Discovery of New Triterpenoids Extracted from Camellia oleifera Seed Cake and the Molecular Mechanism Underlying Their Antitumor Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Sample Preparation
2.3. Extraction, Acid Hydrolysis, and Isolation
2.4. Cytotoxicity Bioassay
2.5. Cell Apoptosis Assay
2.6. Cell Counterstaining
2.7. Western Blot Analysis
2.8. Statistical Analysis
3. Results
3.1. Extraction, Identification, and Characterization of Theasaponin Derivatives from Camellia oleifera
3.2. Antitumor Activity of the Identified Theasaponin Derivatives in Cancer Cell Lines
3.3. Effects of C3 and C4 on Viability of Three Typical Cancer Cell Lines
3.4. Effect of C4 on Apoptosis of HepG2 Cells
3.5. Effect of C4 on Redox Related Nrf2 and NF-κB Pathways in LPS-Induced HepG2 Cells
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, N.; Tong, T.; Ren, N.; Tu, Y.; Li, B. Saponins from seeds of Genus Camellia: Phytochemistry and bioactivity. Phytochemistry 2018, 149, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Yang, K.; Zhou, R.; Liu, Q.; Guo, X.; Sun, Y. Temporal transcriptome profiling reveals candidate genes involved in cold acclimation of Camellia japonica (Naidong). Plant Physiol. Biochem. PPB 2021, 167, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Xue-Hui, W.U.; Yong-Fang, H.; Zhi-Fang, X. Health functions and prospective of camellia oil. Food Sci. Technol. 2005, 8, 94–96. [Google Scholar]
- Ko, J.; Rho, T.; Yoon, K.D. Kaempferol tri- and tetrasaccharides from Camellia japonica seed cake and their inhibitory activities against matrix metalloproteinase-1 secretion using human dermal fibroblasts. Carbohydr. Res. 2020, 495, 108101. [Google Scholar] [CrossRef]
- Xiao, X.; He, L.; Chen, Y.; Wu, L.; Wang, L.; Liu, Z. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components. Future Med. Chem. 2017, 9, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, C.; Wang, X.; Wang, R.; Tian, Y. Assessment of genetic diversity in Camellia oleifera Abel. accessions using morphological traits and simple sequence repeat (SSR) markers. Breed. Sci. 2020, 70, 586–593. [Google Scholar] [PubMed]
- Zhang, S.; Li, X. Hypoglycemic activity in vitro of polysaccharides from Camellia oleifera Abel. seed cake. Int. J. Biol. Macromol. 2018, 115, 811–819. [Google Scholar] [CrossRef]
- Yang, C.; Liu, X.; Chen, Z.; Lin, Y.; Wang, S. Comparison of Oil Content and Fatty Acid Profile of Ten New Camellia oleifera Cultivars. J. Lipids 2016, 2016, 3982486. [Google Scholar] [CrossRef] [Green Version]
- Duan, D.; Huang, Y.; Zou, Y.; He, B.; Deng, M. Discrimination of Camellia seed oils extracted by supercritical CO2 using electronic tongue technology. Food Sci. Biotechnol. 2021, 30, 1303–1312. [Google Scholar] [CrossRef]
- Zhou, D.; Shi, Q.; Pan, J.; Liu, M.; Long, Y.; Ge, F. Effectively improve the quality of camellia oil by the combination of supercritical fluid extraction and molecular distillation (SFE-MD). Lebensm. Wiss. Technol. 2019, 110, 175–181. [Google Scholar] [CrossRef]
