Antioxidant and Antimicrobial Effect of Biodegradable Films Containing Pitaya (Stenocereus thurberi) Extracts during the Refrigerated Storage of Fish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pitaya Extract and Biofilm System Preparation
2.2. Fish Material, Processing, and Sampling
2.3. Lipid Damage Analyses
2.4. Microbial Activity Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Determination of Lipid Oxidation
3.2. Determination of Lipid Hydrolysis
3.3. Microbial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tilami, S.K.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish. Sci. Aquac. 2018, 26, 243–253. [Google Scholar] [CrossRef]
- FAO Inform. Fishery and Aquaculture Statistics. In Commodities, Yearbook 2019; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; p. 41. [Google Scholar]
- Campos, C.; Gliemmo, M.; Aubourg, S.P.; Barros-Velázquez, J. Novel technologies for the preservation of chilled aquatic food products. In Novel Technologies in Food Science; McElhatton, A., Amaral Sobral, P., Eds.; Springer: New York, NY, USA, 2012; Chapter 13; pp. 299–323. [Google Scholar]
- Mei, J.; Ma, X.; Xie, J. Review on natural preservatives for extending fish shelf life. Foods 2019, 8, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokoglu, N. Novel natural food preservatives and applications in seafood preservation: A review. J. Sci. Food Agric. 2019, 99, 2068–2077. [Google Scholar] [CrossRef]
- Yousuf, S.; Maktedar, S.S. Utilization of quince (Cydonia oblonga) seeds for production of mucilage: Functional, thermal and rheological characterization. Sust. Food Technol. 2023, 1, 107–115. [Google Scholar] [CrossRef]
- Westlake, J.R.; Tran, M.W.; Jiang, Y.; Zhang, X.; Burrows, A.D.; Xie, M. Biodegradable biopolymers for active packaging: Demand, development and directions. Sust. Food Technol. 2023, 1, 50–72. [Google Scholar] [CrossRef]
- Gupta, D.; Kumar, L.; Gaikwad, K.K. Carbon dots for food packaging applications. Sust. Food Technol. 2023. [Google Scholar] [CrossRef]
- López-Rubio, A.; Gavara, R.; Lagarón, J. Bioactive packaging: Turning foods into healthier foods through biomaterials. Trends Food Sci. Technol. 2006, 17, 567–575. [Google Scholar] [CrossRef]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Min, B.J.; Oh, J.H. Antimicrobial activity of catfish gelatin coating containing origanum (Thymus capitatus) oil against Gram-negative pathogenic bacteria. J. Food Sci. 2009, 74, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Development of active gelatin films by means of valorisation of food processing waste. Food Hydroc. 2017, 68, 192–198. [Google Scholar] [CrossRef]
- Feng, X.; Ng, V.K.; Mikš-Krajnik, M.; Yang, H. Effects of fish gelatin and tea polyphenol coating on the spoilage and degradation of myofibril in fish fillet during cold storage. Food Bioprocess Technol. 2017, 10, 89–102. [Google Scholar] [CrossRef]
- Castro-Enríquez, D.D.; Miranda, J.M.; Barros-Velázquez, J.; Aubourg, S.P. Quality increase of refrigerated fish by employment of a gelatine biofilm including a protein hydrolysate obtained from alga Fucus spiralis. Bulg. Chem. Com. 2020, 52, 234–239. [Google Scholar]
- Trigo, M.; Nozal, P.; Miranda, J.M.; Aubourg, S.P.; Barros-Velázquez, J. Antimicrobial and antioxidant effect of lyophilized Fucus spiralis addition on gelatin film during refrigerated storage of mackerel. Food Cont. 2022, 131, 108416. [Google Scholar] [CrossRef]
- Stejskal, N.; Miranda, J.M.; Martucci, J.F.; Ruseckaite, R.A.; Barros-Velázquez, J.; Aubourg, S.P. Quality enhancement of refrigerated hake muscle by active packaging with a protein concentrate from Spirulina platensis. Food Bioprocess Technol. 2020, 13, 1110–1118. [Google Scholar] [CrossRef]
