Ultrasound-Assisted Extraction of Isoquercetin from Ephedra alata (Decne): Optimization Using Response Surface Methodology and In Vitro Bioactivities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Ultrasound-Assisted Extraction
2.3. Soxhlet Extraction
2.4. Single-Factor Experimental Design
2.5. Experimental Design and Statistical Analysis
2.6. High-Performance Liquid Chromatography (HPLC) Analysis
2.7. Antioxidant Assays
2.8. Enzyme Inhibition Assays
2.8.1. Tyrosinase Inhibition Assay
2.8.2. Collagenase Inhibition Assay
2.8.3. Elastase Inhibition Assay
2.8.4. Hyaluronidase Inhibition Assay
2.8.5. α-Amylase Inhibition Assay
2.8.6. Cholinesterase Inhibition Assays
2.8.7. Aβ1–42 Aggregation Inhibition Assay
2.9. Scanning Electron Micrographs
2.10. Statistical Analysis
3. Results and Discussion
3.1. Single-Factor Analysis of ISQ Extraction
3.1.1. Effect of Ethanol Concentration on ISQ Extraction
3.1.2. Effect of Solid–Liquid Ratio on ISQ Extraction
3.1.3. Effect of Ultrasonic Temperature on ISQ Extraction
3.1.4. Effect of Ultrasonication Time on ISQ Extraction
3.1.5. Effect of Ultrasonic Power on ISQ Extraction
3.2. Optimization of ISQ Extraction by RSM
3.2.1. Response Surface Model Analysis
3.2.2. Interactions between UAE Factors and the Response Surface
3.3. Antioxidant and Enzyme Inhibitory Activities
3.4. Observation by Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alizadeh, S.R.; Ebrahimzadeh, M.A. O-Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure–activity relationship for drug design, a review. Phytother. Res. 2022, 36, 778–807. [Google Scholar] [CrossRef]
- Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 2016, 56, 21–38. [Google Scholar] [CrossRef]
- Kim, D.S.; Lim, S.B. Optimization of subcritical water hydrolysis of rutin into isoquercetin and quercetin. Prev. Nutr. Food Sci. 2017, 22, 131. [Google Scholar]
- Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 3 March 2023).
- Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol. 2012, 83, 6–15. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Yao, S.; Narale, B.A.; Shanmugam, A.; Mettu, S.; Ashokkumar, M. Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022, 11, 2035. [Google Scholar] [CrossRef]
- Zupanc, M.; Pandur, Ž.; Perdih, T.S.; Stopar, D.; Petkovšek, M.; Dular, M. Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrason. Sonochem. 2019, 57, 147–165. [Google Scholar] [CrossRef]
- Weremfo, A.; Abassah-Oppong, S.; Adulley, F.; Dabie, K.; Seidu-Larry, S. Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. J. Sci. Food Agric. 2023, 103, 26–36. [Google Scholar] [CrossRef]
- González-Juárez, D.E.; Escobedo-Moratilla, A.; Flores, J.; Hidalgo-Figueroa, S.; Martínez-Tagüeña, N.; Morales-Jiménez, J.; Muñiz-Ramírez, A.; Pastor-Palacios, G.; Pérez-Miranda, S.; Ramírez-Hernández, A.; et al. A review of the Ephedra genus: Distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules 2020, 25, 3283. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.-M.; Zhang, Q.; Bi, X.-B.; Cui, J.-L.; Wang, M.-L. A review of the phytochemistry and pharmacological activities of Ephedra herb. Chin. J. Nat. Med. 2020, 18, 321–344. [Google Scholar] [CrossRef]
