The Antioxidant Properties and Protective Capacity of Prangos trifida and Cachrys cristata Essential Oils against Cd Stress in Lunularia cruciata and Brassica napus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil Isolation
2.2. GC-MS Analysis of Essential Oils
2.3. Plant and Heavy Metal Treatment
2.3.1. Brassica napus
2.3.2. Lunularia cruciata
2.4. Detection of ROS and Antioxidant Activity Enzyme
2.5. Comet Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Gas Chromatography and Mass Spectrometry (GC-MS) Analysis of the Essential Oils
3.2. Detection of ROS and Antioxidant Activity Enzyme
3.3. Comet Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Filipoiu, D.C.; Bungau, S.G.; Endres, L.; Negru, P.A.; Bungau, A.F.; Pasca, B.; Radu, A.-F.; Tarce, A.G.; Bogdan, M.A.; Behl, T.; et al. Characterization of the toxicological impact of heavy metals on human health in conjunction with modern analytical methods. Toxics 2022, 10, 716. [Google Scholar] [CrossRef] [PubMed]
- Nabulo, G.; Black, C.R.; Young, S.D. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge. Environ. Pollut. 2011, 159, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Engwa, G.; Okeke, P.; Nwalo, N.; Unachukwu, M. Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the Modern World—New Tricks for an Old Dog; Intechopen: London, UK, 2019; pp. 1–23. [Google Scholar]
- Flora, S.J. Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med. 2011, 51, 257–281. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Ehsan, S.; Ali, S.; Noureen, S.; Mahmood, K.; Farid, M.; Ishaque, W.; Bilal Shakoor, M.; Rizwan, M. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol. Environ. Saf. 2014, 106, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Piyatida, P.; da Silva, J.A.T.; Fujita, M. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Bot. 2012, 2012, 872875. [Google Scholar] [CrossRef] [Green Version]
- He, S.; He, Z.; Yang, X.; Stoffella, P.J.; Baligar, V.C. Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. Adv. Agron. 2015, 134, 135–225. [Google Scholar]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Maresca, V.; Badalamenti, N.; Ilardi, V.; Bruno, M.; Bontempo, P.; Basile, A. Chemical composition of Thymus leucotrichus var. creticus essential oil and its protective effects on both damage and oxi-dative stress in Leptodictyum riparium Hedw. induced by cadmium. Plants 2022, 11, 3529. [Google Scholar] [CrossRef]
- Jury, S.L. Cachrys L. and Prangos Lindl. In Flora Iberica. Plantas Vasculares de la Península Ibérica e Islas Baleares; Castroviejo, S., Laínz, M., González, G.L., Montserrat, P., Garmendia, F.M., Paiva, J., Eds.; Real Jardín Botánico, C.S.I.C.: Madrid, Spain, 1986; Volume 10, pp. 151–155. [Google Scholar]
- Gruenberg-Fertig, I.; Heyn, C.C.; Herrnstadt, I. Typification of Cachrys libanotis L. (Umbelliferae). Taxon 1973, 22, 425–434. [Google Scholar] [CrossRef]
- Pimenov, M.G.; Tikhomirov, V.N. The taxonomic problems in the genera Prangos Lindl., Cachrys L., Cryptodiscus Schrenk and Hippomarathrum Hoffmanns. et Link (Umbelliferae–Apioideae). Feddes Reper. 1983, 94, 145–164. [Google Scholar]
- Musolino, V.; Perri, M.R.; Conforti, F.; Gliozzi, M.; Marrelli, M.; Mollace, V. Cachry L. genus; a comprehensive review on botany, phytochemistry and biological properties. Plants 2023, 12, 565. [Google Scholar] [CrossRef]
- Mottaghipisheh, J.; Kiss, T.; Tòth, B.; Csupor, D. The Prangos genus; a comprehensive review on traditional use, phytochemistry, and pharmacological activities. Phytochem. Rev. 2020, 19, 1449–1470. [Google Scholar] [CrossRef]