- Marano, S.; Laudadio, E.; Minnelli, C.; Stipa, P. Tailoring the barrier properties of PLA: A state-of-the-art review for food packaging applications. Polymers 2022, 14, 1626. [Google Scholar] [CrossRef]
- Mohan, S.; Panneerselvam, K. Development of polylactic acid based functional films reinforced with ginger essential oil and curcumin for food packaging applications. J. Food Meas. Charact. 2022, 16, 4703–4715. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Akhtar, M.J.; Cleymand, F.; Désobry, S. Structural, mechanical and barrier properties of active PLA-antioxidants films. J. Food Eng. 2012, 110, 380–389. [Google Scholar] [CrossRef]
- García-Soto, B.; Miranda, J.; de Quirós, A.R.-B.; Sendón, R.; Rodríguez-Martínez, A.; Barros-Velázquez, J.; Aubourg, S.P. Effect of biodegradable film (lyophilised alga Fucus spiralis and sorbic acid) on quality properties of refrigerated megrim (Lepidorhombus whiffiagonis). Int. J. Food Sci. Technol. 2015, 50, 1891–1900. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.; Zhang, H.; Boyd, G. Incorporation of preservatives in acid films for inactivating Escherichia coli O157:H7 and extending microbiological shelf life of strawberry puree. J. Food Protect. 2010, 73, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Oussaid, S.; Madani, K.; Houali, K.; Marcet, I.; Amrouche, T.; Rendueles, M.; Diaz, M. Effect of novel bottle inner surface coatings made with polylactic acid and plant extracts on the physiological status of Pseudomonas aeruginosa in real liquid foods using flow cytometry. Packing Technol. Sci. 2022, 35, 199–210. [Google Scholar] [CrossRef]
- Quiroz-González, B.; García-Mateos, R.; Corrales-García, J.J.E.; Colinas-León, M.T. Pitaya (Stenocereus spp.): An underutilized fruit. J. Prof. Assoc. Cactus Dev. 2018, 20, 82–100. [Google Scholar] [CrossRef]
- Vargas-Campos, L.; Valle-Guadarrama, S.; Martínez-Bustos, F.; Salinas-Moreno, Y.; Lobato-Calleros, C.; Calvo-López, A.D. Encapsulation and pigmenting potential of betalains of pitaya (Stenocereus pruinosus) fruit. J. Food Sci. Technol. 2018, 55, 2436–2445. [Google Scholar] [CrossRef] [PubMed]
- Cejudo-Bastante, M.J.; Hurtado, N.; Muñoz-Burguillos, P.; Heredia, F.J. Stenocereus griseus (Haw) pitaya as source of natural colourant: Technological stability of colour and individual betalains. Int. J. Food Sci. Technol. 2020, 54, 3024–3031. [Google Scholar]
- Albuquerque, B.R.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Could fruits be a reliable source of food colorants? Pros and cons of these natural additives. Crit. Rev. Food Sci. Nutr. 2021, 61, 805–835. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Félix, A.; Fortiz-Hernández, J.; Tortoledo-Ortiz, O. Physico-chemical characteristics, and bioactive compounds of red fruits of sweet pitaya (Stenocereus thurberi). J. Prof. Assoc. Cactus Dev. 2019, 21, 87–100. [Google Scholar] [CrossRef]
- García-Cruz, L.; Valle-Guadarrama, S.; Guerra-Ramírez, D.; Martínez-Damián, M.T.; Zuleta-Prada, H. Cultivation, quality attributes, postharvest behavior, bioactive compounds, and uses of Stenocereus: A review. Sci. Hortic. 2022, 304, 111336. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Carle, R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 2014, 15, 19–38. [Google Scholar] [CrossRef]
- Choo, W.S. Betalains: Application in Functional Foods. In Bioactive Molecules in Food. Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer Nature: New York, NY, USA, 2018; pp. 1–28. [Google Scholar]
- García-Cruz, L.; Valle-Guadarrama, S.; Salinas-Moreno, Y.; Luna-Morales, C. Postharvest quality, soluble phenols, betalains content, and antioxidant activity of Stenocereus pruinosus and Stenocereus stellatus fruit. Postharvest Biol. Technol. 2016, 111, 69–76. [Google Scholar] [CrossRef]
