Effect of HHP and UHPH High-Pressure Techniques on the Extraction and Stability of Grape and Other Fruit Anthocyanins
Abstract
:1. Introduction
2. Main Features of HHP and UHPH
Characteristics | HHP | References | UHPH | References |
---|---|---|---|---|
Mode | Batch or semi-continuous | [13,14,16] | Continuous | [19,20,31] |
Temperature | −20–60 °C | 70–160 °C | ||
Pressure range Optimal pressure | 200–600 MPa 500–600 MPa | 200–600 MPa 300 MPa | ||
Residence time | 2–10 min | <0.2 s | ||
Increment of temperature during processing | <4 °C/100 MPa | 70–90 °C | ||
Size requirements | Smaller than the vessel diameter | Particle size < 500 µm | ||
Antimicrobial | Pasteurization Sterilizing variable if T > 100 °C | [32] | Sterilizing if T > 140 °C | [20] |
Enzymes | Variable Sometimes activation at low pressure (200 MPa) and inactivation at 400–600 MPa In some conditions, suitable inactivation of PPOs 1 | [16,27,32,33] | Inactivation, highly effective of PPOs 1 | [21,23,24,34] |
Terpenes | unaffected | [14,15,17,25] | unaffected | [21,22,23] |
Thiols | unaffected | unaffected | ||
Anthocyanins | Protected | Protected | ||
Pyranoanthocyanins | Higher formation of Vitisin A | [35,36] | Similar formation during fermentation of grape juice processed by UHPH | [22] |
Polymeric anthocyanins | Formation in some conditions in model solutions | [35] | Unknown |
3. Extraction of Anthocyanins by HHP
4. Extraction of Anthocyanins by UHPH
5. HHP vs. UHPH in the Extraction and Stability of Anthocyanins
6. Environmental Impacts and Research Needs
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazza, G.; Miniati, E. Anthocyanins in Fruits, Vegetables, and Grains; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Mazza, G.; Francis, D.F.J. Anthocyanins in grapes and grape products. Crit. Rev. Food Sci. Nutr. 2009, 35, 341–371. [Google Scholar] [CrossRef]
- Morata, A.; López, C.; Tesfaye, W.; González, C.; Escott, C. Anthocyanins as Natural Pigments in Beverages. In Value-Added Ingredients and Enrichments of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 14, pp. 383–428. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; González-Paramás, A.M. Anthocyanins. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 10–21. [Google Scholar] [CrossRef]
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef]
- Kong, J.-M.; Chia, L.-S.; Goh, N.-K.; Chia, T.-F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Dangles, O.; Fenger, J.-A. The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition. Molecules 2018, 23, 1970. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Escott, C.; Loira, I.; López, C.; Palomero, F.; González, C. Emerging Non-Thermal Technologies for the Extraction of Grape Anthocyanins. Antioxidants 2021, 10, 1863. [Google Scholar] [CrossRef]
- Tena, N.; Asuero, A.G. Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants 2022, 11, 286. [Google Scholar] [CrossRef]
- Buzrul, S.; Alpas, H.; Largeteau, A.; Bozoglu, F.; Demazeau, G. Compression heating of selected pressure transmitting fluids and liquid foods during high hydrostatic pressure treatment. J. Food Eng. 2008, 85, 466–472. [Google Scholar] [CrossRef]
- San Martín, M.F.; Barbosa-Cánovas, G.V.; Swanson, B.G. Food Processing by High Hydrostatic Pressure. Crit. Rev. Food Sci. Nutr. 2002, 42, 627–645. [Google Scholar] [CrossRef]
- Knorr, D.; Froehling, A.; Jaeger, H.; Reineke, K.; Schlueter, O.; Schoessler, K. Emerging Technologies in Food Processing. Annu. Rev. Food Sci. Technol. 2011, 2, 203–235. [Google Scholar] [CrossRef] [PubMed]
- Aganovic, K.; Hertel, C.; Vogel, R.F.; Johne, R.; Schlüter, O.; Schwarzenbolz, U.; Jäger, H.; Holzhauser, T.; Bergmair, J.; Roth, A.; et al. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3225–3266. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; O’Donnell, C.P.; Cullen, P.J. Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends Food Sci. Technol. 2009, 20, 137–145. [Google Scholar] [CrossRef]