- Martin, G.J. Ethnobotany: A Methods Manual; Routledge: Oxfordshire, UK, 2010. [Google Scholar]
- Alexiades, M.N.; Sheldon, J.W. Selected Guidelines for Ethnobotanical Research: A Field Manual; New York Botanical Garden: New York, NY, USA, 1996. [Google Scholar]
- Goo, H.R.; Choi, J.S.; Na, D.H. Simultaneous determination of quercetin and its glycosides from the leaves of Nelumbo nucifera by reversed-phase high-performance liquid chromatography. Arch. Pharmacal Res. 2009, 32, 201–206. [Google Scholar] [CrossRef]
- El Maaiden, E.; Bouzroud, S.; Nasser, B.; Moustaid, K.; El Mouttaqi, A.; Ibourki, M.; Boukcim, H.; Hirich, A.; Kouisni, L.; El Kharrassi, Y. A Comparative Study between Conventional and Advanced Extraction Techniques: Pharmaceutical and Cosmetic Properties of Plant Extracts. Molecules 2022, 27, 2074. [Google Scholar] [CrossRef]
- Mocan, A.; Zengin, G.; Simirgiotis, M.; Schafberg, M.; Mollica, A.; Vodnar, D.C.; Crişan, G.; Rohn, S. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: Phytochemical characterization, biological profile, and computational studies. J. Enzym. Inhib. Med. Chem. 2017, 32, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lee, W.; Oh, J.Y.; Cui, Y.R.; Ryu, B.; Jeon, Y.J. Protective effect of sulfated polysaccharides from celluclast-assisted extract of Hizikia fusiforme against ultraviolet B-Induced skin damage by regulating NF-κB, AP-1, and MAPKs signaling pathways in vitro in human dermal fibroblasts. Mar. Drugs 2018, 16, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, P.T.B.; Tawata, S. Anti-oxidant, anti-aging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules 2015, 20, 16723–16740. [Google Scholar] [CrossRef] [Green Version]
- Abhijit, S.; Manjushree, D. Anti-hyaluronidase, anti-elastase activity of Garcinia indica. Int. J. Bot. 2010, 6, 299–303. [Google Scholar]
- Savran, A.; Zengin, G.; Aktumsek, A.; Mocan, A.; Glamoćlija, J.; Ćirić, A.; Soković, M. Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: Potential sources of natural agents with health benefits. Food Funct. 2016, 7, 3252–3262. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tu, Y.; Zhu, C.; Luo, W.; Huang, W.; Liu, W.; Li, Y. Cholinesterase, β-amyloid aggregation inhibitory and antioxidant capacities of Chinese medicinal plants. Ind. Crops Prod. 2017, 108, 512–519. [Google Scholar] [CrossRef]
- Aspé, E.; Fernández, K. The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Ind. Crops Prod. 2011, 34, 838–844. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Petreska Stanoeva, J.; Balshikevska, E.; Stefova, M.; Tusevski, O.; Simic, S.G. Comparison of the effect of acids in solvent mixtures for extraction of phenolic compounds from Aronia melanocarpa. Nat. Prod. Commun. 2020, 15, 1934578X20934675. [Google Scholar] [CrossRef]
