Monocarbonyl Curcumin Analogues as Potent Inhibitors against Human Glutathione Transferase P1-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Bacterial Strains, Plasmids, and Cancer Cell Line
2.1.3. Curcuminoids and Curcumin Analogues
2.2. Methods
2.2.1. Expression and Purification of hGSTP1-1 from Recombinant E. coli Cells
2.2.2. Protein Determination
2.2.3. Enzyme Assays and Inhibition Studies
2.2.4. Kinetic Inhibition Analysis
2.2.5. Cell Cultures
In Vitro Cytotoxicity Evaluation of Curcumin Analogues against DU-145 Cells
Inhibition Studies of Curcumin Analogues against Native GST Extracted from DU-145 Cells
2.2.6. Circular Dichroism (CD) Studies
2.2.7. Molecular Docking, Molecular Dynamics Simulations, and Free-Energy Calculations
Molecular Docking
Preparation of Initial Complexes for Molecular Dynamics Simulations
Molecular Dynamics Simulations
Binding-Free-Energy Calculations Using Linear Interaction Energy (LIE) and Linear Response Approximation (LRA) Methods
3. Results and Discussion
3.1. Screening of the Curcuminoids and Curcumin Analogues and Selection of the Most Potent Inhibitors
3.2. Kinetic Inhibition Studies of hGSTP1-1 with the Curcumin Analogues DMC, DM96, DM109, and DM151
3.3. Cytotoxicity Studies of the Most Potent Inhibitors against DU-145 Prostate Cancer Cell Line
3.4. Inhibition Studies of Curcumin Analogues against Native GST Extracted from DU-145 Cells
3.5. Circular Dichroism Study
3.6. Molecular Docking of DM96, DM151, DM109, and DMC to hGSTP1-1
3.7. Molecular Dynamics Simulations of Studied Curcumin Analogues in Complex with hGSTP1-1
3.7.1. RMSD and RMSF Analysis
3.7.2. Binding Patterns of DM96, DM151, DM109, and DMC to hGSTP1-1
3.8. Binding-Free-Energy Calculations with the LIE and LRA Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BDMC | Bisdemethoxycurcumin |
Bis-epoxirane | 1,4-butanediol diglycidyl ether |
CDNB | 1-chloro-2,4-dinitrobenzene |
DM100 | 2,6-bis(3-methoxy-4-hydroxy-benzylidene)cyclohexanone |
DM101 | (1E,4E)-1,5-bis-(3-methoxy-4-hydroxy-phenyl)penta-1,4-dien-3-one |
DM109 | (1E,4E)-1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one |
DM148 | (1E,4E)-1,5-bis(3,4-dihydroxyphenyl)penta-1,4-dien-3-one |
DM15 | 2,6-dibenzylidenecyclohexanone |
DM15 | 2,6-dibenzylidenecyclohexanone |
DM151 | 2,6-bis(3,4-dihydroxybenzylidene)cyclohexanone |
DM46 | 2,6-bid(4-methoxybenzylidene)cyclohexanone |
DM57 | 2,6-bis(3,4-dihydroxybenzylidene)cyclohexanone |
DM62 | (2E,6E)-2,6-bis(4-fluorobenzylidene)cyclohexanone |
DM95 | (1E,4E)-1,5-bis(3,4-dimethoxyphenyl)penta-1,4-dien-3-one |
DM96 | 1,5-bis(4-hydroxyphenyl)penta-1,4-dien-3-one |
DMC | Demethoxycurcumin |
DMSO | Dimethyl sulfoxide |
E. coli | Escherichia coli |
EDTA | Ethylenediaminetetraacetic acid |
ESP | Electrostatic potential |
FBS | Fetal bovine serum |
GAFF | General AMBER force field |
GSH | Glutathione |
GSTs | Glutathione transferases |
IPTG | Isopropyl-β-D-thiogalactopyranoside |
LIE | Linear interaction energy |
LRA | Linear response approximation |
LRF | Local reaction field |
MD | Molecular dynamics simulations |
MTT | (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) |
NaCl | Sodium chloride |
NCSR | National Center for Scientific Research |
PLIP | Protein Ligand Interaction Profiler |
RESP | Restricted electrostatic charge fitting procedure |
RMR6 | Radial-mean-reduced scoring function at a cutoff radius of 6 Å from each atom of the ligand |
RMSD | Root-mean-square deviation |
RMSF | Root-mean-square fluctuation |
SCAAS | Surface constraint all-atom solvent |
SDS | Sodium dodecyl sulfate |
SDS-PAGE | Sodium dodecyl sulphate–polyacrylamide gel electrophoresis |
References