- Fu, J.; Xia, X.; Huang, L.; Li, N.; Chen, X. Development situation and prospects of oil-tea industry. J. Green Sci. Technol. 2015, 10, 147–149. [Google Scholar]
- Zhang, X.-F.; Han, Y.-Y.; Di, T.-M.; Gao, L.-P.; Xia, T. Triterpene saponins from tea seed pomace (Camellia oleifera Abel) and their cytotoxic activity on MCF-7 cells in vitro. Nat. Prod. Res. 2021, 35, 2730–2733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-F.; Yang, S.-L.; Han, Y.-Y.; Zhao, L.; Lu, G.-L.; Xia, T.; Gao, L.-P. Qualitative and quantitative analysis of triterpene saponins from tea seed pomace (Camellia oleifera abel) and their activities against bacteria and fungi. Molecules 2014, 19, 7568–7580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Wang, C.Z.; Ye, J.Z.; Chen, H.X. New triterpene saponins from the seed cake of Camellia oleifera and their cytotoxic activity. Phytochem. Lett. 2014, 8, 46–51. [Google Scholar] [CrossRef]
- Zong, J.; Wang, R.; Bao, G.; Ling, T.; Zhang, L.; Zhang, X.; Hou, R. Novel triterpenoid saponins from residual seed cake of Camellia oleifera Abel. show anti-proliferative activity against tumor cells. Fitoterapia 2015, 104, 7–13. [Google Scholar]
- Zhang, L.; Chen, J.; Liang, R.; Liu, C.; Chen, M.; Chen, J. Synergistic anti-inflammatory effects of lipophilic grape seed proanthocyanidin and camellia oil combination in LPS-stimulated RAW264. 7 cells. Antioxidants 2022, 11, 289. [Google Scholar] [CrossRef]
- Jin, R.; Guo, Y.; Xu, B.; Wang, H.; Yuan, C. Physicochemical properties of polysaccharides separated from Camellia oleifera Abel seed cake and its hypoglycemic activity on streptozotocin-induced diabetic mice. Int. J. Biol. Macromol. 2019, 125, 1075–1083. [Google Scholar] [CrossRef]
- Li, X.; Deng, J.; Shen, S.; Li, T.; Yuan, M.; Yang, R.; Ding, C. Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake. J. Food Sci. Technol. 2015, 52, 5681–5690. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.; Yeh, W.J.; Huang, W.C.; Yang, H.Y. Camellia oleifera Seed Extract Mildly Ameliorates Carbon Tetrachloride-Induced Hepatotoxicity in Rats by Suppressing Inflammation. J. Food Sci. 2019, 84, 1586–1591. [Google Scholar] [CrossRef]
- Kim, J.K.; Lim, H.-J.; Kim, M.-S.; Choi, S.J.; Kim, M.-J.; Kim, C.R.; Shin, D.-H.; Shin, E.-C. Responsive surface methodology optimizes extraction conditions of industrial by-products, Camellia japonica seed cake. Pharmacogn. Mag. 2016, 12, 184. [Google Scholar]
- Quan, W.; Wang, A.; Gao, C.; Li, C. Applications of Chinese Camellia oleifera and its By-Products: A Review. Front. Chem. 2022, 10, 921246. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Wu, C.-E. Screening of antioxidant and antitumor activities of major ingredients from defatted Camellia oleifera seeds. Food Sci. Biotechnol. 2014, 23, 873–880. [Google Scholar] [CrossRef]
- Jin, X.; Ning, Y. Antioxidant and antitumor activities of the polysaccharide from seed cake of Camellia oleifera Abel. Int. J. Biol. Macromol. 2012, 51, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Murata, M. Inflammation and cancer. Environ. Health Prev. Med. 2018, 23, 50. [Google Scholar] [CrossRef]
