Antioxidant Properties Mediate Nephroprotective and Hepatoprotective Activity of Essential Oil and Hydro-Alcoholic Extract of the High-Altitude Plant Skimmia anquetilia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals Required
2.2. Sample Collection
2.3. Hydro-Alcoholic Extraction
2.4. Extraction of Oil
2.5. LC/MS Technique
2.6. Total Phenolic Content (TPC)
2.7. Total Flavonoid Content (TFC)
2.8. Antioxidant Activity
2.8.1. In Vitro Activity
2.8.2. In Vivo Antioxidant Study
3. Results
3.1. LC-MS Interpretation of Hydro-Alcoholic Extract
3.2. TPC and TFC
3.3. In Vitro Antioxidant Activities
3.4. Acute Oral Toxicity
3.5. Change in Body Weight and Organ Index
3.6. In Vivo Hepato-Protective Activity
3.7. In Vivo Nephroprotective Activity
3.8. In Vivo Antioxidant Activity
3.9. Anti-Haemolytic Activity of SAE and SAEO
3.10. Histopathology of Liver for Hepatoprotective Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
LC-MS | liquid chromatography-mass spectrometry |
CCl4 | carbon tetrachloride |
ALT | alanine transaminase |
AST | aspartate aminotransferase |
SAE | Skimmia anquetilia hydro-alcoholic extract |
SAEO | Skimmia anquetilia essential oil |
TCA | tri-chloro acetic acid |
OECD | Organization for Economic Cooperation and Development |
LD50 | lethal dose |
p.o | per oral |
SGOT | serum glutamic-oxaloacetic transaminase |
SGPT | serum glutamic pyruvic transaminase |
EDTA | etheylenediaminetetraacetic acid |
AAPH | 2,2’-Azobis(2-amidinopropane) dihydrochloride |
ROS | reacting oxygen species |
References
- Rajakumari, R.; Volova, T.; Oluwafemi, O.S.; Rajesh, K.S.; Thomas, S.; Kalarikkal, N. Grape seed hydro-alcoholic extract-soluplus dispersion and its antioxidant activity. Drug Dev. Ind. Pharm. 2020, 46, 1219–1229. [Google Scholar] [CrossRef]
- Lee, H.G.; Kim, H.S.; Oh, J.Y.; Lee, D.S.; Yang, H.W.; Kang, M.C.; Kim, E.A.; Kang, N.; Kim, J.; Heo, S.J.; et al. Potential Antioxidant Properties of Enzymatic Hydrolysates from Stichopus japonicus against Hydrogen Peroxide-Induced Oxidative Stress. Antioxidants 2021, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, K.S.; Vadivukkarasi, S. Evaluation of free radical scavenging activity of various hydro-alcoholic hydro-alcoholic extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Sci. Hum. Wellness 2015, 4, 42–46. [Google Scholar] [CrossRef]
- Yachamaneni, J.; Dhanraj, S. Anti-Hepatotoxic and Antioxidant Activity of Limnanthemum indicum Against Carbon Tetrachloride Induced Liver Toxicity in Rats. Indian J. Pharm. Educ. Res. 2017, 51, 321–328. [Google Scholar] [CrossRef]
- Khan, R.A.; Khan, M.R.; Sahreen, S. CCl4-induced hepatotoxicity: Protective effect of rutin on p53, CYP2E1 and the antioxidative status in rat. BMC Complement. Altern. Med. 2012, 12, 178. [Google Scholar] [CrossRef]
- Apak, R.; Gu, K.; Mustafa, O.; Celik, S.E. Mechanism of Antioxidant Capacity Assays and the CUPRAC (Cupric Ion Reducing Antioxidant Capacity) Assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Gupta, A.K.; Chitme, H.; Dass, S.K.; Misra, N. Antioxidant activity of Chamomile recutita capitula methanolic extracts against CCl4-induced liver injury in rats. J. Pharmacol. Toxicol. 2006, 1, 101–107. [Google Scholar] [CrossRef]