- Bocedi, A.; Noce, A.; Marrone, G.; Noce, G.; Cattani, G.; Gambardella, G.; Di Lauro, M.; Di Daniele, N.; Ricci, G. Glutathione transferase P1-1 an enzyme useful in biomedicine and as biomarker in clinical practice and in environmental pollution. Nutrients 2019, 11, 1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpusas, M.; Axarli, I.; Chiniadis, L.; Papakyriakou, A.; Bethanis, K.; Scopelitou, K.; Clonis, Y.D.; Labrou, N.E. The interaction of the chemotherapeutic drug chlorambucil with human glutathione transferase A1-1: Kinetic and structural analysis. PLoS ONE 2013, 8, e56337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perperopoulou, F.; Pouliou, F.; Labrou, N.E. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Crit. Rev. Biotechnol. 2018, 38, 511–528. [Google Scholar] [CrossRef] [PubMed]
- Vamvakas, S.; Anders, M.W. Formation of reactive intermediates by phase II enzymes: Glutathione-dependent bioactivation reactions. Adv. Exp. Med. Biol. 1991, 283, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Zompra, A.; Georgakis, N.; Pappa, E.; Thireou, T.; Eliopoulos, E.; Labrou, N.; Cordopatis, P.; Clonis, Y. Glutathione analogues as substrates or inhibitors that discriminate between allozymes of the MDR-involved human glutathione transferase P1-1. Pept. Sci. 2016, 106, 330–344. [Google Scholar] [CrossRef]
- Mannervik, B. Evolution of glutathione transferases and related enzymes for the protection of cells against electrophiles. Biochem. Soc. Trans. 1996, 24, 878–880. [Google Scholar] [CrossRef] [Green Version]
- Sylvestre-Gonon, E.; Law, S.R.; Schwartz, M.; Robe, K.; Keech, O.; Didierjean, C.; Dubos, C.; Rouhier, N.; Hecker, A. Functional, structural and biochemical features of plant serinyl-glutathione transferases. Front. Plant Sci. 2019, 10, 608. [Google Scholar] [CrossRef] [Green Version]
- Chronopoulou, E.; Kontouri, K.; Chantzikonstantinou, M.; Pouliou, F.; Perperopoulou, F.; Voulgari, G.; Bosmali, E.; Axarli, I.; Nianiou-Obeidat, I.; Madesis, P.; et al. Plant glutathione transferases: Structure, antioxidant catalytic function and in planta protective role in biotic and abiotic stress. Curr. Chem. Biol. 2014, 8, 58–75. [Google Scholar] [CrossRef] [Green Version]
- Georgakis, N.D.; Karagiannopoulos, D.A.; Thireou, T.N.; Eliopoulos, E.E.; Labrou, N.E.; Tsoungas, P.G.; Koutsilieris, M.N.; Clonis, Y.D. Concluding the trilogy: The interaction of 2, 2′-dihydroxy-benzophenones and their carbonyl N-analogues with human glutathione transferase M1-1 face to face with the P1-1 and A1-1 isoenzymes involved in MDR. Chem. Biol. Drug Des. 2017, 90, 900–908. [Google Scholar] [CrossRef]
- Laborde, E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ. 2010, 17, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Mannervik, B. The isoenzymes of glutathione transferase. Adv. Enzymol. Relat. Areas Mol. Biol. 1985, 57, 357–417. [Google Scholar] [CrossRef]
- Cui, J.; Li, G.; Yin, J.; Li, L.; Tan, Y.; Wei, H.; Liu, B.; Deng, L.; Tang, J.; Chen, Y.; et al. GSTP1 and cancer: Expression, methylation, polymorphisms and signaling (Review). Int. J. Oncol. 2020, 56, 867–878. [Google Scholar] [CrossRef]
- Kaur, G.; Gupta, S.K.; Singh, P.; Ali, V.; Kumar, V.; Verma, M. Drug-metabolizing enzymes: Role in drug resistance in cancer. Clin. Transl. Oncol. 2020, 22, 1667–1680. [Google Scholar] [CrossRef] [PubMed]
- Pljesa-Ercegovac, M.; Savic-Radojevic, A.; Matic, M.; Coric, V.; Djukic, T.; Radic, T.; Simic, T. Glutathione transferases: Potential targets to overcome chemoresistance in solid tumors. Int. J. Mol. Sci. 2018, 19, 3785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jana, S.; Mandlekar, S. Role of phase II drug metabolizing enzymes in cancer chemoprevention. Curr. Drug Metab. 2009, 10, 595–616. [Google Scholar] [CrossRef] [PubMed]
- Tew, K.D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 2016, 76, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Sawers, L.; Ferguson, M.J.; Ihrig, B.R.; Young, H.C.; Chakravarty, P.; Wolf, C.R.; Smith, G. Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines. Br. J. Cancer 2014, 111, 1150–1158. [Google Scholar] [CrossRef]