- Oomen, W.W.; Begines, P.; Mustafa, N.R.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvent extraction of flavonoids of Scutellaria baicalensis as a replacement for conventional organic solvents. Molecules 2020, 25, 617. [Google Scholar] [CrossRef] [Green Version]
- AlShaal, S.; Daghestani, M.; Karabet, F. Determination of the isolated Rutin and Quercetin Contents In Syrian Ficus Carica L. Leaves Extracts. J. Turk. Chem. Soc. Sect. A Chem. 2019, 7, 197–206. [Google Scholar] [CrossRef]
- Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H.; Cho, J.M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 2014, 9, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Yu, J.; Jiao, C.; Tong, J.; Zhang, L.; Chang, Y.; Sun, W.; Jin, Q.; Cai, Y. Optimization of quercetin extraction method in Dendrobium officinale by response surface methodology. Heliyon 2019, 5, e02374. [Google Scholar] [CrossRef] [Green Version]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Maran, J.P.; Manikandan, S.; Nivetha, C.V.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem. 2017, 10, S1145–S1157. [Google Scholar] [CrossRef] [Green Version]
- Havlíková, L.; Míková, K. Heat Stability of Anthocyanins. Z. Lebensm. Unters. Forsch. 1985, 181, 427–432. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.S.; Abert-Vian, M. Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 2013, 20, 1076–1080. [Google Scholar] [CrossRef]
- Van Mana, P.; Anh Vu, T.; Chi Ha, T. Effect of ultrasound on extraction of polyphenol from the old tea leaves. Ann. Food Sci. Technol. 2017, 18, 44–50. [Google Scholar]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Yerena-Prieto, B.J.; Gonzalez-Gonzalez, M.; García-Alvarado, M.; Casas, L.; Palma, M.; Rodríguez-Jimenes, G.D.C.; Barbero, G.F.; Cejudo-Bastante, C. Evaluation of the Effect of Different Co-Solvent Mixtures on the Supercritical CO2 Extraction of the Phenolic Compounds Present in Moringa oleifera Lam. Leaves. Agronomy 2022, 12, 1450. [Google Scholar] [CrossRef]
- Chaves, J.O.; de Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-De-Peredo, A.V.; Barbero, G.F.; et al. Extraction of flavonoids from natural sources using modern techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef] [PubMed]
- Mbikay, M.; Chrétien, M. Isoquercetin as an Anti-COVID-19 Medication: A Potential to Realize. Front. Pharmacol. 2022, 13, 830205. [Google Scholar] [CrossRef]
- Appleton, J. Evaluating the bioavailability of isoquercetin. Nat. Med. J 2010, 2, 1–6. [Google Scholar]
- Chen, G.F.; Xu, T.H.; Yan, Y.; Zhou, Y.R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef] [Green Version]
- Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Curr. Ther. Res. 2003, 64, 216–235. [Google Scholar] [CrossRef] [Green Version]