- Sravan Kumar, S.; Singh Chauhan, A.; Giridhar, P. Nanoliposomal encapsulation mediated enhancement of betalain stability: Characterisation, storage stability and antioxidant activity of Basella rubra L. fruits for its applications in vegan gummy candies. Food Chem. 2020, 333, 127442. [Google Scholar] [CrossRef]
- Wintola, O.A.; Olajuyigbe, A.A.; Afolayan, A.J.; Coopoosamy, R.M.; Olajuyigbe, O.O. Chemical composition, antioxidant activities and antibacterial activities of essential oil from Erythrina caffra Thunb. growing in South Africa. Heliyon 2021, 7, e07244. [Google Scholar] [CrossRef]
- Ganie, S.A.; Haq, E.; Hamid, A.; Qurishi, Y.; Mahmood, Z.; Zargar, B.A.; Masood, A.; Zargar, M.A. Carbon tetrachloride induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome hydro-alcoholic extract of Podophyllum hexandrum. BMC Complement. Altern. Med. 2011, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Torres-Martínez, R.; García-Rodríguez, Y.M.; Ríos-Chávez, P.; Saavedra-Molina, A.; López-Meza, J.E.; Ochoa-Zarzosa, A.; Garciglia, R.S. Antioxidant Activity of the Essential Oil and its Major Terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. Pharmacogn. Mag. 2018, 13 (Suppl. S4), S875–S880. [Google Scholar] [CrossRef]
- Manca, M.L.; Lai, F.; Pireddu, R.; Valenti, D.; Schlich, M.; Pini, E.; Ailuno, G.; Fadda, A.M.; Sinico, C. Impact of nanosizing on dermal delivery and antioxidant activity of quercetin nanocrystals. J. Drug Deliv. Sci. Technol. 2020, 55, 101482. [Google Scholar] [CrossRef]
- Burli, S.; Chitme, H.R.; Vrunda, K.; Jamadar, M.J. Antiproliferative and antioxidant activity of leaves extracts of Moringa oleifera. Int. J. Curr. Pharm. Res. 2016, 8, 54–56. [Google Scholar] [CrossRef]
- Ling, J.K.U.; Chan, Y.S.; Nandong, J.; Chin, S.F.; Ho, B.K. Formulation of choline chloride/ascorbic acid natural deep eutectic solvent: Characterization, solubilization capacity and antioxidant property. LWT-Food Sci. Technol. 2020, 133, 110096. [Google Scholar] [CrossRef]
- Maqsoudlou, A.; Assadpour, E.; Mohebodini, H.; Jafari, S.M. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv. Colloid Interface Sci. 2020, 278, 102122. [Google Scholar] [CrossRef]
- Gondwal, M.; Prakash, O.; Vivekanand; Pant, A.K.; Padalia, R.C.; Mathela, S.M. Essential oil composition and antioxidant activity of leaves and flowers of Skimmia anquetilia N.P. Taylor & Airy Shaw. J. Essent. Oil Res. 2012, 24, 83–90. [Google Scholar] [CrossRef]
- Kukreti, N.; Chitme, H.R.; Varshney, V.K. Antiallergy Activity of Skimmia anquetilia on Ovalbumin-induced allergic rhinitis, dermatitis, paw edema and mast cell degranulation. Allergo J. Int. 2023; in press. [Google Scholar] [CrossRef]
- Annegowda, H.V.; Bhat, R.; Min-Tze, L.; Karim, A.A.; Mansor, S.M. Influence of sonication treatments and hydro-alcoholic extraction solvents on the phenolics and antioxidants in star fruits. J. Food Sci. Technol. 2012, 49, 510–514. [Google Scholar] [CrossRef]
- Elyemni, M.; Louaste, B.; Nechad, I.; Elkamli, T.; Bouia, A.; Taleb, M.; Chaouch, M.; Eloutassi, N. Hydro-alcoholic extraction of Essential Oils of Rosmarinus officinalis L. by Two Different Methods: Hydrodistillation and Microwave Assisted Hydrodistillation. Sci. World J. 2019, 2019, 3659432. [Google Scholar] [CrossRef]
