When Cannabis sativa L. Turns Purple: Biosynthesis and Accumulation of Anthocyanins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Growth Conditions and Sampling
2.2. Chemicals and Reagents
2.3. Anthocyanins Quantification by High Performance Liquid Chromatography Coupled with Diode Array Detection (HPLC-DAD)
2.4. Anthocyanin Identification by High Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS)
2.5. Bioinformatic Identification of Anthocyanin Encoding Genes and Phylogenetic Analysis
2.6. RNA Isolation and RT-qPCR Analysis
3. Results and Discussion
3.1. Evaluation of Anthocyanin Phenotype in C. sativa
3.2. Characterization and Quantification of Anthocyanins in C. sativa Tissues via HPLC-MS/MS
3.3. In Silico Identification of MATE Type and TTG1 Proteins in C. sativa
3.4. Expression Profile of Structural Genes Controlling Anthocyanins Synthesis in Different Tissues
3.5. Transcription Factors Related to Anthocyanin Biosynthesis
3.6. Correlation Analysis of the Expression Profiles of Anthocyanin Genes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Abbreviations
ROS | reactive oxygen species |
C3R | cyanidin-3-rutinoside or keracyanin |
P3R | peonidin-3-rutinoside |
C3G | cyanidin-3-glucoside |
P3G | peonidin-3-glucoside |
TCA | total content of anthocyanin |
MYB | myeloblastosis |
CsMYB82 | Cannabis sativa myeloblastosis82 |
CsMYB87 | Cannabis sativa myeloblastosis87 |
bHLH | basic helix loop helix |
CsbHLH112 | Cannabis sativa basic helix loop helix 112 |
CsbHLH114 | Cannabis sativa basic helix loop helix 114 |
3GT | UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE |
DTX35 | MATE type trans-porter DETOXIFICATION 35 |
WD40 | tryptophan-aspartic acid repeat domains |
TTG1 | WD40 containing type TRANSPARENT TESTA GLABRA1 |
AN1 | Anthocyanin 1 |
JAF13 | JOHN AND FRANCESCA 13 |
PAL | phenylalanine ammonia lyase; |
4CL | 4-coumarate-CoA ligase; |
C4H | P450 monooxygenase cinnamate-4-hydroxylase; |
CHS | chalcone synthase; |
CHI | chalcone isomerase; |
F3H | flavanone 3-hydroxylase; |
F3′H | flavonoid 3′-hydroxylase; |
F3′5′H | flavonoid 3′,5′-hydroxylase; |
DFR | dihydroflavonol 4-reductase; |
ANS | anthocyanidin synthase; |
3-OMT | flavonoid-3-O-methyltransferase; |
MATE | multi-antimicrobial extrusion protein |
MBW | MYB-bHLH-WD40 complex |
References
- Saigo, T.; Wang, T.; Watanabe, M.; Tohge, T. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Curr. Opin. Plant Biol. 2020, 55, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.C.J.; Pichersky, E.; Peakall, R. Many different flowers make a bouquet: Lessons from specialized metabolite diversity in plant-pollinator interactions. Curr. Opin. Plant Biol. 2023, 73, 102332. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, H.M.; McGraw, K.; Catoni, C. Birds use fruit colour as honest signal of dietary antioxidant rewards. Funct. Ecol. 2008, 22, 303–310. [Google Scholar] [CrossRef]
- Kiferle, C.; Fantini, E.; Bassolino, L.; Povero, G.; Spelt, C.; Buti, S.; Giuliano, G.; Quattrocchio, F.; Koes, R.; Perata, P.; et al. Tomato R2R3-MYB Proteins SlANT1 and SlAN2: Same Protein Activity, Different Roles. PLoS ONE 2015, 10, e0136365. [Google Scholar] [CrossRef]
- Kaur, S.; Tiwari, V.; Kumari, A.; Chaudhary, E.; Sharma, A.; Ali, U.; Garg, M. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J. Biotechnol. 2023, 361, 12–29. [Google Scholar] [CrossRef]
- Bassolino, L.; Petroni, K.; Polito, A.; Marinelli, A.; Azzini, E.; Ferrari, M.; Ficco, D.B.; Mazzucotelli, E.; Tondelli, A.; Fricano, A.; et al. Does Plant Breeding for Antioxidant-Rich Foods Have an Impact on Human Health? Antioxidants 2022, 11, 794. [Google Scholar] [CrossRef]