- Turland, N.J.; Chilton, L.; Press, J.R. Flora of the Cretan Area. Annotated Checklist and Atlas; Stationery Office Books: London, UK, 1993. [Google Scholar]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 1982; Volume 2, pp. 209–211. [Google Scholar]
- Pignatti, S.; Guarino, R.; La Rosa, M. Flora d’Italia, 2nd ed.; Edagricole: Bologna, Italy, 2018; Volume 3, pp. 575–577. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea: Plantaginaceae to Compositae (and Rubiaceae); Cambridge University Press: Cambridge, UK, 1968; Volume 2, pp. 343–344. [Google Scholar]
- Abad, M.J.; De las Heras, B.; Silvan, A.M.; Pascual, R.; Bermejo, P.; Rodriquez, B.; Villar, A.M. Effects of furocoumarins from Cachrys trifida on some macrophages functions. J. Pharm. Pharmacol. 2001, 53, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Pala-Paul, J.; Velasco-Negueruela, A.; Pérez-Alonso, M.J.; Maqueda, J.; Sanz, J. Volatile oil constituents from different parts of Cachrys trifida L. J. Essent. Oil Res. 2004, 16, 347–349. [Google Scholar] [CrossRef]
- Doganca, S.; Ulubelen, A. (+)-Peucedanol methyl ether from Hippomarathrum cristatum, Umbelliferae. Chem. Pharm. Bull. 1979, 27, 1049–1050. [Google Scholar] [CrossRef] [Green Version]
- Evergetis, E.; Koulocheri, S.D.; Haroutounian, S.A. Exploitation of Apiaceae family plants as valuable renewable source of essential oils containing crops for the production of fine chemicals: Part II. Ind. Crops Prod. 2015, 64, 59–67. [Google Scholar] [CrossRef]
- Koutsaviti, A.; Georgiou, C.; Milenković, M.; Tzakou, O. Composition and antimicrobial activity of the essential oils from different parts of Cachrys cristata DC. from Greece. Rec. Nat. Prod. 2015, 9, 436–440. [Google Scholar]
- Matejić, J.S.; Džamíc, A.M.; Ristić, M.S.; Randelović, V.N.; Marin, P.D. Essential oil composition of Cachrys cristata-A rare and endangered species in the Flora of Serbia. Nat. Prod. Commun. 2012, 7, 235–236. [Google Scholar] [CrossRef] [Green Version]
- Özek, G.; Özek, T.; Başer, K.H.C.; Duran, A. Composition of the essential oil of Hippomarathrum cristatum (DC.) Boiss. J. Essent. Oil Res. 2007, 19, 540–542. [Google Scholar] [CrossRef]
- Badalamenti, N.; Ilardi, V.; Rosselli, S.; Bruno, M.; Maggi, F.; Leporini, M.; Falco, T.; Loizzo, M.R.; Tundis, R. Ferulago nodosa subsp. geniculata (Guss.) Troia & Raimondo from Sicily (Italy): Isolation of essential oil and evaluation of its bioactivity. Molecules 2020, 25, 3249. [Google Scholar]
- Badalamenti, N.; Modica, A.; Ilardi, V.; Bruno, M.; Maresca, V.; Zanfardino, A.; Di Napoli, M.; Castagliuolo, G.; Varcamonti, M.; Basile, A. Daucus carota subsp. maximus (Desf.) Ball from Pantelleria, Sicily (Italy): Isolation of essential oils and evaluation of their bioactivity. Nat. Prod. Res. 2022, 36, 5842–5847. [Google Scholar] [CrossRef] [PubMed]
- Di Napoli, M.; Castagliuolo, G.; Badalamenti, N.; Maresca, V.; Basile, A.; Bruno, M.; Varcamonti, M.; Zanfardino, A. Antimicrobial, antibiofilm and antioxidant properties of Foeniculum vulgare Mill. essential oil. Plants 2022, 11, 3573. [Google Scholar] [CrossRef]
- Badalamenti, N.; Maresca, V.; Di Napoli, M.; Bruno, M.; Basile, A.; Zanfardino, A. Chemical composition and biological activities of Prangos ferulacea essential oils. Molecules 2022, 27, 7430. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, G.; Giambra, B.; Palla, F.; Bruno, M.; Badalamenti, N. The Application of the essential oils of Thymus vulgaris L. and Crithmum maritimum L. as biocidal on two Tholu Bommalu Indian leather puppets. Plants 2021, 10, 1508. [Google Scholar] [CrossRef] [PubMed]