- Milani, G.; Curci, F.; Cavalluzzi, M.M.; Crupi, P.; Pisano, I.; Lentini, G.; Clodoveo, M.L.; Franchini, C.; Corbo, F. Optimization of Microwave-Assisted Hydro-alcoholic extraction of Antioxidants from Bamboo Shoots of Phyllostachys pubescens. Molecules 2020, 25, 215. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Raghuwanshi, R. Evaluation of phytochemical, antioxidant and reducing activity in whole plant hydro-alcoholic extract of Andrographis paniculate (Burm. f.) Wall. ex Nees. Biosci. Biotechnol. Res. Commun. 2020, 13, 1734–1742. [Google Scholar] [CrossRef]
- Castaldo, L.; Izzo, L.; De Pascale, S.; Narváez, A.; Rodriguez-Carrasco, Y.; Ritieni, A. Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Hydro-alcoholic extract. Molecules 2021, 26, 1968. [Google Scholar] [CrossRef] [PubMed]
- Bursal, E.; Gülçin, I. Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous hydro-alcoholic extract of kiwi fruit (Actinidia deliciosa). Food Res. Int. 2011, 44, 1482–1489. [Google Scholar] [CrossRef]
- Al-Rimawi, F.; Rishmawi, S.; Ariqat, S.H.; Khalid, M.F.; Warad, I.; Salah, Z. Anticancer Activity, Antioxidant Activity, and Phenolic and Flavonoids Content of Wild Tragopogon porrifolius Plant Hydro-alcoholic hydro-alcoholic extracts. Evid.-Based Complement. Altern. Med. 2016, 2016, 9612490. [Google Scholar] [CrossRef] [PubMed]
- Murugan, R.; Parimelazhagan, T. Comparative evaluation of different hydro-alcoholic extraction methods for antioxidant and anti-inflammatory properties from Osbeckia parvifolia Arn.—An in vito approach. J. King Saud Univ.-Sci. 2014, 26, 267–275. [Google Scholar] [CrossRef]
- Kim, J.; Jang, H.; Cho, W.; Yeon, S.; Lee, C. In vitro antioxidant actions of sulfur-containing amino acids. Arab. J. Chem. 2018, 13, 1678–1684. [Google Scholar] [CrossRef]
- Singhal, K.G.; Gupta, G.D. Hepatoprotective and antioxidant activity of methanolic hydro-alcoholic extract of flowers of Nerium oleander against CCl4-induced liver injury in rats. Asian Pac. J. Trop. Med. 2012, 5, 677–685. [Google Scholar] [CrossRef]
- Tukappa, N.K.A.; Londonkar, R.L.; Nayaka, H.B.; Kumar, C.B.S. Cytotoxicity and hepatoprotective attributes of methanolic hydro-alcoholic extract of Rumex vesicarius L. Biol. Res. 2015, 48, 19. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Z.; Dai, J.; Zhang, C.; Ye, Y.; Li, L. Synergistic protective effect of chlorogenic acid, apigenin and caffeic acid against carbon tetrachloride-induced hepatotoxicity in male mice. RSC Adv. 2014, 81, 43057–43063. [Google Scholar] [CrossRef]
- Kanawati, G.M.; Al-Khateeb, I.H.; Kandil, Y.I. Arctigenin attenuates CCl4-induced hepatotoxicity through suppressing matrix metalloproteinase-2 and oxidative stress. Egypt. Liver J. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Elshopakey, G.E.; Risha, E.F.; El-Boshy, M.E.; Abdalla, O.A.; Hamed, M.F. Protective effects of thymus vulgaris oil against CCl4-mediated hepatotoxicity, oxidative stress and immunosuppression in male albino rats. Adv. Anim. Vet. Sci. 2021, 7, 1053–1063. [Google Scholar] [CrossRef]
- Al-Yahya, M.; Mothana, R.; Al-Said, M.; Al-Dosari, M.; Al-Musayeib, N.; Al-Sohaibani, M.; Parvez, M.K.; Rafatullah, S. Attenuation of CCl4-Induced Oxidative Stress and Hepatonephrotoxicity by Saudi Sidr Honey in Rats. Evid.-Based Complement. Altern. Med. 2013, 2013, 569037. [Google Scholar] [CrossRef]