- García-Cruz, L.; Dueñas, M.; Santos-Buelgas, C.; Valle-Guadarrama, S.; Salinas-Moreno, Y. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. pruinosus and S. stellatus). Food Chem. 2017, 234, 111–118. [Google Scholar] [CrossRef]
- Castro-Enríquez, D.D.; Montaño-Leyva, B.; Del Toro-Sánchez, C.L.; Juárez-Onofre, J.E.; Carvajal-Millán, E.; López-Ahumada, G.A.; Barreras-Urbina, C.G.; Tapia-Hernández, J.A.; Rodríguez-Félix, F. Effect of ultrafiltration of Pitaya extract (Stenocereus thurberi) on its phytochemical content, antioxidant capacity, and UPLC-DAD-MS profile. Molecules 2020, 25, 281. [Google Scholar] [CrossRef] [Green Version]
- Bligh, E.; Dyer, W. A rapid method of total extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.; McKay, J. The estimation of peroxides in fats and oils by the ferric thiocyanate method. J. Am. Oil Chem. Soc. 1949, 26, 360–363. [Google Scholar] [CrossRef]
- Vyncke, W. Direct determination of the thiobarbituric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen. Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- Aubourg, S.P. Fluorescence study of the prooxidant activity of free fatty acids on marine lipids. J. Sci. Food Agric. 2001, 81, 385–390. [Google Scholar] [CrossRef]
- Lowry, R.; Tinsley, I. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 1976, 53, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Aubourg, S.P.; Losada, V.; Prado, M.; Miranda, J.M.; Barros-Velázquez, J. Improvement of the commercial quality of chilled Norway lobster (Nephrops norvegicus) stored in slurry ice: Effects of a preliminary treatment with an antimelanosic agent on enzymatic browning. Food Chem. 2007, 103, 701–748. [Google Scholar] [CrossRef]
- Ben-Gigirey, B.; de Sousa, J.V.B.; Villa, T.; Barros-Velázquez, J. Characterization of biogenic amine-producing Stenotrophomonas maltophilia strains isolated from white muscle of fresh and frozen albacore tuna. Int. J. Food Microb. 2000, 57, 19–31. [Google Scholar] [CrossRef]
- Tironi, V.; Tomás, M.; Añón, M.C. Structural and functional changes in myofibrillar proteins of sea salmon (Pseudopercis semifasciata) by interaction with malondialdehyde (RI). J. Food Sci. 2002, 67, 930–935. [Google Scholar] [CrossRef]
- Naseri, M.; Rezaei, M.; Moieni, S.; Hosseini, H.; Eskandari, S. Effects of different filling media on the oxidation and lipid quality of canned silver carp (Hypophthalmichthys molitrix). Int. J. Food Sci. Technol. 2011, 46, 1149–1156. [Google Scholar] [CrossRef]
- Aubourg, S.P. Review: Recent advances in assessment of marine lipid oxidation by using fluorescence. J. Amer. Oil Chem. Soc. 1999, 76, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Beltrán-Orozco, M.C.; Oliva-Coba, T.G.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Ascorbic acid, phenolic content, and antioxidant capacity of red, cherry, yellow and white types of pitaya cactus fruit (Stenocereus stellatus Riccobono). Agrociencia 2009, 43, 153–162. [Google Scholar]
- García-Cruz, L.; Valle-Guadarrama, S.; Salinas-Moreno, Y.; Joaquín-Cruz, E. Physical, chemical, and antioxidant activity characterization of pitaya (Stenocereus pruinosus) fruits. Plant Foods Hum. Nutr. 2013, 68, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Melchor Martínez, E.M.; Sandate-Flores, L.; Rodríguez-Rodríguez, J.; Rostro-Alanis, M.; Parra-Arroyo, L.; Antunes-Ricardo, M.; Serna-Saldívar, S.O.; Iqbal, H.M.N.; Parra Saldívar, R. Underutilized Mexican plants: Screening of antioxidant and antiproliferative properties of Mexican cactus fruit juices. Plants 2021, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Sandate-Flores, L.; Méndez-Zamora, G.; Morales-Celaya, M.F.; Lara-Rreyes, J.A.; Aguirre-Arzola, V.E.; Gutiérrez-Díez, A.; Torres-Castillo, J.A.; Sinagawa-García, S.R. Biofunctional properties of the bioactive peptide from protein isolates of jiotilla (Escontria chiotilla) and pitaya (Stenocereus pruinosus) sedes. Food Sci. Technol. Campinas 2022, 42, e57922. