Trehalose Inhibits Inflammatory Responses through Mitochondrial Reprogramming in RAW 264.7 Macrophages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) Assay
2.3. Pro-Inflammatory Cytokine and PGE2 Quantification
2.4. Nitric Oxide (NO) Quantification
2.5. Assessment of Toll-Like Receptor 4 (TLR4) Endocytosis
2.6. Measurement of Nuclear Factor-Kappa B (NF-κB) Phosphorylation
2.7. Metabolic Extracellular Flux Analysis
Maximal respiration = OCR after FCCP treatment − non-mitochondrial OCR
ATP production = basal OCR − OCR after oligomycin treatment
Compensatory glycolysis = Maximum glycoPER after rotenone/antimycin A treatment
2.8. Quantification of Mitochondrial Mass, Potential, and ROS
2.9. Intracellular ROS Quantification
2.10. Statistical Analysis
3. Results
3.1. Modulation of Inflammatory Cytokines by Trehalose
3.2. Suppressive Effects of Trehalose on Inflammatory Mediator Production
3.3. Reduced NF-κB Phosphorylation by Trehalose in LPS-Induced Macrophages
3.4. Regulation of Macrophage Metabolic Phenotypes by Trehalose
3.5. Suppression of Oxidative Stress by Trehalose Does Not Affect Mitochondrial Functioning
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goverse, G.; Stakenborg, M.; Matteoli, G. The Intestinal Cholinergic Anti-Inflammatory Pathway. J. Physiol. 2016, 594, 5771–5780. [Google Scholar] [CrossRef]
- Kühl, A.A.; Erben, U.; Kredel, L.I.; Siegmund, B. Diversity of Intestinal Macrophages in Inflammatory Bowel Diseases. Front. Immunol. 2015, 6, 613. [Google Scholar] [CrossRef] [PubMed]
- Na, Y.R.; Stakenborg, M.; Seok, S.H.; Matteoli, G. Macrophages in Intestinal Inflammation and Resolution: A Potential Therapeutic Target in IBD. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 531–543. [Google Scholar] [CrossRef]
- Chapuy, L.; Sarfati, M. Single-Cell Protein and RNA Expression Analysis of Mononuclear Phagocytes in Intestinal Mucosa and Mesenteric Lymph Nodes of Ulcerative Colitis and Crohn’s Disease Patients. Cells 2020, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Shalova, I.N.; Biswas, S.K. Metabolic Regulation of Macrophage Phenotype and Function. Immunol. Rev. 2017, 280, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Soto-Heredero, G.; Gómez de las Heras, M.M.; Gabandé-Rodríguez, E.; Oller, J.; Mittelbrunn, M. Glycolysis—A Key Player in the Inflammatory Response. FEBS J. 2020, 287, 3350–3369. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, R.; Yu, Q.; Dong, L.; Bi, Y.; Liu, G. Metabolic Reprogramming of Macrophages during Infections and Cancer. Cancer Lett. 2019, 452, 14–22. [Google Scholar] [CrossRef]
- Mills, E.L.; O’Neill, L.A. Reprogramming Mitochondrial Metabolism in Macrophages as an Anti-Inflammatory Signal. Eur. J. Immunol. 2016, 46, 13–21. [Google Scholar] [CrossRef]
- Bahri, F.; Khaksari, M.; Movahedinia, S.; Shafiei, B.; Rajizadeh, M.A.; Nazari-Robati, M. Improving SIRT1 by Trehalose Supplementation Reduces Oxidative Stress, Inflammation, and Histopathological Scores in the Kidney of Aged Rats. J. Food Biochem. 2021, 45, e13931. [Google Scholar] [CrossRef]
- Öztürk, C.; Güngör, S.; Ataman, M.B.; Bucak, M.N.; Baspinar, N.; Ili, P.; Inanç, M.E. Effects of Arginine and Trehalose on Post-Thawed Bovine Sperm Quality. Acta Vet. Hung. 2017, 65, 429–439. [Google Scholar] [CrossRef]
- Pupyshev, A.B.; Klyushnik, T.P.; Akopyan, A.A.; Singh, S.K.; Tikhonova, M.A. Disaccharide Trehalose in Experimental Therapies for Neurodegenerative Disorders: Molecular Targets and Translational Potential. Pharmacol. Res. 2022, 183, 106373. [Google Scholar] [CrossRef] [PubMed]
- Buckley, A.M.; Moura, I.B.; Arai, N.; Spittal, W.; Clark, E.; Nishida, Y.; Harris, H.C.; Bentley, K.; Davis, G.; Wang, D.; et al. Trehalose-Induced Remodelling of the Human Microbiota Affects Clostridioides Difficile Infection Outcome in an In Vitro Colonic Model: A Pilot Study. Front. Cell. Infect. Microbiol. 2021, 11, 670935. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Yu, S.; Kim, W. Rice Bran Oil Attenuates Chronic Inflammation by Inducing M2 Macrophage Switching in High-Fat Diet-Fed Obese Mice. Foods 2021, 10, 359. [Google Scholar] [CrossRef]
- Espinosa, J.A.; Pohan, G.; Arkin, M.R.; Markossian, S. Real-Time Assessment of Mitochondrial Toxicity in HepG2 Cells Using the Seahorse Extracellular Flux Analyzer. Curr. Protoc. 2021, 1, e75. [Google Scholar] [CrossRef]