- Domitrović, R.; Jakovac, H.; Romić, Z.; Rahelić, D.; Tadić, Z. Antifibrotic activity of Taraxacum officinale root in carbon tetrachloride-induced liver damage in mice. J. Ethnopharmacol. 2010, 130, 569–577. [Google Scholar] [CrossRef]
- Ullah, R.; Alsaid, M.; Shahat, A.; Naser, A.; Al-Mishari, A.; Adnan, M.; Tariq, A. Antioxidant and Hepatoprotective Effects of Methanolic Hydro-alcoholic hydro-alcoholic extracts of Zilla spinosa and Hammada elegans Against Carbon Tetrachlorideinduced Hepatotoxicity in Rats. Open Chem. 2018, 16, 133–140. [Google Scholar] [CrossRef]
- Elgawish, R.A.R.; Rahman, H.G.A.; Abdelrazek, H.M.A. Green tea hydro-alcoholic extract attenuates CCl4-induced hepatic injury in male hamsters via inhibition of lipid peroxidation and p53-mediated apoptosis. Toxicol. Rep. 2015, 2, 1149–1156. [Google Scholar] [CrossRef]
- Shah, M.D.; Gnanaraj, C.; Haque, A.T.; Iqbal, M. Antioxidative and chemopreventive effects of Nephrolepis biserrata against carbon tetrachloride (CCl4)-induced oxidative stress and hepatic dysfunction in rats. Pharm. Biol. 2015, 53, 31–39. [Google Scholar] [CrossRef]
- Engwa, G.A.; Ayuk, E.L.; Igbojekwe, B.U.; Unaegbu, M. Potential Antioxidant Activity of New Tetracyclic and Pentacyclic Nonlinear Phenothiazine Derivatives. Biochem. Res. Int. 2016, 2016, 9896575. [Google Scholar] [CrossRef]
- Laouar, A.; Klibet, F.; Bourogaa, E.; Benamara, A.; Boumendjel, A.; Chefrour, A.; Messarah, M. Potential antioxidant properties and hepatoprotective effects of Juniperus phoenicea berries against CCl4 induced hepatic damage in rats. Asian Pac. J. Trop. Med. 2017, 10, 263–269. [Google Scholar] [CrossRef]
- Kherbachı, S.; Khenıche, M.; Tacherfıout, M. Antihemolytic activity of hydroalcoholic leaves and bark hydro-alcoholic hydro-alcoholic extracts from Rhamnus alaternus against AAPH induced hemolysis on human erythrocytes. Int. J. Plant Based Pharm. 2022, 2, 210–219. [Google Scholar] [CrossRef]
- Rubnawaz, S.; Okla, M.K.; Akhtar, N.; Khan, I.U.; Bhatti, M.Z.; Duong, H.Q.; El-Tayeb, M.A.; Elbadawi, Y.B.; Almaary, K.S.; Moussa, I.M.; et al. Antibacterial, Antihemolytic, Cytotoxic, Anticancer, and Antileishmanial Effects of Ajuga bracteosa Transgenic Plants. Plants 2021, 10, 1894. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Elhelbawy, N.G.; Azmy, R.M.; Abdelshafy, M.S.; Donia, S.S.; Abd El Gayed, E.M. Evaluation of mRNA expression level of the ATP synthase membrane subunit c locus 1 (ATP5G1) gene in patients with schizophrenia. Biochem. Biophys. Rep. 2022, 30, 101234. [Google Scholar] [CrossRef] [PubMed]
- Lopes, F.N.C.; da Cunha, N.V.; de Campos, B.H.; Fattori, V.; Panis, C.; Cecchini, R.; Verri, W.A.; Pinge-Filho, P., Jr.; Martins-Pinge, M.C. Antioxidant therapy reverses sympathetic dysfunction, oxidative stress, and hypertension in male hyperadipose rats. Life Sci. 2022, 295, 120405. [Google Scholar] [CrossRef]