- Varela-Santos, E.; Ochoa-Martinez, A.; Tabilo-Munizaga, G.; Reyes, J.E.; Pérez-Won, M.; Briones-Labarca, V.; Morales-Castro, J. Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innov. Food Sci. Emerg. Technol. 2012, 13, 13–22. [Google Scholar] [CrossRef]
- Zamora, A.; Guamis, B. Opportunities for ultra-high-pressure homogenization (UHPH) for the food industry. Food Eng. Rev. 2015, 7, 130–142. [Google Scholar] [CrossRef]
- Morata, A.; Guamis, B. Use of UHPH to obtain juices with better nutritional quality and healthier wines with low levels of SO2. Front. Nutr. 2020, 7, 598286. [Google Scholar] [CrossRef]
- Bañuelos, M.A.; Loira, I.; Guamis, B.; Escott, C.; Del Fresno, J.M.; Codina-Torrella, I.; Quevedo, J.M.; Gervilla, R.; Rodríguez Chavarría, J.M.; de Lamo, S.; et al. White wine processing by UHPH without SO2. Elimination of microbial populations and effect in oxidative enzymes, colloidal stability and sensory quality. Food Chem. 2020, 332, 127417. [Google Scholar] [CrossRef]
- Vaquero, C.; Escott, C.; Loira, I.; Guamis, B.; del Fresno, J.M.; Quevedo, J.M.; Gervilla, R.; de Lamo, S.; Ferrer-Gallego, R.; González, C.; et al. Cabernet sauvignon red must processing by UHPH to Produce Wine Without SO2: The colloidal structure, microbial and oxidation control, colour protection and sensory quality of the wine. Food Bioprocess Technol. 2022, 15, 620–634. [Google Scholar] [CrossRef]
- Loira, I.; Morata, A.; Bañuelos, M.A.; Puig-Pujol, A.; Guamis, B.; González, C.; Suárez-Lepe, J.A. Use of ultra-high pressure homogenization processing in winemaking: Control of microbial populations in grape musts and effects in sensory quality. Innov. Food Sci. Emerg. Technol. 2018, 50, 50–56. [Google Scholar] [CrossRef]
- Sauceda-Gálvez, J.N.; Codina-Torrella, I.; Martinez-Garcia, M.; Hernández-Herrero, M.M.; Gervilla, R.; Roig-Sagués, A.X. Combined effects of Ultra-High Pressure Homogenization and short-wave ultraviolet radiation on the properties of cloudy apple juice. LWT 2021, 136, 110286. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Vejarano, R.; Bañuelos, M.A.; Sanz, P.D.; Otero, L.; Suárez-Lepe, J.A. Grape processing by High Hydrostatic Pressure: Effect on microbial populations, phenol extraction and wine quality. Food Bioprocess Technol. 2015, 8, 277–286. [Google Scholar] [CrossRef]
- Corrales, M.; Fernández García, A.; Butz, P.; Tauscher, B. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng. 2009, 90, 415–421. [Google Scholar] [CrossRef]
- Tinello, F.; Lante, A. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innov. Food Sci. Emerg. Technol. 2018, 50, 73–83. [Google Scholar] [CrossRef]
- Garcia-Palazon, A.; Suthanthangjai, W.; Kajda, P.; Zabetakis, I. The effects of high hydrostatic pressure on β-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria × ananassa). Food Chem. 2004, 88, 7–10. [Google Scholar] [CrossRef]
- Sulaiman, A.; Silva, F.V. High pressure processing, thermal processing and freezing of ‘Camarosa’ strawberry for the inactivation of polyphenoloxidase and control of browning. Food Control 2013, 33, 424–428. [Google Scholar] [CrossRef]
- Sulaiman, A.; Soo, M.J.; Yoon, M.M.; Farid, M.; Silva, F.V. Modeling the polyphenoloxidase inactivation kinetics in pear, apple and strawberry purees after high pressure processing. J. Food Eng. 2015, 147, 89–94. [Google Scholar] [CrossRef]
- Patrignani, F.; Lanciotti, R. Applications of High and Ultra High Pressure Homogenization for Food Safety. Front. Microbiol. 2016, 7, 1132. [Google Scholar] [CrossRef]