- Uebanso, T.; Kano, S.; Yoshimoto, A.; Naito, C.; Shimohata, T.; Mawatari, K.; Takahashi, A. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice. Nutrients 2017, 9, 756. [Google Scholar] [CrossRef]
- Amo, K.; Arai, H.; Uebanso, T.; Fukaya, M.; Koganei, M.; Sasaki, H.; Yamamoto, H.; Taketani, Y.; Takeda, E. Effects of Xylitol on Metabolic Parameters and Visceral Fat Accumulation. J. Clin. Biochem. Nutr. 2011, 49, 1–7. [Google Scholar] [CrossRef]
- Islam, M.S.; Indrajit, M. Effects of Xylitol on Blood Glucose, Glucose Tolerance, Serum Insulin and Lipid Profile in a Type 2 Diabetes Model of Rats. Ann. Nutr. Metab. 2012, 61, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Shin, J.S.; Jang, D.S.; Lee, K.T. Cnidilide, an Alkylphthalide Isolated from the Roots of Cnidium Officinale, Suppresses LPS-Induced NO, PGE2, IL-1β, IL-6 and TNF-α Production by AP-1 and NF-ΚB Inactivation in RAW 264.7 Macrophages. Int. Immunopharmacol. 2016, 40, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.; Monmai, C.; Rod-In, W.; Kim, J.E.; You, S.G.; Lee, T.H.; Park, W.J. Immune-Modulation Effect of Halocynthia Aurantium Tunic Lipid on RAW264.7 Cells. Food Sci. Biotechnol. 2022, 31, 101–110. [Google Scholar] [CrossRef]
- Jo, W.S.; Kim, S.D.; Jeong, S.K.; Oh, S.J.; ParK, M.T.; Lee, C.G.; Kang, Y.R.; Jeong, M.H. Resveratrol Analogue, HS-1793, Inhibits Inflammatory Mediator Release from Macrophages by Interfering with the TLR4 Mediated NF-ΚB Activation. Food Sci. Biotechnol. 2022, 31, 433–441. [Google Scholar] [CrossRef]
- den Hartog, G.J.M.; Boots, A.W.; Adam-Perrot, A.; Brouns, F.; Verkooijen, I.W.C.M.; Weseler, A.R.; Haenen, G.R.M.M.; Bast, A. Erythritol Is a Sweet Antioxidant. Nutrition 2010, 26, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Sweetser, S. Evaluating the Patient with Diarrhea: A Case-Based Approach. Mayo Clin. Proc. 2012, 87, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Ku, T.O.; Akamura, S.N. Threshold for Transitory Diarrhea Induced by Ingestion of Xylitol and Lactitol in Young Male and Female Adults. Journal of Nutritional Science and Vitaminology 2007, 53, 13–20. [Google Scholar]
- Hattori, K.; Akiyama, M.; Seki, N.; Yakabe, K.; Hase, K.; Kim, Y.G. Gut Microbiota Prevents Sugar Alcohol-Induced Diarrhea. Nutrients 2021, 13, 2029. [Google Scholar] [CrossRef]
- Taya, K.; Hirose, K.; Hamada, S. Trehalose Inhibits Inflammatory Cytokine Production by Protecting IκB-α Reduction in Mouse Peritoneal Macrophages. Arch. Oral. Biol. 2009, 54, 749–756. [Google Scholar] [CrossRef]
- Benaroudj, N.; Lee, D.H.; Goldberg, A.L. Trehalose Accumulation during Cellular Stress Protects Cells and Cellular Proteins from Damage by Oxygen Radicals. J. Biol. Chem. 2001, 276, 24261–24267. [Google Scholar] [CrossRef]
- Gancedo, C.; Flores, C.L. The Importance of a Functional Trehalose Biosynthetic Pathway for the Life of Yeasts and Fungi. FEMS Yeast Res. 2004, 4, 351–359. [Google Scholar] [CrossRef]
- Blázquez, M.A.; Lagunas, R.; Gancedo, C.; Gancedo, J.M. Trehalose-6-Phosphate, a New Regulator of Yeast Glycolysis That Inhibits Hexokinases. FEBS Lett. 1993, 329, 51–54. [Google Scholar] [CrossRef]
Gene (NCBI ID) | Primer Sequence |
---|---|
Eef2 (13629) | Forward, CGGGACACGGCTCTTAACAT Reverse, CTTCCTGGAGGCACTTACCC |
Il6 (16193) | Forward, CAAAGCCAGAGTCCTTCAGA Reverse, TTGGTCCTTAGCCACTCCTT |
Tnf-α (21926) | Forward, AAATGGCCTCCCTCTCATCAG Reverse, GTCACTCGAATTTTGAGAAGATGATC |
Cox-2 (5912281) | Forward, TTCAAAAGAAGTGCTGGAAAAGGT Reverse, GATCATCTCTACCTGAGTGTCTTT |
inos (18126) | Forward, CAGAGGACCCAGAGACAAGC Reverse, TGCTGAAACATTTCCTGTGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Park, H.; Kim, W. Trehalose Inhibits Inflammatory Responses through Mitochondrial Reprogramming in RAW 264.7 Macrophages. Antioxidants 2023, 12, 1166. https://doi.org/10.3390/antiox12061166
Yu S, Park H, Kim W. Trehalose Inhibits Inflammatory Responses through Mitochondrial Reprogramming in RAW 264.7 Macrophages. Antioxidants. 2023; 12(6):1166. https://doi.org/10.3390/antiox12061166
Chicago/Turabian StyleYu, Seungmin, Hyejeong Park, and Wooki Kim. 2023. "Trehalose Inhibits Inflammatory Responses through Mitochondrial Reprogramming in RAW 264.7 Macrophages" Antioxidants 12, no. 6: 1166. https://doi.org/10.3390/antiox12061166
APA StyleYu, S., Park, H., & Kim, W. (2023). Trehalose Inhibits Inflammatory Responses through Mitochondrial Reprogramming in RAW 264.7 Macrophages. Antioxidants, 12(6), 1166. https://doi.org/10.3390/antiox12061166