- Candido, J.; Hagemann, T. Cancer-related inflammation. J. Clin. Immunol. 2013, 33, 79–84. [Google Scholar] [CrossRef]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121. [Google Scholar] [CrossRef]
- Roca, H.; Jones, J.D.; Purica, M.C.; Weidner, S.; Koh, A.J.; Kuo, R.; Wilkinson, J.E.; Wang, Y.; Daignault-Newton, S.; Pienta, K.J. Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone. J. Clin. Investig. 2018, 128, 248–266. [Google Scholar] [CrossRef] [PubMed]
- Klimentova, E.A.; Suchkov, I.A.; Egorov, A.A.; Kalinin, R.E. Apoptosis and Cell Proliferation Markers in Inflammatory-Fibroproliferative Diseases of the Vessel Wall (Review). Sovrem. Tekhnologii Med. 2021, 12, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yan, X.; Hou, Z.; Zhang, L.; Zhang, D. Impact of Bupivacaine on malignant proliferation, apoptosis and autophagy of human colorectal cancer SW480 cells through regulating NF-κB signaling path. Bioengineered 2021, 12, 2723–2733. [Google Scholar] [CrossRef]
- Wang, D.; Huo, R.; Cui, C.; Gao, Q.; Zong, J.; Wang, Y.; Sun, Y.; Hou, R. Anticancer activity and mechanism of total saponins from the residual seed cake of Camellia oleifera Abel. in hepatoma-22 tumor-bearing mice. Food Funct. 2019, 10, 2480–2490. [Google Scholar]
1 | 4 | 2 | 3 | |||||
---|---|---|---|---|---|---|---|---|
δH | δC | δH | δC | δH | δC | δH | δC | |
1 | 1.69 m, 1.05 m | 38.4 | 1.68 m, 1.05 m | 38.3 | 1.64 m, 0.98 m | 38.8 | 1.64 m, 1.01 m | 38.8 |
2 | 1.71 m | 26.2 | 1.80 m | 20.5 | 1.61 m | 27.3 | 1.59 m | 27.3 |
3 | 3.75 dd (11.4, 4.6) | 72.0 | 3.78 m | 82.5 | 3.20 dd (11.0, 4.7) | 79.1 | 3.21 dd (11.0, 4.6) | 79.1 |
4 | 55.3 | 55.2 | 38.9 | 38.9 | ||||
5 | 1.26 m | 48.4 | 1.26 m | 48.4 | 0.71 d (11.0) | 55.4 | 0.73 d (11.3) | 55.3 |
6 | 1.53 m, 0.98 m | 20.8 | 1.51 m, 0.93 m | 20.7 | 1.55 m, 1.38 m | 18.4 | 1.54 m, 1.35 m | 18.4 |
7 | 1.53 m, 1.26 m | 32.1 | 1.60 m, 1.38 m | 33.6 | 1.53 m, 1.32 m | 32.8 | 1.54 m, 1.29 m | 32.9 |
8 | 40.3 | 40.2 | 40.0 | 39.9 | ||||
9 | 1.71 m | 46.8 | 1.72 m | 46.5 | 1.64 m | 46.9 | 1.61 m | 46.7 |
10 | 36.0 | 35.8 | 37.0 | 37.0 | ||||
11 | 1.90 m | 23.5 | 1.91 m | 23.6 | 1.90 m | 23.5 | 1.87 m | 23.6 |
12 | 5.31 t (3.9) | 123.7 | 5.44 s | 124.4 | 5.31 t (3.4) | 124.1 | 5.38 t (3.3) | 124.2 |
13 | 141.4 | 141.2 | 141.3 | 141.8 | ||||
14 | 41.4 | 41.2 | 41.4 | 41.2 | ||||
15 | 2.11 m, 1.36 m | 31.8 | 1.56 m, 1.20 m | 32.2 | 2.12 m, 1.40 m | 31.6 | 1.73 m, 1.32 m | 34.0 |
16 | 5.80 brs | 71.5 | 3.92 m | 69.6 | 5.83 brs | 71.7 | 4.02 brs | 71.1 |
17 | 43.9 | 47.9 | 43.9 | 44.9 | ||||
18 | 1.99 m | 42.0 | 2.70 m | 39.4 | 1.96 dd (14.0, 3.9) | 42.0 | 2.56 dd (14.1, 4.5) | 40.5 |
19 | 2.12 m, 1.12 m | 46.4 | 2.57, 1.24 | 46.5 | 2.14 m, 1.10 m | 46.4 | 2.31 m, 1.15 m | 46.9 |
20 | 31.6 | 36.0 | 31.9 | 31.7 | ||||
21 | 1.39 m, 1.15 m | 44.1 | 5.86 d (10.0) | 77.6 | 1.42 m, 1.18 d (12.7) | 44.1 | 2.08 m, 1.55 m | 42.7 |
22 | 3.89 dd (12.8, 5.4) | 76.6 | 5.38 d (10.0) | 73.3 | 3.89 dd (12.8, 5.3) | 76.8 | 5.46 dd (12.4, 5.9) | 72.3 |
