9.7 b ± 0.3 | 9.5 bc ± 0.1 | 11.2 a ± 0.7 |
Oleic | 11.17 | 47.4 c ± 0.4 | 50.3 a ± 0.2 | 49.1 b ± 0.1 | 47.1 c ± 0.1 | 49.2 b ± 0.3 | 46.4 d ± 0.4 | 40.2 e ± 0.6 | 39.1 f ± 0.8 |
Linoleic | 11.96 | 15.3 d ± 0.1 | 18.5 b ± 0.2 | 17.4 c ± 0.1 | 14.4 e ± 0.3 | 17.9 c ± 0.1 | 19.0 b ± 0.2 | 23.5 a ± 0.2 | 18.7 b ± 0.1 |
Linolenic | 12.98 | 0.8 d ± 0.0 | 1.4 c ± 0.0 | 1.2 cd ± 0.1 | 1.3 cd ± 0.0 | 1.7 bc ± 0.0 | 1.8 b ± 0.0 | 5.0 a ± 0.1 | 2.3 b ± 0.9 |
Eicosenoic | 14.10 | 5.3 b ± 0.5 | - | - | 6.6 a ± 0.2 | - | - | - | - |
No. | Name | RT [min] | Formula | Calc. MW | m/z | Ref. |
---|---|---|---|---|---|---|
1 | Neochlorogenic acid | 9.08 | C16H18O9 | 354.095 | 355.103 | [33,34] |
2 | Taxifolin 7-glucoside | 9.45 | C21H24O11 | 466.181 | 467.189 | [35] |
3 | Cianidanol or (+)-catechin | 11.77 | C15H14O6 | 290.079 | 291.086 | [33,34,35] |
4 | Minoxidil | 13.30 | C9H15N5O | 209.128 | 210.135 | [36] |
5 | (±)-(2E)-Abscisic acid | 13.34 | C15H20O4 | 264.136 | 265.143 | [37] |
6 | Unknown | 14.33 | C33H27N6O11P | 714.147 | 358.081 | - |
7 | 1-Salicylate glucuronide | 15.99 | C13H14O9 | 314.064 | 315.071 | - |
8 | Myricetin | 17.01 | C21H20O12 | 464.095 | 465.102 | [33,34] |
9 | Quercetin-4′-glucoside | 17.18 | C21H20O12 | 464.096 | 465.102 | [38] |
10 | Taxifolin | 17.40 | C15H12O7 | 304.058 | 305.066 | [33,34] |
11 | Gallic acid derivative | 18.11 | C7H6O5 | 490.110 | 491.118 | [21] |
12 | Quercetin-3-O-pentoside | 18.22 | C20H18O11 | 434.085 | 435.092 | [34,38] |
Varieties | S. aureus | B. subtilis | E. coli | P. aeruginosa | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | |
Aytak | 2 | 2 | 1 | 1 | 2 | 2 | 0.5 | 1 | 2 | 4 | 4 | 1 |
Chandler | 3 | 3 | 1 | 2 | 4 | 2 | 1 | 2 | 2 | 5 | 5 | 1 |
Dena | 2 | 2 | 1 | 1 | 2 | 2 | 0.5 | 1 | 2 | 4 | 4 | 1 |
Raha 3 | 2 | 2 | 1 | 1 | 2 | 2 | 0.5 | 1 | 2 | 4 | 4 | 1 |
Raha 4 | 3 | 3 | 1 | 2 | 4 | 2 | 1 | 2 | 2 | 5 | 5 | 1 |
Raha 6 | 2 | 2 | 1 | 1 | 2 | 2 | 0.5 | 1 | 2 | 4 | 4 | 1 |
Green Saman | 2 | 2 | 1 | 1 | 2 | 2 | 0.5 | 1 | 2 | 4 | 4 | 1 |
Brown Saman | 3 | 3 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 7 | 7 | 1 |
Streptomycin | 0.03 | 0.03 | 1 | 0.00 | 0.00 | 1 | 0.02 | 0.02 | 1 | 0.03 | 0.03 | 1 |
Penicillin | 0.02 | 0.02 | 1 | 0.00 | 0.01 | 2 | 0.03 | 0.03 | 1 | 0.06 | 0.13 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barekat, S.; Nasirpour, A.; Keramat, J.; Dinari, M.; Meziane-Kaci, M.; Paris, C.; Desobry, S. Phytochemical Composition, Antimicrobial, Anticancer Properties, and Antioxidant Potential of Green Husk from Several Walnut Varieties (Juglans regia L.). Antioxidants 2023, 12, 52. https://doi.org/10.3390/antiox12010052
Barekat S, Nasirpour A, Keramat J, Dinari M, Meziane-Kaci M, Paris C, Desobry S. Phytochemical Composition, Antimicrobial, Anticancer Properties, and Antioxidant Potential of Green Husk from Several Walnut Varieties (Juglans regia L.). Antioxidants. 2023; 12(1):52. https://doi.org/10.3390/antiox12010052
Chicago/Turabian StyleBarekat, Sorour, Ali Nasirpour, Javad Keramat, Mohammad Dinari, Messaouda Meziane-Kaci, Cedric Paris, and Stephane Desobry. 2023. "Phytochemical Composition, Antimicrobial, Anticancer Properties, and Antioxidant Potential of Green Husk from Several Walnut Varieties (Juglans regia L.)" Antioxidants 12, no. 1: 52. https://doi.org/10.3390/antiox12010052
APA StyleBarekat, S., Nasirpour, A., Keramat, J., Dinari, M., Meziane-Kaci, M., Paris, C., & Desobry, S. (2023). Phytochemical Composition, Antimicrobial, Anticancer Properties, and Antioxidant Potential of Green Husk from Several Walnut Varieties (Juglans regia L.). Antioxidants, 12(1), 52. https://doi.org/10.3390/antiox12010052