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, Y.; Ramírez, V.; Robledo-Márquez, K.; García-Rojas, N.; Rojas-Morales, P.; Arango, N.; Pedraza-Chaverri, J.; Medina-Campos, O.N.; Pérez-Rojas, J.M.; Flores-Ramírez, R.; et al. Stenocereus huastecorum-fruit juice concentrate protects against cisplatin-induced nephrotoxicity by nitric oxide pathway activity and antioxidant and antiapoptotic effects. Food Res. Int. 2022, 160, 111337. [Google Scholar] [CrossRef] [PubMed]
- Luna-Morales, C.C.; Aguirre, J.R. Clasificación, tradicional, aprovechamiento y distribución ecológica de la pitaya mixteca en México. Interciencia 2001, 26, 18–24. [Google Scholar]
- Campos-Rojas, E.; Pinedo-Espinoza, J.M.; Campos-Montiel, R.G.; Hernández-Fuentes, A.D. Evaluation of pitaya plants (Stenocereus spp.) of natural populations of Monte Escobedo, Zacatecas. Rev. Chapingo Serie Hortic. 2011, 3, 173–182. [Google Scholar] [CrossRef]
- Stejskal, N.; Miranda, J.M.; Martucci, J.F.; Ruseckaite, R.A.; Aubourg, S.P.; Barros-Velázquez, J. The effect of gelatine packaging film containing a Spirulina platensis protein concentrate on Atlantic mackerel shelf life. Molecules 2020, 25, 3209. [Google Scholar] [CrossRef] [PubMed]
- Özoğul, Y. Methods for freshness quality and deterioration. In Handbook of Seafood and Seafood Products Analysis, Chapter 13; Nollet, L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 189–214. [Google Scholar]
- Nowzari, F.; Shabanpour, B.; Mahdi Ojagh, S. Comparison of chitosan-gelatin composite and bilayer coating and film effect on the quality of refrigerated rainbow trout. Food Chem. 2013, 141, 1667–1672. [Google Scholar] [CrossRef]
- Saki, J.; Khodanazary, A.; Mehdi Hosseini, S. Effect of chitosan-gelatin composite and bi-layer coating combined with pomegranate peel extract on quality properties of Belanger’s croaker (Johnius belangerii) stored in refrigerator. J. Aq. Food Prod. Technol. 2018, 27, 557. [Google Scholar] [CrossRef]
- Rodríguez, O.; Losada, V.; Aubourg, S.P.; Barros-Velázquez, J. Sensory, microbial and chemical effects of a slurry ice system on horse mackerel (Trachurus trachurus). J. Sci. Food Agric. 2005, 85, 235–242. [Google Scholar] [CrossRef] [Green Version]
- García-Soto, B.; Aubourg, S.P.; Calo-Mata, P.; Barros-Velázquez, J. Extension of the shelf life of chilled hake (Merluccius merluccius) by a novel icing medium containing natural organic acids. Food Cont. 2013, 34, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Tenore, G.C.; Novellino, E.; Basile, A. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Funct. Foods 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Cheong, N.D.H.; Kashfi, A.F.H.; Yusof, H. The antibacterial effects of Hylocereus polyrhizus fruit extracts against selected bacteria. ESTEEM Academ. J. 2021, 17, 157–165. [Google Scholar]
- Treviño, N.J.F.; Rodríguez, G.R.G.; Verde, S.M.J.; Morales, R.M.E.; Garza, P.R.A.; Rivas, M.C.; Oranday, C.F. Antifungal activity of Stenocereus pruinosus and Echinocereus stramineus. Rev. Mex. Cienc. Farm. 2012, 43, 42–48. [Google Scholar]
- Soto-Cabrera, D.; Salazar, J.R.; Nogueda-Gutiérrez, I.; Torres-Olvera, M.; Cerón-Nava, A.; Rosales-Guevara, J.; Terrazas, T.; Rosas-Acevedo, H. Quantification of polyphenols and flavonoid content and evaluation of anti-inflammatory and antimicrobial activities of Stenocereus stellatus extracts. Nat. Prod. Res. 2016, 30, 1885–1889. [Google Scholar] [CrossRef]