- Hendrickx, M.; Ludikhuyze, L.; Van den Broeck, I.; Weemaes, C. Effects of High Pressure on enzymes related to food quality. Trends Food Sci. Technol. 1998, 9, 197–203. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Q.; Li, X.; Wang, Y.; Zhu, J.; Ning, C.; Chang, X.; Meng, X. Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innov. Food Sci. Emerg. Technol. 2016, 36, 48–58. [Google Scholar] [CrossRef]
- Velázquez-Estrada, R.M.; Hernández-Herrero, M.M.; Guamis-López, B.; Roig-Sagués, A.X. Impact of Ultra High Pressure Homogenization on pectin methylesterase activity and microbial characteristics of orange juice: A comparative study against conventional heat pasteurization. Innov. Food Sci. Emerg. Technol. 2012, 13, 100–106. [Google Scholar] [CrossRef]
- Corrales, M.; Butz, P.; Tauscher, B. Anthocyanin condensation reactions under high hydrostatic pressure. Food Chem. 2008, 110, 627–635. [Google Scholar] [CrossRef]
- Bañuelos, M.A.; Loira, I.; Escott, C.; Del Fresno, J.M.; Morata, A.; Sanz, P.D.; Otero, L.; Suárez-Lepe, J.A. Grape Processing by High Hydrostatic Pressure: Effect on use of non-Saccharomyces in must fermentation. Food Bioprocess Technol. 2016, 9, 1769–1778. [Google Scholar] [CrossRef]
- Martín, J.; Asuero, A.G. High hydrostatic pressure for recovery of anthocyanins: Effects, performance, and applications. Sep. Purif. Rev. 2021, 50, 159–176. [Google Scholar] [CrossRef]
- Yuan, B.; Danao, M.-G.C.; Stratton, J.E.; Weier, S.A.; Weller, C.L.; Lu, M. High pressure processing (HPP) of aronia berry purée: Effects on physicochemical properties, microbial counts, bioactive compounds, and antioxidant capacities. Innov. Food Sci. Emerg. Technol. 2018, 47, 249–255. [Google Scholar] [CrossRef]
- Li, Y.; Padilla-Zakour, O.I. High Pressure Processing vs. Thermal Pasteurization of Whole Concord Grape Puree: Effect on Nutritional Value, Quality Parameters and Refrigerated Shelf Life. Foods 2021, 10, 2608. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, G.; Yu, Y.; Xu, Y.; Wu, J.; Zou, B.; Li, L. Low-oxygen pulping combined with high hydrostatic pressure improve the stability of blueberry pulp anthocyanins and color during storage. Food Control 2022, 138, 108991. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Y.; Li, Z.; Xie, X.; Gong, E.S.; Tian, J.; Si, X.; Wang, Y.; Gao, N.; Shu, C.; et al. Effects of high hydrostatic pressure and thermal processing on anthocyanin content, polyphenol oxidase and β-glucosidase activities, color, and antioxidant activities of blueberry (Vaccinium Spp.) puree. Food Chem. 2021, 342, 128564. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo-Insfran, D.; Del Follo-Martinez, A.; Talcott, S.T.; Brenes, C.H. Stability of copigmented anthocyanins and ascorbic acid in muscadine grape juice processed by high hydrostatic pressure. J. Food Sci. 2007, 72, S247–S253. [Google Scholar] [CrossRef]
- Pasini, F.; Riciputi, Y.; Fiorini, M.; Caboni, M.F. Effect of the storage time and packaging material on the antioxidant capacity and phenols content of organic grape juice stabilized by high hydrostatic pressure. Chem. Eng. Trans. 2019, 75, 235–240. [Google Scholar] [CrossRef]
- Suthanthangjai, W.; Kajda, P.; Zabetakis, I. The effect of high hydrostatic pressure on the anthocyanins of raspberry (Rubus idaeus). Food Chem. 2005, 90, 193–197. [Google Scholar] [CrossRef]
- Zabetakis, I.; Leclerc, D.; Kajda, P. The effect of High Hydrostatic Pressure on the strawberry anthocyanins. J. Agric. Food Chem. 2000, 48, 2749–2754. [Google Scholar] [CrossRef] [PubMed]
- Kouniaki, S.; Kajda, P.; Zabetakis, I. The effect of high hydrostatic pressure on anthocyanins and ascorbic acid in blackcurrants (Ribes nigrum). Flavour Fragr. J. 2004, 19, 281–286. [Google Scholar] [CrossRef]