- European Directorate for the Quality of Medicines. European Pharmacopoeia 10.3. Determination of Essential Oils in Herbal Drugs, 2.8.12; Council of Europe: Strasbourg, France, 2020; p. 307. [Google Scholar]
- Rigano, D.; Formisano, C.; Rosselli, S.; Badalamenti, N.; Bruno, M. GC and GC-–MS Analysis of volatile compounds from Ballota nigra subsp. uncinata collected in Aeolian Islands, Sicily (Southern Italy). Nat. Prod. Commun. 2020, 15, 1934578X20920483. [Google Scholar] [CrossRef] [Green Version]
- Carginale, V.; Sorbo, S.; Capasso, C.; Trinchella, F.; Cafiero, G.; Basile, A. Accumulation, localisation, and toxic effects of cadmium in the liverwort Lunularia cruciata. Protoplasma 2004, 223, 53–61. [Google Scholar] [CrossRef]
- Maresca, V.; Fusaro, L.; Sorbo, S.; Siciliano, A.; Loppi, S.; Paoli, L.; Monacim, F.; Karam, E.A.; Piscopo, M.; Guida, M.; et al. Functional and structural biomarkers to monitor heavy metal pollution of one of the most contaminated freshwater sites in Southern Europe. Ecotoxicol. Environ. Saf. 2018, 163, 665–673. [Google Scholar] [CrossRef]
- Di Napoli, M.; Giusy Castagliuolo, G.; Badalamenti, N.; Vaglica, A.; Ilardi, V.; Varcamonti, M.; Bruno, M.; Zanfardino, A. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Italian Prangos trifida (Mill.) Herrnst. & Heyn. Nat. Prod. Res. 2023; in press. [Google Scholar] [CrossRef]
- Ušjak, L.; Stojković, D.; Soković, M.; Niketić, M.; Petrović, S. Chemical composition and antimicrobial activity of essential oils of Prangos trifida. Arch. Pharm. 2022, 72 (Suppl. S4), S455–S456. [Google Scholar]
- Badalamenti, N.; Ilardi, V.; Rosselli, S.; Bruno, M. The ethnobotany, phytochemistry and biological properties of genus Ferulago–A review. J. Ethnopharmacol. 2021, 274, 114050. [Google Scholar] [CrossRef]
- Riela, S.; Bruno, M.; Rosselli, S.; Saladino, M.L.; Caponetti, E.; Formisano, C.; Senatore, F. A study on the essential oil of Ferulago campestris: How much does extraction method influence the oil composition? J. Sep. Sci. 2011, 34, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Grande, M.; Aguado, M.T.; Mancheño, B.; Piera, F. Coumarins and ferulol esters from Cachrys sicula. Phytochemistry 1986, 25, 505–507. [Google Scholar] [CrossRef]
- Vanderpoorten, A.; Goffinet, B. Introduction to Bryophytes; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-1-107-37736-3. [Google Scholar]
- Choudhury, S.; Panda, S.K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut. 2005, 167, 73–90. [Google Scholar] [CrossRef]
- Koz, B.; Cevik, U. Lead Adsorption capacity of some moss species used for heavy metal analysis. Ecol. Indic. 2014, 36, 491–494. [Google Scholar] [CrossRef]
- Shakya, K.; Chettri, M.K.; Sawidis, T. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch. Environ. Contam. Toxicol. 2008, 54, 412–421. [Google Scholar] [CrossRef] [PubMed]
- González, A.G.; Pokrovsky, O.S. Metal adsorption on mosses: Toward a universal adsorption model. J. Colloid Interface Sci. 2014, 415, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremper, A.H.; Agneta, M.; Burton, S.; Higgs, D.E.B. Field and laboratory exposures of two moss species to low level metal pollution. J. Atmos. Chem. 2004, 49, 111–120. [Google Scholar] [CrossRef]
- Thapa, D.; Richardson, A.J.; Zweifel, B.; Wallace, R.J.; Gratz, S.W. Genoprotective effects of essential oil compounds against oxidative and methylated dna damage in human colon cancer cells. J. Food Sci. 2019, 84, 1979–1985. [Google Scholar] [CrossRef]
- Mićović, T.; Topalović, D.; Živković, L.; Spremo-Potparević, B.; Jakovljević, V.; Matić, S.; Popović, S.; Baskić, D.; Stešević, D.; Samardžić, S.; et al. Antioxidant, Antigenotoxic and Cytotoxic Activity of Essential Oils and Methanol Extracts of Hyssopus officinalis L. Subsp. aristatus (Godr.) Nyman (Lamiaceae). Plants 2021, 10, 711. [Google Scholar] [CrossRef]