- Wang, T.; Arifoglu, P.; Ronai, Z.; Tew, K.D. Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J. Biol. Chem. 2001, 276, 20999–21003. [Google Scholar] [CrossRef] [Green Version]
- Kampranis, S.C.; Damianova, R.; Atallah, M.; Toby, G.; Kondi, G.; Tsichlis, P.N.; Makris, A.M. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 2000, 275, 29207–29216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulhunty, A.; Gage, P.; Curtis, S.; Chelvanayagam, G.; Board, P. The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J. Biol. Chem. 2001, 276, 3319–3323. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, Y.; Xue, B.; Luo, L.; Shen, J.; Zhang, S.; Jiang, Y.; Yin, Z. Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene 2006, 25, 5787–5800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duvoix, A.; Schnekenburger, M.; Delhalle, S.; Blasius, R.; Borde-Chiché, P.; Morceau, F.; Dicato, M.; Diederich, M. Expression of glutathione S-transferase P1-1 in leukemic cells is regulated by inducible AP-1 binding. Cancer Lett. 2004, 216, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Pouliou, F.M.; Thireou, T.N.; Eliopoulos, E.E.; Tsoungas, P.G.; Labrou, N.E.; Clonis, Y.D. Isoenzyme- and Allozyme-Specific Inhibitors: 2,2′-Dihydroxybenzophenones and Their Carbonyl N-Analogues that Discriminate between Human Glutathione Transferase A1-1 and P1-1 Allozymes. Chem. Biol. Drug Des. 2015, 86, 1055–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertan-Bolelli, T.; Bolelli, K.; Musdal, Y.; Yildiz, I.; Aki-Yalcin, E.; Mannervik, B.; Yalcin, I. Design and synthesis of 2-substituted-5-(4-trifluoromethylphenyl-sulphonamido) benzoxazole derivatives as human GST P1-1 inhibitors. Artif. Cells Nanomed. Biotechnol. 2018, 46, 510–517. [Google Scholar] [CrossRef] [Green Version]
- Bartolini, D.; Torquato, P.; Piroddi, M.; Galli, F. Targeting glutathione S-transferase P and its interactome with selenium compounds in cancer therapy. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 130–143. [Google Scholar] [CrossRef]
- Krasowska, D.; Iraci, N.; Santi, C.; Drabowicz, J.; Cieslak, M.; Kaźmierczak-Barańska, J.; Palomba, M.; Królewska-Golińska, K.; Magiera, J.; Sancineto, L. Diselenides and benzisoselenazolones as antiproliferative agents and glutathione-S-transferase inhibitors. Molecules 2019, 24, 2914. [Google Scholar] [CrossRef] [Green Version]
- Sha, H.H.; Wang, Z.; Dong, S.C.; Hu, T.M.; Liu, S.W.; Zhang, J.Y.; Wu, Y.; Ma, R.; Wu, J.Z.; Chen, D.; et al. 6-(7-nitro-2, 1, 3-benzoxadiazol-4-ylthio) hexanol: A promising new anticancer compound. Biosci. Rep. 2018, 38, BSR20171440. [Google Scholar] [CrossRef] [Green Version]
- Fulci, C.; Rotili, D.; De Luca, A.; Stella, L.; Morozzo della Rocca, B.; Forgione, M.; Di Paolo, V.; Mai, A.; Falconi, M.; Quintieri, L.; et al. A new nitrobenzoxadiazole-based GSTP1-1 inhibitor with a previously unheard of mechanism of action and high stability. J. Enzyme Inhib. Med. Chem. 2017, 32, 240–247. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.; Hartinger, C.G.; Dyson, P.J.; Bello, M.L.; Casini, A. A new target for gold (I) compounds: Glutathione-S-transferase inhibition by auranofin. J. Inorg. Biochem. 2013, 119, 38–42. [Google Scholar] [CrossRef]
- Sau, A.; Tregno, F.P.; Valentino, F.; Federici, G.; Caccuri, A.M. Glutathione transferases and development of new principles to overcome drug resistance. Arch. Biochem. Biophys. 2010, 500, 116–122. [Google Scholar] [CrossRef]