- Yang, C.C.; Liao, P.H.; Cheng, Y.H.; Chien, C.Y.; Cheng, K.H.; Chien, C.T. Diabetes associated with hypertension exacerbated oxidative stress-mediated inflammation, apoptosis and autophagy leading to erectile dysfunction in rats. J. Chin. Med. Assoc. (JCMA) 2022, 85, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Geng, Z.; Zhang, L.L.; Zheng, F.; Zhou, Y.B.; Zhu, G.Q.; Xiong, X.Q. Chronic infusion of ELABELA alleviates vascular remodeling in spontaneously hypertensive rats via anti-inflammatory, anti-oxidative and anti-proliferative effects. Acta Pharmacol. Sin. 2022, 43, 2573–2584. [Google Scholar] [CrossRef]
- Syed, A.A.; Shafiq, M.; Reza, M.I.; Bharati, P.; Husain, A.; Singh, P.; Hanif, K.; Gayen, J.R. Ethanolic hydro-alcoholic extract of Cissus quadrangularis improves vasoreactivity by modulation of eNOS expression and oxidative stress in spontaneously hypertensive rats. Clin. Exp. Hypertens. 2022, 44, 63–71. [Google Scholar] [CrossRef]
- Janickova, L.; Schwaller, B. Parvalbumin-Deficiency Accelerates the Age-Dependent ROS Production in Pvalb Neurons in vivo: Link to Neurodevelopmental Disorders. Front. Cell. Neurosci. 2020, 14, 571216. [Google Scholar] [CrossRef]
- Venkataramaiah, C. Modulations in the ATPases during ketamine-induced schizophrenia and regulatory effect of “3-(3,4-dimethoxy phenyl)-1-(4-methoxyphenyl)prop-2-en-1-one”: An in vivo and in silico studies. J. Recept. Signal Transduct. Res. 2020, 40, 148–156. [Google Scholar] [CrossRef]
- Moghaddam, A.H.; Maboudi, K.; Bavaghar, B.; Sangdehi, S.R.M.; Zare, M. Neuroprotective effects of curcumin-loaded nanophytosome on ketamine-induced schizophrenia-like behaviors and oxidative damage in male mice. Neurosci. Lett. 2021, 765, 136249. [Google Scholar] [CrossRef]
- Wang, T.; Li, C.; Han, B.; Wang, Z.; Meng, X.; Zhang, L.; He, J.; Fu, F. Neuroprotective effects of Danshensu on rotenone-induced Parkinson’s disease models in vitro and in vivo. BMC Complement. Med. Ther. 2020, 20, 20. [Google Scholar] [CrossRef]
- Parkhe, A.; Parekh, P.; Nalla, L.V.; Sharma, N.; Sharma, M.; Gadepalli, A.; Kate, A.; Khairnar, A. Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson’s disease. Neurosci. Lett. 2020, 716, 134652. [Google Scholar] [CrossRef]
- Bahramikia, S.; Yazdanparast, R. Antioxidant efficacy of Nasturtium officinale hydro-alcoholic hydro-alcoholic extracts using various in vitro assay systems. J. Acupunct. Meridian Stud. 2010, 3, 283–290. [Google Scholar] [CrossRef]
- Wetchakul, P.; Chonsut, P.; Punsawad, C.; Sanpinit, S. LC-QTOF-MS Characterization, Antioxidant Activity, and In Vitro Toxicity of Medicinal Plants from the Tri-Than-Thip Remedy. Evid.-Based Complement. Altern. Med. 2022, 2022, 4477003. [Google Scholar] [CrossRef]
- Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC-MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep. 2020, 10, 16438. [Google Scholar] [CrossRef]
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209. [Google Scholar] [CrossRef]
- Sharma, R.K.; Sharma, N.; Kumar, U.; Samant, S.S. Antioxidant properties, phenolics and flavonoids content of some economically important plants from North-West Indian Himalaya. Nat. Prod. Res. 2022, 36, 1565–1569. [Google Scholar] [CrossRef]
- Giri, L.; Belwal, T.; Bahukhandi, A.; Suyal, R.; Bhatt, I.D.; Rawal, R.S.; Nandi., S.K. Oxidative DNA damage protective activity and antioxidant potential of Ashtvarga species growing in the Indian Himalayan Region. Ind. Crops Prod. 2017, 102, 173–179. [Google Scholar] [CrossRef]