- Goettems Kuntzler, S.; Araujo de Almeida, A.; Vieira Costa, J.; Greque de Morais, M. Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity. Int. J. Biol. Macrom. 2018, 113, 1008–1014. [Google Scholar] [CrossRef]
Quality Index | Refrigerated Time (Days) | Hake Muscle | Mackerel Muscle | ||
---|---|---|---|---|---|
Packing Condition | Packing Condition | ||||
GEL-CT | GEL-TR | PLA-CT | PLA-TR | ||
PV (meq. active oxygen·kg−1 lipids) | Initial | 0.72 ± 0.20 A | 0.72 ± 0.20 A | 0.36 ± 0.05 A | 0.36 ± 0.05 A |
4 | 3.20 ± 0.12 bB | 2.89 ± 0.07 aB | 5.49 ± 0.69 aB | 5.86 ± 1.74 aB | |
8 | 6.96 ± 0.49 aC | 6.20 ± 0.41 aC | 12.59 ± 0.43 aC | 11.23 ± 2.18 aC | |
TBA-i (mg malondialdehyde·kg−1 muscle) | Initial | 0.32 ± 0.17 A | 0.32 ± 0.17 A | 0.71 ± 0.42 A | 0.71 ± 0.42 A |
4 | 0.66 ± 0.10 aB | 0.49 ± 0.17 aA | 4.84 ± 0.33 bB | 3.34 ± 0.45 aB | |
8 | 0.83 ± 0.18 aB | 0.64 ± 0.18 aA | 5.09 ± 0.12 bB | 4.60 ± 0.17 aC | |
Fluorescence ratio | Initial | 0.76 ± 0.17 A | 0.76 ± 0.17 A | 2.51 ± 0.70 A | 2.51 ± 0.70 A |
4 | 2.15 ± 0.16 aB | 1.98 ± 0.32 aB | 4.39 ± 0.48 aB | 3.63 ± 0.50 aA | |
8 | 4.47 ± 0.23 bC | 3.58 ± 0.31 aC | 8.29 ± 1.15 bC | 5.26 ± 0.41 aB |
Microbial Group | Refrigerated Time (Days) | Hake Muscle | Mackerel Muscle | ||
---|---|---|---|---|---|
Packing Condition | Packing Condition | ||||
GEL-CT | GEL-TR | PLA-CT | PLA-TR | ||
Enterobacteriaceae | Initial | 1.0 ± 0.0 A | 1.0 ± 0.0 A | 1.0 ± 0.0 A | 1.0 ± 0.0 A |
4 | 1.74 ± 0.52 aB | 1.36 ± 0.39 aA | 1.0 ± 0.0 aA | 1.0 ± 0.0 aA | |
8 | 1.10 ± 0.17 aAB | 1.16 ± 0.27 aA | 1.0 ± 0.0 aA | 1.0 ± 0.0 aA | |
Psychrotrophs | Initial | 3.79 ± 0.48 A | 3.79 ± 0.48 A | 2.75 ± 0.26 A | 2.75 ± 0.26 A |
4 | 4.91 ± 0.76 aA | 4.87 ± 0.65 aA | 3.56 ± 0.41 aB | 3.75 ± 0.32 aB | |
8 | 7.40 ± 0.22 bB | 6.37 ± 0.32 aB | 4.46 ± 0.48 aB | 4.35 ± 0.60 aB | |
Proteolytic bacteria | Initial | 2.74 ± 0.67 A | 2.74 ± 0.67 A | 2.43 ± 0.38 A | 2.43 ± 0.38 A |
4 | 4.92 ± 0.36 aB | 5.15 ± 0.59 aB | 4.44 ± 0.32 bB | 3.88 ± 0.61 aB | |
8 | 7.28 ± 0.57 bC | 6.08 ± 0.36 aB | 4.84 ± 0.47 aB | 4.97 ± 0.61 aB | |
Lipolytic bacteria | Initial | 2.00 ± 0.00 A | 2.00 ± 0.00 A | 2.00 ± 0.00 A | 2.00 ± 0.00 A |
4 | 3.69 ± 0.64 aB | 3.33 ± 0.92 aB | 3.21 ± 0.41 aB | 3.33 ± 0.73 aB | |
8 | 4.05 ± 0.95 aB | 3.27 ± 0.89 aB | 3.98 ± 0.28 aC | 3.53 ± 0.92 aB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Enríquez, D.; Miranda, J.M.; Trigo, M.; Rodríguez-Félix, F.; Aubourg, S.P.; Barros-Velázquez, J. Antioxidant and Antimicrobial Effect of Biodegradable Films Containing Pitaya (Stenocereus thurberi) Extracts during the Refrigerated Storage of Fish. Antioxidants 2023, 12, 544. https://doi.org/10.3390/antiox12030544
Castro-Enríquez D, Miranda JM, Trigo M, Rodríguez-Félix F, Aubourg SP, Barros-Velázquez J. Antioxidant and Antimicrobial Effect of Biodegradable Films Containing Pitaya (Stenocereus thurberi) Extracts during the Refrigerated Storage of Fish. Antioxidants. 2023; 12(3):544. https://doi.org/10.3390/antiox12030544
Chicago/Turabian StyleCastro-Enríquez, Daniela, José M. Miranda, Marcos Trigo, Francisco Rodríguez-Félix, Santiago P. Aubourg, and Jorge Barros-Velázquez. 2023. "Antioxidant and Antimicrobial Effect of Biodegradable Films Containing Pitaya (Stenocereus thurberi) Extracts during the Refrigerated Storage of Fish" Antioxidants 12, no. 3: 544. https://doi.org/10.3390/antiox12030544
APA StyleCastro-Enríquez, D., Miranda, J. M., Trigo, M., Rodríguez-Félix, F., Aubourg, S. P., & Barros-Velázquez, J. (2023). Antioxidant and Antimicrobial Effect of Biodegradable Films Containing Pitaya (Stenocereus thurberi) Extracts during the Refrigerated Storage of Fish. Antioxidants, 12(3), 544. https://doi.org/10.3390/antiox12030544