- Harshbarger, W.; Gondi, S.; Ficarro, S.B.; Hunter, J.; Udayakumar, D.; Gurbani, D.; Singer, W.D.; Liu, Y.; Li, L.; Marto, J.A.; et al. Structural and biochemical analyses reveal the mechanism of glutathione S-transferase Pi 1 inhibition by the anti-cancer compound piperlongumine. J. Biol. Chem. 2017, 292, 112–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larasati, Y.A.; Yoneda-Kato, N.; Nakamae, I.; Yokoyama, T.; Meiyanto, E.; Kato, J.Y. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci. Rep. 2018, 8, 2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, E.; Lucariello, A.; Contieri, M.; Esposito, T.; De Luca, A.; Guerra, G.; Perna, A. Therapeutic effects of turmeric in several diseases: An overview. Chem.-Biol. Interact. 2019, 310, 108729. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Kumar, N.V.A.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of curcumin: A review of clinical trials. Eur. J. Med. Chem. 2019, 163, 527–545. [Google Scholar] [CrossRef]
- Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef] [Green Version]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef]
- Kazantzis, K.T.; Koutsonikoli, K.; Mavroidi, B.; Zachariadis, M.; Alexiou, P.; Pelecanou, M.; Politopoulos, K.; Alexandratou, E.; Sagnou, M. Curcumin derivatives as photosensitizers in Photodynamic Therapy: Photophysical properties and in vitro studies with prostate cancer cells. Photochem. Photobiol. Sci. 2020, 19, 193. [Google Scholar] [CrossRef]
- Nakamae, I.; Morimoto, T.; Shima, H.; Shionyu, M.; Fujiki, H.; Yoneda-Kato, N.; Yokoyama, T.; Kanaya, S.; Kakiuchi, K.; Shirai, T.; et al. Curcumin Derivatives Verify the Essentiality of ROS Upregulation in Tumor Suppression. Molecules 2019, 24, 4067. [Google Scholar] [CrossRef] [Green Version]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci. 2019, 20, 1033. [Google Scholar] [CrossRef] [Green Version]
- Shetty, D.; Kim, Y.J.; Shim, H.; Snyder, J.P. Eliminating the heart from the curcumin molecule: Monocarbonyl curcumin mimics (MACs). Molecules 2014, 20, 249–292. [Google Scholar] [CrossRef]
- Yuan, X.; Li, H.; Bai, H.; Su, Z.; Xiang, Q.; Wang, C.; Zhao, B.; Zhang, Y.; Zhang, Q.; Chu, Y.; et al. Synthesis of novel curcumin analogues for inhibition of 11β-hydroxysteroid dehydrogenase type 1 with anti-diabetic properties. Eur. J. Med. Chem. 2014, 77, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.S.; Chen, L.Z.; Zhou, H.P.; Liu, X.H.; Chen, F.H. Diarylpentadienone derivatives (curcumin analogues): Synthesis and anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2017, 27, 1803–1807. [Google Scholar] [CrossRef] [PubMed]
- Hotsumi, M.; Tajiri, M.; Nikaido, Y.; Sato, T.; Makabe, K.; Konno, H. Design, synthesis, and evaluation of a water soluble C5-monoketone type curcumin analogue as a potent amyloid β aggregation inhibitor. Bioorg. Med. Chem. Lett. 2019, 29, 2157–2161. [Google Scholar] [CrossRef]
- Hayeshi, R.; Mutingwende, I.; Mavengere, W.; Masiyanise, V.; Mukanganyama, S. The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin. Food Chem. Toxicol. 2007, 45, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Innao, V.; Russo, S.; Gerace, D.; Alonci, A.; Musolino, C. Anticancer activity of curcumin and its analogues: Preclinical and clinical studies. Cancer Investig. 2017, 35, 1–22. [Google Scholar] [CrossRef]
- Keyvani-Ghamsari, S.; Khorsandi, K.; Gul, A. Curcumin effect on cancer cells’ multidrug resistance: An update. Phytother. Res. 2020, 34, 2534–2556. [Google Scholar] [CrossRef]
- Chainoglou, E.; Hadjipavlou-Litina, D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin. Drug Discov. 2019, 14, 821–842. [Google Scholar] [CrossRef]
- Appiah-Opong, R.; Commandeur, J.N.M.; Istyastono, E.; Bogaards, J.J.; Vermeulen, N.P.E. Inhibition of human glutathione S-transferases by curcumin and analogues. Xenobiotica 2009, 39, 302–311. [Google Scholar] [CrossRef]
- Van Iersel, M.L.; Ploemen, J.P.; Lo Bello, M.; Federici, G.; Van Bladeren, P.J. Interactions of alpha, beta-unsaturated aldehydes and ketones with human glutathione S-transferase P1-Chem. Biol. Interact. 1997, 108, 67–78. [Google Scholar] [CrossRef]