- Ćorković, I.; Gašo-Sokač, D.; Pichler, A.; Šimunović, J.; Kopjar, M. Dietary Polyphenols as Natural Inhibitors of α-Amylase and α-Glucosidase. Life 2022, 12, 1692. [Google Scholar] [CrossRef]
- Chaudhary, M.; Khan, A.; Gupta, M. Skin ageing: Pathophysiology and current market treatment approaches. Curr. Aging Sci. 2020, 13, 22–30. [Google Scholar] [CrossRef]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechqoq, H.; Hourfane, S.; El Yaagoubi, M.; El Hamdaoui, A.; da Silva Almeida, J.R.G.; Rocha, J.M.; El Aouad, N. Molecular Docking, Tyrosinase, Collagenase, and Elastase Inhibition Activities of Argan By-Products. Cosmetics 2022, 9, 24. [Google Scholar] [CrossRef]
- Necas, J.B.L.B.P.; Bartosikova, L.; Brauner, P.; Kolar, J.J.V.M. Hyaluronic acid (hyaluronan): A review. Vet. Med. 2008, 53, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Dokoshi, T.; Zhang, L.-J.; Nakatsuji, T.; Adase, C.A.; Sanford, J.; Paladini, R.D.; Tanaka, H.; Fujiya, M.; Gallo, R.L. Hyaluronidase inhibits reactive adipogenesis and inflammation of colon and skin. JCI Insight 2018, 3, e123072. [Google Scholar] [CrossRef] [Green Version]
- Burger, P.; Plainfossé, H.; Brochet, X.; Chemat, F.; Fernandez, X. Extraction of natural fragrance ingredients: History overview and future trends. Chem. Biodivers. 2019, 16, e1900424. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Z.; Zheng, B.; Lo, Y.M. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrason. Sonochem. 2013, 20, 202–208. [Google Scholar] [CrossRef]
- Yue, Y.; Qiu, Z.D.; Qu, X.Y.; Deng, A.P.; Yuan, Y.; Huang, L.Q. Discoursing on Soxhlet extraction of ginseng using association analysis and scanning electron microscopy. J. Pharm. Anal. 2018, 8, 312–317. [Google Scholar] [CrossRef]
- Zhang, C.W.; Wang, C.Z.; Tao, R. Analysis on the physicochemical properties of Ginkgo biloba leaves after enzymolysis based ultrasound extraction and soxhlet extraction. Molecules 2016, 21, 97. [Google Scholar] [CrossRef] [Green Version]
Variables | Label | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Time (min) | X1 | 10 | 20 | 30 |
Temperature (°C) | X2 | 50 | 60 | 70 |
Solvent/Solid ratio (mL/g) | X3 | 50 | 60 | 70 |
Ultrasound power (W) | X4 | 60 | 75 | 90 |
Ethanol concentration (%) | X5 | 50 | 60 | 70 |
Run | Independent Variables | ISQ (µg/g) | ||||
---|---|---|---|---|---|---|
X1 (min) | X2 (°C) | X3 (mL/g) | X4 (W) | X5 (%) | ||
1 | 10 (−1) | 50 (−1) | 60 (0) | 75 (0) | 60 (0) | 955.66 ± 2.44 |
2 | 20 (0) | 50 (−1) | 60 (0) | 75 (0) | 70 (1) | 939.67 ± 2.56 |
3 | 20 (0) | 50 (−1) | 50 (−1) | 75 (0) | 60 (0) | 850.11 ± 1.88 |
4 | 30 (1) | 60 (0) | 60 (0) | 60 (−1) | 60 (0) | 760.98 ± 1.09 |
5 | 20 (0) | 60 (0) | 60 (0) | 75 (0) | 60 (0) | 850.90 ± 1.56 |
6 | 20 (0) | 60 (0) | 70 (1) | 60 (−1) | 60 (0) | 878.55 ± 1.87 |
7 | 20 (0) | 60 (0) | 60 (0) | 75 (0) | 60 (0) | 833.78 ± 2.09 |