23 | 9.37 s | 207.3 | 9.40 s | 208.1 | 0.97 s | 28.2 | 0.98 s | 28.2 |
24 | 1.05 m | 9.1 | 1.10 s | 10.1 | 0.93 s | 15.7 | 0.92 s | 15.7 |
25 | 0.98 s | 16.0 | 0.97 s | 16.0 | 0.77 s | 15.7 | 0.77 s | 15.7 |
26 | 0.93 s | 16.7 | 0.89 s | 16.9 | 0.93 s | 16.7 | 0.89 s | 16.9 |
27 | 1.40 s | 27.3 | 1.45 s | 27.2 | 1.40 s | 27.3 | 1.42 s | 27.2 |
28 | 3.64 d (11.3), 3.38 d (11.3) | 73.2 | 3.24 m, 2.87 m | 63.7 | 3.67 d (11.4), 3.39 d (11.4) | 73.4 | 3.27 d (11.4), 2.97 d (11.4) | 64.6 |
29 | 0.85 s | 33.1 | 0.89 s | 29.2 | 0.85 s | 33.2 | 0.94 s | 33.1 |
30 | 0.93 s | 24.9 | 1.07 s | 19.8 | 0.93 s | 24.9 | 1.03 s | 24.7 |
1′ | 169.5 | 167.9 | 169.6 | 169.0 | ||||
2′ | 129.1 | 128.1 | 129.1 | 127.7 | ||||
3′ | 6.91 q (6.8) | 139.2 | 5.98 m | 137.7 | 6.93 qd (7.0, 1.1) | 139.2 | 6.11 qd (7.2, 1.4) | 139.2 |
4′ | 1.82 d (6.8) | 14.7 | 1.80 brs | 20.5 | 1.82 dd (7.0, 1.1) | 14.7 | 1.99 dd (7.2, 1.4) | 16.0 |
5′ | 1.87 s | 12.5 | 1.89 s | 15.9 | 1.87, brs | 12.5 | 1.89 t (1.4) | 20.8 |
1″ | 169.4 | |||||||
2″ | 127.3 | |||||||
3″ | 6.07 d (7.3) | 140.0 | ||||||
4″ | 1.80 brs | 20.6 | ||||||
5″ | 1.93 s | 16.0 | ||||||
Gal | ||||||||
a | 4.27 d (7.5) | 104.1 | ||||||
b | 3.33 m | 73.3 | ||||||
c | 3.50 m | 75.5 | ||||||
d | 3.66 m | 71.4 | ||||||
e | 3.87 m | 74.7 | ||||||
f | 169.9 | |||||||
f-Me | 3.80 s | 52.9 |
ED50 (μM) | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | DDPa | |
Huh-7 | 35.6 | 148.9 | 101.0 | 11.3 | 55.6 |
HepG2 | 43.0 | 115.6 | 10.8 | 1.5 | 8.1 |
Hela | 13.8 | 78.3 | 21.2 | 4.6 | 9.5 |
A549 | 17.6 | 332.6 | 12.4 | 7.9 | 14.4 |
SGC7901 | 6.8 | 142.8 | 20.3 | 4.1 | 5.6 |
293T | 3.314 | 2.195 | 23.43 | ||
U251 | 2.431 | 3.851 | 18.04 | ||
PAN02 | 6.396 | 4.931 | 6.225 | ||
MCF7 | 7.881 | 1.805 | 27.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Tan, X.; Zhou, J.; Yuan, J.; Yang, G.; Li, Z.; Long, H.; Yi, Y.; Lv, C.; Zeng, C.; et al. Discovery of New Triterpenoids Extracted from Camellia oleifera Seed Cake and the Molecular Mechanism Underlying Their Antitumor Activity. Antioxidants 2023, 12, 7. https://doi.org/10.3390/antiox12010007
Wu Z, Tan X, Zhou J, Yuan J, Yang G, Li Z, Long H, Yi Y, Lv C, Zeng C, et al. Discovery of New Triterpenoids Extracted from Camellia oleifera Seed Cake and the Molecular Mechanism Underlying Their Antitumor Activity. Antioxidants. 2023; 12(1):7. https://doi.org/10.3390/antiox12010007
Chicago/Turabian StyleWu, Zelong, Xiaofeng Tan, Junqin Zhou, Jun Yuan, Guliang Yang, Ze Li, Hongxu Long, Yuhang Yi, Chenghao Lv, Chaoxi Zeng, and et al. 2023. "Discovery of New Triterpenoids Extracted from Camellia oleifera Seed Cake and the Molecular Mechanism Underlying Their Antitumor Activity" Antioxidants 12, no. 1: 7. https://doi.org/10.3390/antiox12010007
APA StyleWu, Z., Tan, X., Zhou, J., Yuan, J., Yang, G., Li, Z., Long, H., Yi, Y., Lv, C., Zeng, C., & Qin, S. (2023). Discovery of New Triterpenoids Extracted from Camellia oleifera Seed Cake and the Molecular Mechanism Underlying Their Antitumor Activity. Antioxidants, 12(1), 7. https://doi.org/10.3390/antiox12010007