- Sha, J.; Li, J.; Wang, W.; Pan, L.; Cheng, J.; Li, L.; Zhao, H.; Lin, W. Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling. Biomed. Pharmacother. 2016, 84, 177–184. [Google Scholar] [CrossRef]
- Liang, G.; Yang, S.; Jiang, L.; Zhao, Y.; Shao, L.; Xiao, J.; Ye, F.; Li, Y.; Li, X. Synthesis and anti-bacterial properties of mono-carbonyl analogues of curcumin. Chem. Pharm. Bull. 2008, 56, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.Y.; Bao, Y.D.; Liu, Z.; Qiao, W.; Ma, L.; Huang, Z.S.; Gu, L.Q.; Chan, A.S.C. Curcumin analogs as potent aldose reductase inhibitors. Arch. Pharm. Int. J. Pharm. Med. Chem. 2006, 339, 123–128. [Google Scholar] [CrossRef]
- Sardjiman, S.S.; Reksohadiprodjo, M.S.; Hakim, L.; Van der Goot, H.; Timmerman, H. 1,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship. Eur. J. Med. Chem. 1997, 32, 625–630. [Google Scholar] [CrossRef]
- Robinson, T.P.; Ehlers, T.; Hubbard IV, T.R.B.; Bai, X.; Arbiser, J.L.; Goldsmith, D.J.; Bowen, J.P. Design, synthesis, and biological evaluation of angiogenesis inhibitors: Aromatic enone and dienone analogues of curcumin. Bioorg. Med. Chem. Lett. 2003, 13, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Mavroidi, B.; Sagnou, M.; Stamatakis, K.; Paravatou-Petsotas, M.; Pelecanou, M.; Methenitis, C. Palladium (II) and platinum (II) complexes of derivatives of 2-(4′-aminophenyl) benzothiazole as potential anticancer agents. Inorg. Chim. Acta 2016, 444, 63–75. [Google Scholar] [CrossRef]
- Fine, J.; Konc, J.; Samudrala, R.; Chopra, G. CANDOCK: Chemical atomic network-based hierarchical flexible docking algorithm using generalized statistical potentials. J. Chem. Inf. Model. 2020, 60, 1509–1527. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Marelius, J.; Kolmodin, K.; Feierberg, I.; Åqvist, J. Q: A molecular dynamics program for free energy calculations and empirical valence bond simulations in biomolecular systems. J. Mol. Graph. 1998, 16, 213–225. [Google Scholar] [CrossRef]
- Cerutti, D.S.; Swope, W.C.; Rice, J.E.; Case, D.A. ff14ipq: A self-consistent force field for condensed-phase simulations of proteins. J. Chem. Theory Comput. 2014, 10, 4515–4534. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- DeLano, W.L. Pymol: An open-source molecular graphics tool, CCPNewsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Kulkarni, Y.S.; Liao, Q.; Petrović, D.A.; Krüger, D.M.; Strodel, B.; Amyes, T.L.; Richard, J.P.; Kamerlin, S.C. Enzyme architecture: Modeling the operation of a hydrophobic clamp in catalysis by triosephosphate isomerase. J. Am. Chem. Soc. 2017, 139, 10514–10525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, Y.S.; Amyes, T.L.; Richard, J.P.; Kamerlin, S.C. Uncovering the role of key active-site side chains in catalysis: An extended Brønsted relationship for substrate deprotonation catalyzed by wild-type and variants of triosephosphate isomerase. J. Am. Chem. Soc. 2019, 141, 16139–16150. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A. H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 2005, 33, 368–371. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [Green Version]
- Furlan, V.; Bren, U. Insight into Inhibitory Mechanism of PDE4D by Dietary Polyphenols Using Molecular Dynamics Simulations and Free Energy Calculations. Biomolecules 2021, 11, 479. [Google Scholar] [CrossRef]
- Klvana, M.; Bren, U. Aflatoxin B1–formamidopyrimidine DNA adducts: Relationships between structures, free energies, and melting temperatures. Molecules 2019, 24, 150. [Google Scholar] [CrossRef] [Green Version]
- Lee, F.S.; Warshel, A. A local reaction field method for fast evaluation of long-range electrostatic interactions in molecular simulations. J. Chem. Phys. 1992, 97, 3100–3107. [Google Scholar] [CrossRef]