8 | 10 (−1) | 60 (0) | 60 (0) | 75 (0) | 50 (−1) | 921.89 ± 2.44 |
9 | 10 (−1) | 60 (0) | 60 (0) | 90 (1) | 60 (0) | 943.09 ± 2.67 |
10 | 30 (1) | 50 (−1) | 60 (0) | 75 (0) | 60 (0) | 701.33 ± 0.89 |
11 | 20 (0) | 70 (1) | 60 (0) | 60 (−1) | 60 (0) | 721.56 ± 1.43 |
12 | 20 (0) | 60 (0) | 70 (1) | 75 (0) | 70 (1) | 950.77 ± 2.43 |
13 | 30 (1) | 60 (0) | 60 (0) | 75 (0) | 70 (1) | 795.67 ± 1.22 |
14 | 20 (0) | 60 (0) | 50 (−1) | 90 (1) | 60 (0) | 873.78 ± 1.67 |
15 | 20 (0) | 60 (0) | 50 (−1) | 60 (−1) | 60 (0) | 863.64 ± 1.98 |
16 | 20 (0) | 70 (1) | 71 (1) | 75 (0) | 60 (0) | 728.38 ± 1.11 |
17 | 30 (1) | 70 (1) | 60 (0) | 75 (0) | 60 (0) | 652.24 ± 1.09 |
18 | 20 (0) | 60 (0) | 60 (0) | 90 (1) | 50 (−1) | 843.6 ± 1.90 |
19 | 20 (0) | 60 (0) | 60 (0) | 75 (0) | 60 (0) | 841.6 ± 1.67 |
20 | 20 (0) | 60 (0) | 60 (0) | 90 (1) | 70 (1) | 920.75 ± 2.78 |
21 | 10 (−1) | 70 (1) | 60 (0) | 75 (0) | 60 (0) | 759.44 ± 1.22 |
22 | 10 (−1) | 60 (0) | 60 (0) | 60 (−1) | 60 (0) | 993.88 ± 2.78 |
23 | 20 (0) | 70 (1) | 60 (0) | 90 (1) | 60 (0) | 714.35 ± 1.11 |
24 | 30 (1) | 60 (0) | 60 (0) | 75 (0) | 50 (−1) | 753.43 ± 0.89 |
25 | 20 (0) | 60 (0) | 70 (1) | 90 (1) | 60 (0) | 917.74 ± 3.04 |
26 | 20 (0) | 60 (0) | 50 (−1) | 75 (0) | 70 (1) | 947.8 ± 2.67 |
27 | 20 (0) | 70 (1) | 50 (−1) | 75 (0) | 60 (0) | 724.37 ± 1.02 |
28 | 10 (−1) | 60 (0) | 60 (0) | 75 (0) | 70 (1) | 1033.96 ± 3.28 |
29 | 30 (1) | 60 (0) | 70 (1) | 75 (0) | 60 (0) | 796.51 ± 2.01 |
30 | 20 (0) | 60 (0) | 70 (1) | 75 (0) | 50 (−1) | 862.64 ± 2.76 |
31 | 20 (0) | 60 (0) | 60 (0) | 75 (0) | 60 (0) | 842.6 ± 2.64 |
32 | 20 (0) | 50 (−1) | 60 (0) | 90 (1) | 60 (0) | 887.68 ± 2.01 |
33 | 10 (−1) | 60 (0) | 70 (1) | 75 (0) | 60 (0) | 1002.9 ± 2.89 |
34 | 20 (0) | 50 (−1) | 60 (0) | 60 (−1) | 60 (0) | 796.51 ± 1.11 |
35 | 20 (0) | 60 (0) | 60 (0) | 60 (−1) | 70 (1) | 935.77 ± 2.56 |
36 | 10 (−1) | 60 (0) | 50 (−1) | 75 (0) | 60 (0) | 999.9 ± 3.01 |
37 | 20 (0) | 50 (−1) | 60 (0) | 75 (0) | 50 (−1) | 812.54 ± 2.12 |
38 | 30 (1) | 60 (0) | 60 (0) | 90 (1) | 60 (0) | 778.48 ± 2.01 |
39 | 20 (0) | 70 (1) | 60 (0) | 75 (0) | 50 (−1) | 712.35 ± 1.88 |
40 | 30 (1) | 60 (0) | 50 (−1) | 75 (0) | 60 (0) | 785.49 ± 2.11 |
41 | 20 (0) | 50 (−1) | 70 (1) | 75 (0) | 60 (0) | 853.62 ± 2.82 |
42 | 20 (0) | 70 (1) | 60 (0) | 75 (0) | 70 (1) | 748.42 ± 1.12 |
43 | 20 (0) | 60 (0) | 60 (0) | 75 (0) | 60 (0) | 849.61 ± 1.98 |
44 | 20 (0) | 60 (0) | 60 (0) | 75 (0) | 60 (0) | 832.58 ± 2.67 |
45 | 20 (0) | 60 (0) | 50 (−1) | 75 (0) | 50 (−1) | 863.64 ± 1.09 |
46 | 20 (0) | 60 (0) | 60 (0) | 60 (−1) | 50 (−1) | 844.6 ± 0.99 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 37.7094 | 20 | 1.8870 | 86.8530 | <0.0001 | ** |
X1 | 16.0752 | 1 | 16.0752 | 740.5608 | <0.0001 | ** |
X2 | 6.8952 | 1 | 6.8952 | 317.6382 | <0.0001 | ** |
X5 | 2.8152 | 1 | 2.8152 | 129.4788 | <0.0001 | ** |
X1X2 | 0.6120 | 1 | 0.6120 | 28.2234 | <0.0001 | ** |