- Nabi, M.; Tabassum, N.; Ganai, B.A. Skimmia anquetilia N.P. Taylor and Airy Shaw (Rutaceae): A Critical Appriasal of its Ethnobotanical and Pharmacological Activities. Front. Plant Sci. 2022, 13, 930687. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; Camp, J.V.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Mehmood, A.; Javid, S.; Khan, M.F.; Ahmad, K.S.; Mustafa, A. In vitro total phenolics, total flavonoids, antioxidant and antibacterial activities of selected medicinal plants using different solvent systems. BMC Chem. 2022, 16, 64. [Google Scholar] [CrossRef]
- Dash, P.; Ghosh, G. Amino acid composition, antioxidant and functional properties of protein hydrolysates from Cucurbitaceae seeds. J. Food Sci. Technol. 2017, 54, 4162–4172. [Google Scholar] [CrossRef]
- Lee, Y.S.; Cho, I.J.; Kim, J.W.; Lee, M.K.; Ku, S.K.; Choi, J.S.; Lee, H.J. Hepatoprotective effects of blue honeysuckle on CCl4-induced acute liver damaged mice. Food Sci. Nutr. 2018, 7, 322–338. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Asrar, M.; Rasul, A.; Sultana, S.; Saleem, U. Chenopodium album hydro-alcoholic extract ameliorates carbon tetrachloride induced hepatotoxicity in rat model. Saudi J. Biol. Sci. 2022, 29, 3408–3413. [Google Scholar] [CrossRef] [PubMed]
- Shaban, N.Z.; Awad, O.M.; Fouad, G.M.; Hafez, A.M.; Abdul-Aziz, A.A.; El-Kot, S.M. Prophylactic and curative effects of Carica papaya Linn. pulp hydro-alcoholic extract against carbon tetrachloride-induced hepatotoxicity in male rats. Environ. Sci. Pollut. Res. Int. 2022, 30, 27815–27832. [Google Scholar] [CrossRef]
- Banwo, K.; Oduola, S.; Alao, M.; Sanni, A. Hepatoprotective potentials of methanolic hydro-alcoholic hydro-alcoholic extracts of Roselle and beetroots against carbon tetrachloride and Escherichia coli induced stress in Wistar rats. Egypt. J. Basic Appl. Sci. 2022, 9, 423–440. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Wan, Y.; Hu, H.; Hong, Z. Pien Tze Huang Gan Bao attenuates carbon tetrachloride-induced hepatocyte apoptosis in rats, associated with suppression of p53 activation and oxidative stress. Mol. Med. Rep. 2017, 16, 2611–2619. [Google Scholar] [CrossRef]
- Unsal, V.; Cicek, M.; Sabancilar, İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev. Environ. Health 2020, 36, 279–295. [Google Scholar] [CrossRef]
- Derouich, M.; Bouhlali, E.D.T.; Bammou, M.; Hmidani, A.; Sellam, K.; Alem, C. Bioactive Compounds and Antioxidant, Antiperoxidative, and Antihemolytic Properties Investigation of Three Apiaceae Species Grown in the Southeast of Morocco. Scientifica 2020, 2020, 3971041. [Google Scholar] [CrossRef]
- Balderrama-Carmona, A.P.; Silva-Beltrán, N.P.; Gálvez-Ruiz, J.C.; Ruíz-Cruz, S.; Chaidez-Quiroz, C.; Morán-Palacio, E.F. Antiviral, Antioxidant, and Antihemolytic Effect of Annona muricata L. Leaves Hydro-alcoholic hydro-alcoholic extracts. Plants 2020, 9, 1650. [Google Scholar] [CrossRef] [PubMed]
R.Time | Compound Name | Category | Ion | Formula | Structure | Exact Mass | Observed Mass |
---|---|---|---|---|---|---|---|
1–55 | Suberic Acid | Dicarboxylic Acid | Positive | C8H14O4 | 174.089 | 174.1747 | |
6–09 | Methyl Jasmonate | Jasmonate Ester | Positive | C13H20O3 | 224.141 | 224.1574 | |
6–36 | L-Carnosine | Peptide | [M+H]+ | C9H14N4O3 | 226.23 | 224.1574 | |