- King, G.; Warshel, A. A surface constrained all-atom solvent model for effective simulations of polar solutions. J. Chem. Phys. 1989, 91, 3647–3661. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Gowers, R.J.; Linke, M.; Barnoud, J.; Reddy, T.J.; Melo, M.N.; Seyler, S.L.; Domański, J.; Dotson, D.L.; Buchoux, S.; Kenney, I.M.; et al. MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations. In Proceedings of the 15th Python in Science Conference (SciPy 2016), Austin, TX, USA, 11–17 July 2016; Volume 98, p. 105. [Google Scholar] [CrossRef] [Green Version]
- Åqvist, J.; Marelius, J. The linear interaction energy method for predicting ligand binding free energies. Comb. Chem. High Throughput Screen. 2001, 4, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Åqvist, J.; Medina, C.; Samuelsson, J.E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng. Des. Sel. 1994, 7, 385–391. [Google Scholar] [CrossRef]
- Hansson, T.; Åqvist, J. Estimation of binding free energies for HIV proteinase inhibitors by molecular dynamics simulations. Protein Eng. Des. Sel. 1995, 8, 1137–1144. [Google Scholar] [CrossRef]
- Paulsen, M.D.; Ornstein, R.L. Binding free energy calculations for P450cam-substrate complexes. Protein Eng. Des. Sel. 1996, 9, 567–571. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Kollman, P.A. What determines the van der Waals coefficient β in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? Proteins Struct. Funct. Bioinform. 1999, 34, 395–402. [Google Scholar] [CrossRef]
- Bren, U.; Lah, J.; Bren, M.; Martínek, V.; Florián, J. DNA duplex stability: The role of preorganized electrostatics. J. Phys. Chem. B 2010, 114, 2876–2885. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, M.; Zou, P.; Kanchana, K.; Weng, Q.; Chen, W.; Zhong, P.; Ji, J.; Zhou, H.; He, L.; et al. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells. BMC Cancer 2015, 15, 866. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.J.; Lin, X.L.; Liu, M.H.; Fan, X.J.; Zou, W.W. Curcumin mediates reversion of HGF-induced epithelial-mesenchymal transition via inhibition of c-Met expression in DU145 cells. Oncol. Lett. 2016, 11, 1499–1505. [Google Scholar] [CrossRef]
- Dirr, H.; Reinemer, P.; Huber, R. X-ray crystal structures of cytosolic glutathione S-transferases: Implications for protein architecture, substrate recognition and catalytic function. Eur. J. Biochem. 1994, 220, 645–661. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Chavira, I.; Contreras-Vergara, C.A.; Arvizu-Flores, A.A.; Serrano-Posada, H.; Lopez-Zavala, A.A.; García-Orozco, K.D.; Hernandez-Paredes, J.; Rudiño-Piñera, E.; Stojanoff, V.; Sotelo-Mundo, R.R.; et al. Insights into ligand binding to a glutathione S-transferase from mango: Structure, thermodynamics and kinetics. Biochimie 2017, 135, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erhardt, J.; Dirr, H. Effect of glutathione, glutathione sulphonate and S-hexylglutathione on the conformational stability of class pi glutathione S-transferase. FEBS Lett. 1996, 391, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Hitchens, T.K.; Mannervik, B.; Rule, G.S. Disorder-to-order transition of the active site of human class Pi glutathione transferase, GST P1-1. Biochemistry 2001, 40, 11660–11669. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, U.M.; Mannervik, B.; Stenberg, G. Functional role of the lock and key motif at the subunit interface of glutathione transferase p1-1. J. Biol. Chem. 2004, 279, 9586–9596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralat, L.A.; Colman, R.F. Glutathione S-transferase Pi has at least three distinguishable xenobiotic substrate sites close to its glutathione-binding site. J. Biol. Chem. 2004, 279, 50204–50213. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.; Atkins, W.M. The chemistry and biology of inhibitors and pro-drugs targeted to glutathione S-transferases. Cell. Mol. Life Sci. 2005, 62, 1221–1233. [Google Scholar] [CrossRef]