- Aaby, K.; Grimsbo, I.H.; Hovda, M.B.; Rode, T.M. Effect of high pressure and thermal processing on shelf life and quality of strawberry purée and juice. Food Chem. 2018, 260, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhu, C.; Chen, X.; Xu, X.; Wang, H. Resistance of detached-cells of biofilm formed by Staphylococcus aureus to ultra high pressure homogenization. Food Res. Int. 2021, 139, 109954. [Google Scholar] [CrossRef]
- Ferragut, V.; Hernández-Herrero, M.; Veciana-Nogués, M.T.; Borras-Suarez, M.; González-Linares, J.; Vidal-Carou, M.C.; Guamis, B. Ultra-high-pressure homogenization (UHPH) system for producing high-quality vegetable-based beverages: Physicochemical, microbiological, nutritional and toxicological characteristics. J. Sci. Food Agric. 2015, 95, 953–961. [Google Scholar] [CrossRef]
- Ferragut, V.; Valencia-Flores, D.C.; Pérez-González, M.; Gallardo, J.; Hernández-Herrero, M. Quality Characteristics and Shelf-Life of Ultra-High Pressure Homogenized (UHPH) Almond Beverage. Foods 2015, 4, 159–172. [Google Scholar] [CrossRef]
- Patrignani, F.; Mannozzi, C.; Tappi, S.; Tylewicz, U.; Pasini, F.; Castellone, V.; Riciputi, Y.; Rocculi, P.; Romani, S.; Caboni, M.F.; et al. (Ultra) High Pressure Homogenization Potential on the shelf-life and functionality of kiwi fruit juice. Front. Microbiol. 2019, 10, 246. [Google Scholar] [CrossRef]
- Salehi, F. Physico-chemical and rheological properties of fruit and vegetable juices as affected by high pressure homogenization: A review. Int. J. Food Prop. 2020, 23, 1136–1149. [Google Scholar] [CrossRef]
- Comuzzo, P.; Calligaris, S. Potential applications of High Pressure Homogenization in winemaking: A Review. Beverages 2019, 5, 56. [Google Scholar] [CrossRef]
- Levy, R.; Okun, Z.; Shpigelman, A. High-Pressure Homogenization: Principles and applications beyond microbial inactivation. Food Eng. Rev. 2021, 13, 490–508. [Google Scholar] [CrossRef]
- Singh, S.V.; Singh, R.; Singh, A.; Chinchkar, A.V.; Kamble, M.G.; Dutta, S.J.; Singh, S.B. A review on green pressure processing of fruit juices using microfluidization: Quality, safety and preservation. Appl. Food Res. 2022, 2, 100235. [Google Scholar] [CrossRef]
- Suárez-Jacobo, Á.; Saldo, J.; Rüfer, C.E.; Guamis, B.; Roig-Sagués, A.X.; Gervilla, R. Aseptically packaged UHPH-treated apple juice: Safety and quality parameters during storage. J. Food Eng. 2012, 109, 291–300. [Google Scholar] [CrossRef]
- Valencia-Flores, D.C.; Hernández-Herrero, M.; Guamis, B.; Ferragut, V. Comparing the effects of Ultra-High-Pressure Homogenization and conventional thermal treatments on the microbiological, physical, and chemical quality of almond beverages. J. Food Sci. 2013, 78, E199–E205. [Google Scholar] [CrossRef] [PubMed]
- Codina-Torrella, I.; Gallardo-Chacón, J.J.; Juan, B.; Guamis, B.; Trujillo, A.J. Effect of Ultra-High Pressure Homogenization (UHPH) and Conventional Thermal Pasteurization on the Volatile Composition of Tiger Nut Beverage. Foods 2023, 12, 683. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, O.; Gamrasni, D. Microbial, nutritional, and organoleptic quality of pomegranate juice following high-pressure homogenization and low-temperature pasteurization. J. Food Sci. 2020, 85, 592–599. [Google Scholar] [CrossRef]
- Kruszewski, B.; Zawada, K.; Karpiński, P. Impact of High-Pressure Homogenization parameters on physicochemical characteristics, bioactive compounds content, and antioxidant capacity of blackcurrant juice. Molecules 2021, 26, 1802. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, Y.; Wu, J.; Xiao, G.; Fu, M.; Zhang, Y. Effect of ultra-high pressure homogenisation processing on phenolic compounds, antioxidant capacity and anti-glucosidase of mulberry juice. Food Chem. 2014, 153, 114–120. [Google Scholar] [CrossRef]
- Joubran, A.M.; Katz, I.H.; Okun, Z.; Davidovich-Pinhas, M.; Shpigelman, A. The effect of pressure level and cycling in high-pressure homogenization on physicochemical, structural and functional properties of filtered and non-filtered strawberry nectar. Innov. Food Sci. Emerg. Technol. 2019, 57, 102203. [Google Scholar] [CrossRef]