7–28 | 3-Hydroxy-DL-Kynurenine | Amino Acid | [M+H]+ | C10H12N2O4 | 224.21 | 224.0224 | |
7–72 | 3,4-Dihydroxy-L-Phenylalanine | Amino Acid | [M+H]+ | C9H11NO4 | 197.19 | 197.2303 | |
13–96 | 1,10-Phenanthroline Monohydrate | Hetero-cyclic organic Compound | Positive | C12H8N2 | 180.068 | 181.2362 | |
14–24 | Acacetin | Flavonoids | Positive | C16H12O5 | 284.068 | 281.2183 | |
14–51 | Linoleic Acid | Omega-6 Fatty Acids | Positive | C18H32O2 | 280.24 | 279.1261 | |
14–99 | Leucylleucyltyrosine | Peptide | Positive | C21H33N3O5 | 407.242 | 403.2747 | |
16–04 | Butenyl Glucosinolate/Gluconapin | Amino Acid | Positive | C11H19NO9S2 | 373.05 | 373.1734 | |
16–93 | Sinapine | Alkaloid | Positive | C16H24NO5 | 310.165 | 313.3769 | |
17–65 | Chalcone | Flavonoid | Positive | C15H12O | 208.088 | 209.2091 | |
21–53 | Adenosine-5′-Diphospho-Glucose Disodium Salt | Purine | [M+H]+ | C16H25N5O15P2 | 589.32 | 634.6143 | |
22–28 | Isorhamnetin-3-O-Rutinoside | Flavonoid | Positive | C28H32O16 | 624.169 | 625.5021 | |
23.00 | 2′-Deoxyadenosine-5′-Diphosphate Sodium Salt | Purine | Positive | C55H72MgN4O5 | 868.55 | 556.5203 | |
23–78 | Scoulerine | Alkaloid | Positive | C19H21NO4 | 327.147 | 329.2032 | |
26–34 | 6-(Gamma,Gamma-Dimethylallylamino)Purine Riboside | Purine | Positive | C15H21N5O4 | 335.159 | 338.4494 | |
26–89 | 5-Aminoimidazole-4-Carboxamide-1-Beta-D-Ribofuranosyl 5′-Monophosphate | Purine | Positive | C9H15N4O8P | 338.062 | 338.4156 | |
3–57 | Esculin Sesquihydrate | Carbohydrate | Positive | C15H16O9 | 340.079 | 338.5169 | |
Guanosine-5′-Diphosphate-D-Mannose Sodium Salt | Carbohydrate | [M+H]+ | C16H25N5O16P2 | 605.34 | 607.4128 | ||
1–16 | D-(-)-Quinic Acid | Monocarboxylic Acid | Negative | C7H12O6 | 192.063 | 191.0891 | |
15–31 | Pentachlorophenol | Organo-Chlorine Compound | [M-H]+ | C6HCl5O | 266.34 | 265.3923 | |
18–45 | Piperacillin Sodium Salt | Ureidopenicillin | Negative | C23H27N5O7S | 517.163 | 513.5256 | |
19–27 | Petunidin-3-O-(6″-O-(4‴-O-E-Coum)-Alpha-Rhamnopyranosyl-Beta-Glucopyranosyl)-5-O-Beta-Glucopyranoside/ | Flavonoid | [M-2H]+ | C43H49O23 | 933.84 | 926.4535 | |
20–73 | 6-Phosphogluconic Acid Barium Salt Hydrate | Carbohydrate | Negative | C6H13O10P | 276.024 | 277.3714 | |
21–14 | L-Carnosine | Peptide | Negative | C9H14N4O3 | 226.106 | 227.2280 | |
22–30 | D-Glucosamine-6-Phosphate Sodium Salt | Amino Sugar | Negative | C6H14NO8P | 259.045 | 253.2782 | |
25–88 | 2′-Deoxyinosine | Purine | Negative | C10H12N4O4 | 252.085 | 255.3703 | |
26–19 | Luteolin | Flavonoid | Negative | C15H10O6 | 286.047 | 281.3870 | |
28–78 | Naringenin | Flavonoid | Negative | C15H12O5 | 272.068 | 269.3066 | |
32–57 | Linarin | Flavonoid | Negative | C28H32O14 | 592.179 | 283.4117 | |
32–70 | Xanthosine | Purine | Negative | C10H12N4O6 | 284.075 | 283.4454 | |
33–42 | Acacetin | Flavonoid | Negative | C16H12O5 | 284.068 | 283.4117 |
Calculated KI | Chemical Name | Mass (g/mol) | Category | Chemical Formula | Structure |
---|---|---|---|---|---|
931 | α-Pinene | 136.23 | Terpene | C10H16 | |
1000 | α-Phellandrene | 136.23 | Cyclic Mono-terpenes | C10H16 | |
1025.31 | γ-Terpinene | 136.23 | Cyclic Mono-terpenes | C10H16 | |
988.61 | β-Myrcene | 136.23 | Aliphatic Mono-terpenes | C10H16 | |
988.73 | β-Pinene | 136.23 | Terpene | C10H16 | |