- Allocati, N.; Masulli, M.; Di Ilio, C.; Federici, L. Glutathione transferases: Substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 2018, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Valli, A.; Achilonu, I. Comparative structural analysis of the human and Schistosoma glutathione transferase dimer interface using selective binding of bromosulfophthalein. Proteins Struct. Funct. Bioinform. 2022. [Google Scholar] [CrossRef]
- Koutsoumpli, G.E.; Dimaki, V.D.; Thireou, T.N.; Eliopoulos, E.E.; Labrou, N.E.; Varvounis, G.I.; Clonis, Y.D. Synthesis and study of 2-(pyrrolesulfonylmethyl)-N-arylimines: A new class of inhibitors for human glutathione transferase A1-1. J. Med. Chem. 2012, 55, 6802–6813. [Google Scholar] [CrossRef]
- Federici, L.; Masulli, M.; Gianni, S.; Di Ilio, C.; Allocati, N. A conserved hydrogen-bond network stabilizes the structure of Beta class glutathione S-transferases. Biochem. Biophys. Res. Commun. 2009, 382, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Federici, L.; Masulli, M.; Bonivento, D.; Di Matteo, A.; Gianni, S.; Favaloro, B.; Di Ilio, C.; Allocati, N. Role of Ser11 in the stabilization of the structure of Ochrobactrum anthropi glutathione transferase. Biochem. J. 2007, 403, 267–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. J. Chem. Inf. Model. 2017, 57, 2514–2522. [Google Scholar] [CrossRef]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015, 43, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Matiadis, D.; Liggri, P.G.; Kritsi, E.; Tzioumaki, N.; Zoumpoulakis, P.; Papachristos, D.P.; Balatsos, G.; Sagnou, M.; Michaelakis, A. Curcumin derivatives as potential mosquito larvicidal agents against two mosquito vectors, Culex pipiens and Aedes albopictus. Int. J. Mol. Sci. 2021, 22, 8915. [Google Scholar] [CrossRef] [PubMed]
- Badal, M.M.R.; Ashekul Islam, H.M.; Maniruzzaman, M.; Abu Yousuf, M. Acidochromic behavior of dibenzylidene cyclohexanone-based bischalcone: Experimental and theoretical study. ACS Omega 2020, 5, 22978–22983. [Google Scholar] [CrossRef] [PubMed]
- Matiadis, D.; Ng, S.T.; Chen, E.H.L.; Nigianni, G.; Vidali, V.P.; Canko, A.; Chen, R.P.Y.; Sagnou, M. Synthesis and Biological Evaluation of Hydroxylated Monocarbonyl Curcumin Derivatives as Potential Inducers of Neprilysin Activity. Biomedicines 2021, 9, 955. [Google Scholar] [CrossRef]
- Singh, M.; Raghav, N. Synthesis, docking, and in vitro studies of some substituted bischalcones on acid and alkaline phosphatases. Med. Chem. Res. 2014, 23, 1781–1788. [Google Scholar] [CrossRef]
- Badr, G.; Gul, H.; Yamali, C.; Mohamed, A.; Badr, B.; Gul, M.; Markeb, A.; El-Maali, N. Curcumin analogue 1, 5-bis (4-hydroxy-3-((4-methylpiperazin-1-yl) methyl) phenyl) penta-1, 4-dien-3-one mediates growth arrest and apoptosis by targeting the PI3K/AKT/mTOR and PKC-theta signaling pathways in human breast carcinoma cells. Bioorg. Chem. 2018, 78, 46–57. [Google Scholar] [CrossRef]
- Homocianu, M.; Serbezeanu, D.; Macsim, A.; Vlad-Bubulac, T. From cyclohexanone to photosensitive polyesters: Synthetic pathway, basic characterization, and photo-/halochromic properties. J. Mol. Liq. 2020, 316, 113888. [Google Scholar] [CrossRef]
Compound Code | Molecular Weight | Enzyme Inhibition (%) |
---|---|---|
Curcumin | 368.38 | 53.00 ± 1.98 |
DMC | 338.35 | 94.56 ± 0.25 |
DM15 | 274.36 | 66.23 ± 2.57 |
DM46 | 334.40 | 8.50 ± 2.13 |
DM57 | 394.46 | 16.75 ± 3.61 |
DM62 | 310.34 | 8.40 ± 0.36 |
DM95 | 354.39 | 44.18 ± 3.06 |
DM96 | 266.29 | 86.99 ± 1.88 |
DM100 | 366.41 | 40.00 ± 1.84 |
DM101 | 326.34 | 72.28 ± 1.91 |
DM109 | 270.27 | 79.06 ± 2.54 |
DM148 | 298.29 | 54.80 ± 0.52 |
DM151 | 338.35 | 88.18 ± 3.65 |
Inhibitor | IC50 against DU-145 (μΜ) | IC50 against hGSTP1-1 (μΜ) | Variable Substrate | Type of Inhibition | Inhibition Constants (μΜ) | Experimental Binding Free Energies (kcal/mol) |
---|---|---|---|---|---|---|