- Chun, O.K.; Kim, D.O.; Moon, H.Y.; Kang, H.G.; Lee, C.Y. Contribution of individual polyphenolics to total antioxidant capacity of plums. J. Agric. Food Chem. 2003, 51, 7240–7245. [Google Scholar] [CrossRef]
- Holton, T.A.; Cornish, E.C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell 1995, 7, 1071–1083. [Google Scholar] [CrossRef]
- Winefield, W.; Davies, K.; Gould, K. Anthocyanins, 1st ed.; Winefield, W., Davies, K., Gould, K., Eds.; Springer: New York, NY, USA, 2008; Volume XVIII, p. 336. [Google Scholar]
- Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant. Sci. 2005, 10, 236–242. [Google Scholar] [CrossRef]
- Irani, N.G.; Hernandez, J.M.; Grotewold, E. Chapter three Regulation of anthocyanin pigmentation. In Recent Advances in Phytochemistry; John, T.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 37, pp. 59–78. [Google Scholar]
- Zhang, Y.; Butelli, E.; Martin, C. Engineering anthocyanin biosynthesis in plants. Curr. Opin. Plant Biol. 2014, 19, 81–90. [Google Scholar] [CrossRef]
- Bassolino, L.; Buti, M.; Fulvio, F.; Pennesi, A.; Mandolino, G.; Milc, J.; Francia, E.; Paris, R. In Silico Identification of MYB and bHLH Families Reveals Candidate Transcription Factors for Secondary Metabolic Pathways in Cannabis sativa L. Plants 2020, 9, 1540. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, S.; Mokher, J.; Laiko, I.; Burbulis, N.; Kyrychenko, H.; Dudukova, S. Phenological growth stages of hemp (Cannabis sativa L.): Codification and description according to the BBCH scale. Žemės Ūkio Moksl. 2017, 24, 31–36. [Google Scholar] [CrossRef]
- Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite profiling of grape: Flavonols and anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- The iTOL Platform. Available online: https://itol.embl.de/ (accessed on 5 September 2022).
- Fulvio, F.; Paris, R.; Montanari, M.; Citti, C.; Cilento, V.; Bassolino, L.; Moschella, A.; Alberti, I.; Pecchioni, N.; Cannazza, G.; et al. Analysis of Sequence Variability and Transcriptional Profile of Cannabinoid synthase Genes in Cannabis sativa L. Chemotypes with a Focus on Cannabichromenic acid synthase . Plants 2021, 10, 1857. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and Modifications of Primer Design Program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. R Package ‘corrplot’: Visualization of a Correlation Matrix. (Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 12 June 2023).
- Wu, X.; Prior, R. Systematic identification and characterization of anthocyanins by HPLC–ESI–MS/MS in common foods in the United States: Fruits and berries. J. Agric. Food Chem. 2004, 53, 2589–2599. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Verardo, V.; Toselli, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.F. Determination of the major phenolic compounds in pomegranate juices by HPLC−DAD−ESI-MS. J. Agric. Food Chem. 2013, 61, 5328–5337. [Google Scholar] [CrossRef]
- Downey, M.O.; Rochfort, S. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin. J. Chromatogr. A 2008, 1201, 43–47. [Google Scholar] [CrossRef]
- Olivas-Aguirre, F.J.; Rodrigo-García, J.; Martínez-Ruiz, N.D.R.; Cárdenas-Robles, A.I.; Mendoza-Díaz, S.O.; Álvarez-Parrilla, E.; González-Aguilar, G.A.; De la Rosa, L.A.; Ramos-Jiménez, A.; Wall-Medrano, A. Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects. Molecules 2016, 21, 1264. [Google Scholar] [CrossRef]
- Steyn, W.J.; Wand, S.J.E.; Holcroft, D.M.; Jacobs, G. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytol. 2002, 155, 349–361. [Google Scholar] [CrossRef]