- Péres, V.F.; Moura, D.J.; Sperotto, A.R.M.; Damasceno, F.C.; Caramão, E.B.; Zini, C.A.; Saffi, J. Chemical composition and cytotoxic, mutagenic and genotoxic activities of the essential oil from Piper gaudichaudianum Kunth leaves. Food Chem. Toxicol. 2009, 47, 2389–2395. [Google Scholar] [CrossRef]
No. | Compounds a | LRI b | LRI c | Area (%) | |
---|---|---|---|---|---|
(Cc) | (Pt) | ||||
1 | α-Pinene | 1008 | 1014 | 7.32 | 8.85 |
2 | Camphene | 1073 | 1075 | - | 0.24 |
3 | Sabinene | 1107 | 1115 | 0.23 | 0.67 |
4 | 2-Thujene | 1110 | 1113 | - | 0.44 |
5 | β-Pinene | 1121 | 1125 | - | 1.84 |
6 | δ-3-Carene | 1147 | 1158 | 0.30 | - |
7 | β-Myrcene | 1165 | 1176 | 45.34 | 2.72 |
8 | Sylvestrene | 1169 | 1177 | - | 11.32 |
9 | α-Phellandrene | 1179 | 1175 | - | 12.14 |
10 | α-Terpinene | 1182 | 1183 | - | 0.26 |
11 | (E)-β-Ocimene | 1225 | 1233 | - | 3.29 |
12 | (Z)-β-Ocimene | 1242 | 1243 | 3.44 | 18.12 |
13 | allo-Ocimene | 1396 | 1402 | 10.90 | 1.81 |
14 | p-Mentha-1,3,8-triene | 1400 | 1408 | - | 9.56 |
15 | α-Copaene | 1504 | 1499 | - | 0.38 |
16 | 1,5,5-Trimethyl-6-methylene-cyclohexene | 1553 | - | 0.10 | |
17 | α-Bergamotene | 1569 | 1567 | - | 0.76 |
18 | β-Caryophyllene | 1602 | 1612 | 1.35 | 2.74 |
19 | cis-Verbenol | 1649 | 1663 | - | 0.27 |
20 | γ-Elemene | 1629 | 1636 | 2.11 | - |
21 | Alloaromadendrene | 1659 | 1661 | 0.12 | - |
22 | Germacrene D | 1665 | 1687 | - | 5.53 |
23 | γ-Muurolene | 1694 | 1704 | 3.61 | - |
24 | δ-Cadinene | 1713 | 1733 | 0.12 | - |
25 | Zingiberene | 1715 | 1726 | - | 5.32 |
26 | β-Sesquiphellandrene | 1768 | 1776 | - | 2.01 |
27 | cis-Sabinol | 1779 | 1782 | - | 0.68 |
28 | 2,6-Dimethyl-3,5,7-octatriene-2-ol | 1824 | 1830 | - | 0.73 |
29 | 2,4,6-Trimethylbenzaldehyde | 1912 | 1929 | 23.47 | - |
30 | 6-Hydroxymethyl-2,3-dimethylphenyl(methanol) | 1914 | 1918 | 0.48 | - |
31 | Caryophylene oxide | 2003 | 2008 | - | 0.53 |
32 | Spathulenol | 2129 | 2136 | - | 0.78 |
33 | Phytol | 2613 | 2622 | - | 0.31 |
Monoterpene Hydrocarbons | 67.63 | 71.26 | |||
Oxygenated Monoterpenes | - | 1.68 | |||
Sesquiterpene Hydrocarbons | 6.04 | 16.74 | |||
Oxygenated Sesquiterpenes | - | 1.31 | |||
Others | 23.95 | 0.31 | |||
Total | 97.62 | 91.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maresca, V.; Badalamenti, N.; Ilardi, V.; Bruno, M.; Basile, A. The Antioxidant Properties and Protective Capacity of Prangos trifida and Cachrys cristata Essential Oils against Cd Stress in Lunularia cruciata and Brassica napus. Antioxidants 2023, 12, 793. https://doi.org/10.3390/antiox12040793
Maresca V, Badalamenti N, Ilardi V, Bruno M, Basile A. The Antioxidant Properties and Protective Capacity of Prangos trifida and Cachrys cristata Essential Oils against Cd Stress in Lunularia cruciata and Brassica napus. Antioxidants. 2023; 12(4):793. https://doi.org/10.3390/antiox12040793
Chicago/Turabian StyleMaresca, Viviana, Natale Badalamenti, Vincenzo Ilardi, Maurizio Bruno, and Adriana Basile. 2023. "The Antioxidant Properties and Protective Capacity of Prangos trifida and Cachrys cristata Essential Oils against Cd Stress in Lunularia cruciata and Brassica napus" Antioxidants 12, no. 4: 793. https://doi.org/10.3390/antiox12040793
APA StyleMaresca, V., Badalamenti, N., Ilardi, V., Bruno, M., & Basile, A. (2023). The Antioxidant Properties and Protective Capacity of Prangos trifida and Cachrys cristata Essential Oils against Cd Stress in Lunularia cruciata and Brassica napus. Antioxidants, 12(4), 793. https://doi.org/10.3390/antiox12040793