1026.51 | Eucalyptol | 154.25 | Mono-terpenoid | C10H18O | |
1530.72 | α-Selinene | 204.35 | Sesquiterpenes | C15H24 | |
970.78 | Cyclohexane, 1-methylene-4-(1-methylethenyl)- | 136.23 | Cyclic Mono-terpenes | C10H16 | |
1025.31 | β-Phellandrene | 136.23 | Cyclic Mono-terpenes | C10H16 | |
1079.70 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-/p-Menth-4(8)-ene | 138.25 | Mono-terpenoid | C10H18 | |
1123.75 | 2,4,6-Octatriene, 2,6-dimethyl- | 136.23 | Acyclic Mono-terpenes | C10H16 | |
931.07 | Bicyclo [3.1.0]hex-2-ene, 2-methyl-5-(1-methylethyl)-/ α-Thujene | 136.23 | Cyclic Mono-terpenes | C10H16 | |
1492.35 | Cyclohexane, 1-ethenyl-1-methyl-2-(1-methylethenyl)-4-(1-methylethylidene)- | 204.35 | Sesquiterpenes | C15H24 | |
1042.08 | 1,3,6-Octatriene, 3,7-dimethyl-, (Z)-/Cis-beta-Ocimene | 136.23 | Acyclic Mono-terpenes | C10H16 | |
970.90 | Bicyclo [3.1.0]hexane, 4-methylene-1-(1-methylethyl)- | 194.27 | Bicyclic monoterpene | C12H18O2 | |
1042.08 | trans-β-Ocimene | 136.23 | Acyclic Mono-terpenes | C10H16 | |
1127.93 | Geijerene | 162.27 | Sesquiterpene | C12H18 | |
1000.19 | 3-Carene | 136.23 | Bicyclic monoterpene | C10H16 | |
1042.08 | β-Ocimene | 136.23 | Acyclic Mono-terpenes | C10H16 | |
1492.35 | Bicyclogermacrene | 204.35 | Sesquiterpene | C15H24 |
Treatment | IC50 of DPPH Assay (µg/mL) | EC50 of Metal Chelating Assay (µg/mL) | Reducing Power Assay | CUPRAC Assay |
---|---|---|---|---|
Ascorbic acid | 10.4 ± 1.9 a | 73.1 ± 3.7 | 0.33 ± 0.01 a | 0.35 ± 0.01 b |
SAEO | 73.38 ± 6.1 *** a | 362.5 ± 23.5 *** a | 0.17 ± 0.01 *** a | 0.26 ± 0.01 *** b |
SAE | 1.2 ± 0.2 *** a | 147.2 ± 20.3 *** a | 0.30 ± 0.01 *** a | 0.34 ± 0.01 *** b |
Groups | IC50 (µg/mL) |
---|---|
Standard (Ascorbic acid) | 23.08 ± 0.3 |
S.A.E | 30.20 ± 0.3 ** |
S.A.E Oil | 232.2 ± 0.4 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukreti, N.; Chitme, H.R.; Varshney, V.K.; Abdel-Wahab, B.A.; Khateeb, M.M.; Habeeb, M.S. Antioxidant Properties Mediate Nephroprotective and Hepatoprotective Activity of Essential Oil and Hydro-Alcoholic Extract of the High-Altitude Plant Skimmia anquetilia. Antioxidants 2023, 12, 1167. https://doi.org/10.3390/antiox12061167
Kukreti N, Chitme HR, Varshney VK, Abdel-Wahab BA, Khateeb MM, Habeeb MS. Antioxidant Properties Mediate Nephroprotective and Hepatoprotective Activity of Essential Oil and Hydro-Alcoholic Extract of the High-Altitude Plant Skimmia anquetilia. Antioxidants. 2023; 12(6):1167. https://doi.org/10.3390/antiox12061167
Chicago/Turabian StyleKukreti, Neha, Havagiray R. Chitme, Vinay K. Varshney, Basel A. Abdel-Wahab, Masood Medleri Khateeb, and Mohammed Shafiuddin Habeeb. 2023. "Antioxidant Properties Mediate Nephroprotective and Hepatoprotective Activity of Essential Oil and Hydro-Alcoholic Extract of the High-Altitude Plant Skimmia anquetilia" Antioxidants 12, no. 6: 1167. https://doi.org/10.3390/antiox12061167
APA StyleKukreti, N., Chitme, H. R., Varshney, V. K., Abdel-Wahab, B. A., Khateeb, M. M., & Habeeb, M. S. (2023). Antioxidant Properties Mediate Nephroprotective and Hepatoprotective Activity of Essential Oil and Hydro-Alcoholic Extract of the High-Altitude Plant Skimmia anquetilia. Antioxidants, 12(6), 1167. https://doi.org/10.3390/antiox12061167