- de Rosso, V.V.; Hillebrand, S.; Montilla, E.C.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and acai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Compos. Anal. 2008, 21, 291–299. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; Sedo, O.; Havel, J.; Pacheco, L.; Galán-Vidal, C.A.; Contreras López, E. Identification of anthocyanins in red grape, plum and capulin by MALDI-ToF MS. J. Mex. Chem. Soc. 2012, 56, 378–383. [Google Scholar] [CrossRef]
- de Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. LC–MS analysis of anthocyanins from purple corn cob. J. Agric. Food Chem. 2002, 82, 1003–1006. [Google Scholar] [CrossRef]
- Pradhan, P.C.; Saha, S. Anthocyanin profiling of Berberis lycium Royle berry and its bioactivity evaluation for its nutraceutical potential. J. Agric. Food Chem. 2016, 53, 1205–1213. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Z.; Zhang, L. Anthocyanin accumulation, antioxidant ability and stability, and a transcriptional analysis of anthocyanin biosynthesis in purple heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). J. Agric. Food Chem. 2016, 64, 132–145. [Google Scholar] [CrossRef]
- Paulsmeyer, M.N.; Vermillion, K.E.; Juvik, J.A. Assessing the diversity of anthocyanin composition in various tissues of purple corn (Zea mays L.). Phytochemistry 2022, 201, 113263. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Ni, H.M.; Wang, S.Y.; Tourkova, I.L.; Shurin, M.R.; Harada, H.; Yin, X.M. Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J. Biol. Chem. 2007, 282, 13468–13476. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.N.; Chu, S.C.; Chiou, H.L.; Kuo, W.H.; Chiang, C.L.; Hsieh, Y.S. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett. 2006, 235, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Thilavech, T.; Adisakwattana, S. Cyanidin-3-rutinoside acts as a natural inhibitor of intestinal lipid digestion and absorption. BMC Complement. Altern. Med. 2019, 19, 242. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef]
- Zhao, J. Flavonoid transport mechanisms: How to go, and with whom. Trends Plant. Sci. 2015, 20, 576–585. [Google Scholar] [CrossRef]
- Biała, W.; Jasiński, M. The Phenylpropanoid Case—It Is Transport That Matters. Front. Plant. Sci. 2018, 9, 1610. [Google Scholar] [CrossRef]
- Nimmy, M.S.; Kumar, V.; Suthanthiram, B.; Subbaraya, U.; Nagar, R.; Bharadwaj, C.; Jain, P.K.; Krishnamurthy, P. A Systematic Phylogenomic Classification of the Multidrug and Toxic Compound Extrusion Transporter Gene Family in Plants. Front. Plant. Sci. 2022, 13, 774885. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, J.; Chen, Y.; Tang, H.; Wang, Y.; He, Y.; Ou, Y.; Sun, X.; Wang, S.; Yao, Y. Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins. Hortic. Res. 2018, 5, 27. [Google Scholar] [CrossRef]
- Grotewold, E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 2006, 57, 761–780. [Google Scholar] [CrossRef]
- Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.P.; Matros, A.; Peterek, S.; Schijlen, E.G.; Hall, R.D.; Bovy, A.G.; Luo, J.; et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 2008, 26, 1301–1308. [Google Scholar] [CrossRef]
- Kundan, M.; Gani, U.; Fayaz, M.; Angmo, T.; Kesari, R.; Rahul, V.P.; Gairola, S.; Misra, P. Two R2R3-MYB transcription factors, CsMYB33 and CsMYB78 are involved in the regulation of anthocyanin biosynthesis in Cannabis sativa L. Ind. Crops Prod. 2022, 188, 115546. [Google Scholar] [CrossRef]
- Butelli, E.; Licciardello, C.; Zhang, Y.; Liu, J.; Mackay, S.; Bailey, P.; Reforgiato-Recupero, G.; Martin, C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 2012, 24, 1242–1255. [Google Scholar] [CrossRef]