X1X4 | 0.0979 | 1 | 0.0979 | 4.5186 | 0.0465 | * |
X1X5 | 0.1122 | 1 | 0.1122 | 5.2734 | 0.0324 | * |
X2X4 | 0.2550 | 1 | 0.2550 | 11.5158 | 0.0026 | * |
X2X5 | 0.2346 | 1 | 0.2346 | 10.5978 | 0.0036 | * |
X12 | 0.1122 | 1 | 0.1122 | 5.2122 | 0.0335 | * |
X22 | 5.5896 | 1 | 5.5896 | 257.4072 | <0.0001 | ** |
X32 | 0.8976 | 1 | 0.8976 | 41.1774 | <0.0001 | ** |
X42 | 0.1734 | 1 | 0.1734 | 8.0580 | 0.0097 | * |
X52 | 0.8772 | 1 | 0.8772 | 40.5246 | <0.0001 | ** |
Residual | 0.5508 | 25 | 0.0224 | |||
Lack of Fit | 0.5202 | 20 | 0.0265 | 4.5798 | 0.0525 | |
Pure Error | 0.0296 | 5 | 0.0058 | |||
Cor Total | 38.2602 | 45 | ||||
Std. Dev. | 0.1530 | |||||
R2 | 0.9924 | |||||
R2 Adj | 0.9808 |
Antioxidant and Enzyme Inhibitory Activities | ISQ-UAE | ISQ-SE |
---|---|---|
DPPH (mg TE/ g) | 82.47 ± 1.55 | 64.81 ± 1.09 |
FRAP (mg TE/g) | 88.93 ± 1.56 | 65.71 ± 1.56 |
ABTS (mg TE/g) | 77.15 ± 2.08 | 61.19 ± 1.89 |
AchE inhibition (mg GALAE/g) | 1.56 ± 0.12 | 1.15 ± 0.11 |
BchE inhibition (mg GALAE/g) | 4.02 ± 0.23 | 3.45 ± 0.20 |
Aβ1–42 inhibition (%) | 74.11 ± 0.49 | 66.87 ± 0.21 |
Alpha-amylase inhibition (mmol ACE/g) | 0.15 ± 1.89 | 0.12 ± 0.01 |
Tyrosinase inhibition (mg KAE/g) | 95.04 ± 3.56 | 62.93 ± 2.78 |
Collagenase inhibition (%) | 87.31 ± 1.88 | 73.90 ± 1.77 |
Elastase inhibition (%) | 88.93 ± 1.86 | 79.03 ± 1.89 |
Hyaluronidase inhibition (%) | 98.83 ± 2.70 | 83.68 ± 3.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Maaiden, E.; Qarah, N.; Ezzariai, A.; Mazar, A.; Nasser, B.; Moustaid, K.; Boukcim, H.; Hirich, A.; Kouisni, L.; El Kharrassi, Y. Ultrasound-Assisted Extraction of Isoquercetin from Ephedra alata (Decne): Optimization Using Response Surface Methodology and In Vitro Bioactivities. Antioxidants 2023, 12, 725. https://doi.org/10.3390/antiox12030725
El Maaiden E, Qarah N, Ezzariai A, Mazar A, Nasser B, Moustaid K, Boukcim H, Hirich A, Kouisni L, El Kharrassi Y. Ultrasound-Assisted Extraction of Isoquercetin from Ephedra alata (Decne): Optimization Using Response Surface Methodology and In Vitro Bioactivities. Antioxidants. 2023; 12(3):725. https://doi.org/10.3390/antiox12030725
Chicago/Turabian StyleEl Maaiden, Ezzouhra, Nagib Qarah, Amine Ezzariai, Adil Mazar, Boubker Nasser, Khadija Moustaid, Hassan Boukcim, Abdelaziz Hirich, Lamfeddal Kouisni, and Youssef El Kharrassi. 2023. "Ultrasound-Assisted Extraction of Isoquercetin from Ephedra alata (Decne): Optimization Using Response Surface Methodology and In Vitro Bioactivities" Antioxidants 12, no. 3: 725. https://doi.org/10.3390/antiox12030725
APA StyleEl Maaiden, E., Qarah, N., Ezzariai, A., Mazar, A., Nasser, B., Moustaid, K., Boukcim, H., Hirich, A., Kouisni, L., & El Kharrassi, Y. (2023). Ultrasound-Assisted Extraction of Isoquercetin from Ephedra alata (Decne): Optimization Using Response Surface Methodology and In Vitro Bioactivities. Antioxidants, 12(3), 725. https://doi.org/10.3390/antiox12030725