DM96 | 8.60 ± 1.07 | 5.45 ± 1.08 | CDNB | Purely mixed | Ki = 3.67 ± 0.35 Ki΄ = 4.97 ± 2.86 | ΔGexp = −7.71 ΔG′exp = −7.52 |
GSH | Partial mixed | Ki = 3.69 ± 1.00 Ki΄ = 1.45 ± 0.43 | ΔGexp = −7.71 ΔG′exp = −8.29 | |||
DM151 | 44.59 ± 1.08 | 11.17 ± 1.03 | CDNB | Purely non-competitive | Ki = 9.55 ± 2.36 | ΔGexp = −7.12 |
GSH | Purely non-competitive | Ki = 5.79 ± 1.21 | ΔGexp = −7.43 | |||
DM109 | 46.15 ± 3.68 | 19.53 ± 1.04 | CDNB | Purely non-competitive | Ki = 20.12 ± 5.27 | ΔGexp = −6.66 |
GSH | Purely non-competitive | Ki = 35.12 ± 5.69 | ΔGexp = −5.96 | |||
Curcumin II | 48.52 ± 1.09 | 37.72 ± 1.02 | CDNB | Partially mixed | Κi = 3.99 ± 1.80 Ki΄ = 2.36 ± 1.37 | ΔGexp = −7.66 ΔG′exp = −7.98 |
GSH | Partially mixed | Κi = 68.02 ± 14.60 Ki΄ = 52.83 ± 12.25 | ΔGexp = −5.91 ΔG′exp = −6.07 |
Compound Code | Enzyme Inhibition (%) |
---|---|
DM96 | 41.10 ± 1.99 |
DM109 | 50.16 ± 0.76 |
DM151 | No inhibition was observed |
DMC | 48.30 ± 2.51 |
Curcumin Derivative | Docking Score Values (Arbitrary Units) |
---|---|
DM96 | −40.63 |
DM151 | −36.99 |
DM109 | −31.30 |
DMC | −25.39 |
Curcumin Derivative | Average Ligand RMSD (Å) | Average Backbone RMSD (Å) | Average Ligand RMSF (Å) | Average Backbone RMSF (Å) |
---|---|---|---|---|
DM96 | 0.35 ± 0.02 | 0.76 ± 0.03 | 1.25 ± 0.04 | 0.77 ± 0.02 |
DM151 | 0.44 ± 0.03 | 0.85 ± 0.04 | 1.55 ± 0.03 | 0.79 ± 0.01 |
DM109 | 0.63 ± 0.03 | 1.01 ± 0.07 | 1.81 ± 0.04 | 0.86 ± 0.06 |
DMC | 2.10 ± 0.08 | 1.14 ± 0.06 | 1.83 ± 0.05 | 0.90 ± 0.07 |
Energies | (kcal/mol) | (kcal/mol) | (kcal/mol) | (kcal/mol) | (kcal/mol) | ** (kcal/mol) |
---|---|---|---|---|---|---|
DM96 | ||||||
LIE average * | −40.52 ± 0.44 | −23.49 ± 0.03 | −36.05 ± 0.1 | −36.7 ± 0.04 | / | −7.83 ± 0.27 |
LRA average * | −40.52 ± 0.44 | −23.49 ± 0.03 | −36.05 ± 0.1 | −36.7 ± 0.04 | −0.28 ± 0.02 | −8.11 ± 0.28 |
DM151 | ||||||
LIE average * | −39.88 ± 0.54 | −28.23 ± 0.04 | −47.52 ± 0.43 | −45.91 ± 0.19 | / | −7.49 ± 0.50 |
LRA average * | −39.88 ± 0.54 | −28.23 ± 0.04 | −47.52 ± 0.43 | −45.91 ± 0.19 | −0.23 ± 0.01 | −7.73 ± 0.51 |
DM109 | ||||||
LIE average * | −34.49 ± 0.07 | −24.83 ± 0.01 | −21.41 ± 0.05 | −20.89 ± 0.01 | / | −5.38 ± 0.07 |
LRA average * | −34.49 ± 0.07 | −24.83 ± 0.01 | −21.41 ± 0.05 | −20.89 ± 0.01 | −0.22 ± 0.01 | −5.60 ± 0.08 |
DMC | ||||||
LIE average * | −37.08 ± 0.06 | −28.80 ± 0.02 | −55.11 ± 0.29 | −54.4 ± 0.12 | / | −4.88 ± 0.20 |
LRA average * | −37.08 ± 0.06 | −28.80 ± 0.02 | −55.11 ± 0.29 | −54.4 ± 0.12 | −0.21 ± 0,01 | −5.09 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantiora, P.; Furlan, V.; Matiadis, D.; Mavroidi, B.; Perperopoulou, F.; Papageorgiou, A.C.; Sagnou, M.; Bren, U.; Pelecanou, M.; Labrou, N.E. Monocarbonyl Curcumin Analogues as Potent Inhibitors against Human Glutathione Transferase P1-1. Antioxidants 2023, 12, 63. https://doi.org/10.3390/antiox12010063
Pantiora P, Furlan V, Matiadis D, Mavroidi B, Perperopoulou F, Papageorgiou AC, Sagnou M, Bren U, Pelecanou M, Labrou NE. Monocarbonyl Curcumin Analogues as Potent Inhibitors against Human Glutathione Transferase P1-1. Antioxidants. 2023; 12(1):63. https://doi.org/10.3390/antiox12010063
Chicago/Turabian StylePantiora, Panagiota, Veronika Furlan, Dimitris Matiadis, Barbara Mavroidi, Fereniki Perperopoulou, Anastassios C. Papageorgiou, Marina Sagnou, Urban Bren, Maria Pelecanou, and Nikolaos E. Labrou. 2023. "Monocarbonyl Curcumin Analogues as Potent Inhibitors against Human Glutathione Transferase P1-1" Antioxidants 12, no. 1: 63. https://doi.org/10.3390/antiox12010063
APA StylePantiora, P., Furlan, V., Matiadis, D., Mavroidi, B., Perperopoulou, F., Papageorgiou, A. C., Sagnou, M., Bren, U., Pelecanou, M., & Labrou, N. E. (2023). Monocarbonyl Curcumin Analogues as Potent Inhibitors against Human Glutathione Transferase P1-1. Antioxidants, 12(1), 63. https://doi.org/10.3390/antiox12010063