- Lu, Y.; Du, J.; Tang, J.; Wang, F.; Zhang, J.; Huang, J.; Liang, W.; Wang, L. Environmental regulation of floral anthocyanin synthesis in Ipomoea purpurea. Mol. Ecol. 2009, 18, 3857–3871. [Google Scholar] [CrossRef]
Genotype | Plant Tissue | Color | Sampling Time | Growth Stage |
---|---|---|---|---|
Fibrante | petiole | green | 37 | BBCH 14 (4 true leaf pairs) |
Fibrante | petiole | purple | 53 | BBCH 18 (8 true leaf pairs) |
S1750 | female flower | green | 164 | BBCH 67 (flowering finishing) |
S1750 | female flower | purple | 164 | BBCH 67 (flowering finishing) |
S1750 | leaves | purple | 164 | BBCH 67 (flowering finishing) |
S1750 | leaves | green | 164 | BBCH 67 (flowering finishing) |
S1759 | flowers | purple | 164 | BBCH 67 (flowering finishing) |
S1652 | petiole | green | 53 | BBCH 18 (8 true leaf pairs) |
S1652 | petiole | purple | 53 | BBCH 18 (8 true leaf pairs) |
PurpleF2 | female flower | green | 118 | BBCH 65 (full flowering) |
PurpleF2 | female flower | purple | 118 | BBCH 65 (full flowering) |
PurpleF2 | male flower | purple | 118 | BBCH 60 (first individual flowers open) |
V18 | petiole | red | 164 | BBCH 67 (flowering finishing) |
Peak | tR (min) | λ Max (nm) | [M]+ (m/z) | MS/MS (m/z) | Confirmed by Standard | Compounds |
---|---|---|---|---|---|---|
1 | 16.3 | 280, 519 | 449 | 287 | + | Cyanidin 3-glucoside |
2 | 17.9 | 280, 522 | 595 | 449, 287 | + | Cyanidin 3-rutinoside |
3 | 21.1 | 275, 519 | 463 | 301 | + | Peonidin 3-glucoside |
4 | 23.1 | 280, 523 | 609 | 463, 301 | − | Peonidin 3-rutinoside |
Genotype | Plant Material | C3G | C3R | P3G | P3R | TCA |
---|---|---|---|---|---|---|
Fibrante | GP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fibrante | GP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fibrante | PP | 0.00 | 29.38 | 0.00 | 0.00 | 29.38 |
Fibrante | PP | 0.00 | 15.26 | 0.00 | 0.00 | 15.26 |
Fibrante | PP | 0.00 | 18.07 | 0.00 | 0.00 | 18.07 |
S1750 | GF | 0.56 | 4.43 | 0.00 | 0.00 | 4.99 |
S1750 | PF | 6.48 | 312.53 | 4.66 | 36.47 | 360.13 |
S1750 | PL | 19.88 | 885.58 | 32.48 | 249.33 | 1.187.27 |
S1750 | GL | 0.00 | 2.35 | 0.00 | 0.65 | 3.00 |
S1759 | PF | 0.00 | 31.09 | 0.00 | 0.91 | 32.00 |
S1652 | GP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
S1652 | PP | 0.52 | 168.49 | 0.78 | 1.75 | 171.54 |
PurpleF2 | GF | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PurpleF2 | PF | 0.00 | 9.64 | 0.00 | 0.00 | 9.64 |
PurpleF2 | * MPF | 0.58 | 108.72 | 0.63 | 0.00 | 109.93 |
V18 | ** RP | 0.00 | 11.23 | 0.00 | 0.00 | 11.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassolino, L.; Fulvio, F.; Pastore, C.; Pasini, F.; Gallina Toschi, T.; Filippetti, I.; Paris, R. When Cannabis sativa L. Turns Purple: Biosynthesis and Accumulation of Anthocyanins. Antioxidants 2023, 12, 1393. https://doi.org/10.3390/antiox12071393
Bassolino L, Fulvio F, Pastore C, Pasini F, Gallina Toschi T, Filippetti I, Paris R. When Cannabis sativa L. Turns Purple: Biosynthesis and Accumulation of Anthocyanins. Antioxidants. 2023; 12(7):1393. https://doi.org/10.3390/antiox12071393
Chicago/Turabian StyleBassolino, Laura, Flavia Fulvio, Chiara Pastore, Federica Pasini, Tullia Gallina Toschi, Ilaria Filippetti, and Roberta Paris. 2023. "When Cannabis sativa L. Turns Purple: Biosynthesis and Accumulation of Anthocyanins" Antioxidants 12, no. 7: 1393. https://doi.org/10.3390/antiox12071393
APA StyleBassolino, L., Fulvio, F., Pastore, C., Pasini, F., Gallina Toschi, T., Filippetti, I., & Paris, R. (2023). When Cannabis sativa L. Turns Purple: Biosynthesis and Accumulation of Anthocyanins. Antioxidants, 12(7), 1393. https://doi.org/10.3390/antiox12071393