- Karacam, C.H.; Sahin, S.; Oztop, M.H. Effect of high pressure homogenization (microfluidization) on the quality of Ottoman Strawberry (F. Ananassa) juice. LWT 2015, 64, 932–937. [Google Scholar] [CrossRef]
- Cascaes Teles, A.S.; Hidalgo Chávez, D.W.; Zarur Coelho, M.A.; Rosenthal, A.; Fortes Gottschalk, L.M.; Tonon, R.V. Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. J. Food Eng. 2021, 288, 110128. [Google Scholar] [CrossRef]
- Ding, Y.; Ban, Q.; Wu, Y.; Sun, Y.; Zhou, Z.; Wang, Q.; Cheng, J.; Xiao, H. Effect of high hydrostatic pressure on the edible quality, health and safety attributes of plant-based foods represented by cereals and legumes: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 4636–4654. [Google Scholar] [CrossRef]
- Iqbal, A.; Murtaza, A.; Hu, W.; Ahmad, I.; Ahmed, A.; Xu, X. Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food Bioprod. Process. 2019, 117, 170–182. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Domínguez, R.; Budaraju, S.; Roselló-Soto, E.; Barba, F.J.; Mallikarjunan, K.; Roohinejad, S.; Lorenzo, J.M. Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods 2020, 9, 288. [Google Scholar] [CrossRef]
- Ahmad, T.; Butt, M.Z.; Aadil, R.M.; Inam-ur-Raheem, M.; Abdullah; Bekhit, A.E.-D.; Guimarães, J.T.; Balthazar, C.F.; Rocha, R.S.; Esmerino, E.A.; et al. Impact of nonthermal processing on different milk enzymes. Int. J. Dairy Technol. 2019, 72, 481–495. [Google Scholar] [CrossRef]
- Szczepańska, J.; Barba, F.J.; Skąpska, S.; Marszałek, K. High pressure processing of carrot juice: Effect of static and multi-pulsed pressure on the polyphenolic profile, oxidoreductases activity and colour. Food Chem. 2020, 307, 125549. [Google Scholar] [CrossRef]
- Navarro-Baez, J.E.; Martínez, L.M.; Welti-Chanes, J.; Buitimea-Cantúa, G.V.; Escobedo-Avellaneda, Z. High Hydrostatic Pressure to Increase the Biosynthesis and Extraction of Phenolic Compounds in Food: A Review. Molecules 2022, 27, 1502. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, R.; Figueira, J.R. Sustainable supply chain network design: An application to the wine industry in Southern Portugal. J. Oper. Res. Soc. 2021, 72, 1236–1251. [Google Scholar] [CrossRef]
- Ayuda, M.-I.; Esteban, E.; Martín-Retortillo, M.; Pinilla, V. The Blue Water Footprint of the Spanish Wine Industry: 1935–2015. Water 2020, 12, 1872. [Google Scholar] [CrossRef]
- Costa, J.M.; Oliveira, M.; Egipto, R.J.; Cid, J.F.; Fragoso, R.A.; Lopes, C.M.; Duarte, E.N. Water and wastewater management for sustainable viticulture and oenology in South Portugal—A review. Ciência Téc. Vitiv. 2020, 35, 1–15. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J.J. Sustainability of Wine Production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef]
- Luzzani, G.; Lamastra, L.; Valentino, F.; Capri, E. Development and implementation of a qualitative framework for the sustainable management of wine companies. Sci. Total Environ. 2021, 759, 143462. [Google Scholar] [CrossRef]
- Colman, T.; Päster, P. Red, white, and ‘green’: The cost of greenhouse gas emissions in the global wine trade. J. Wine Res. 2009, 20, 15–26. [Google Scholar] [CrossRef]
- Bonamente, E.; Scrucca, F.; Asdrubali, F.; Cotana, F.; Presciutti, A. The Water Footprint of the Wine Industry: Implementation of an Assessment Methodology and Application to a Case Study. Sustainability 2015, 7, 12190–12208. [Google Scholar] [CrossRef]
- Matos, C.; Pirra, A. Water to wine in wineries in Portugal Douro Region: Comparative study between wineries with different sizes. Sci. Total Environ. 2020, 732, 139332. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Moates, G.; Waldron, K. The environmental impact of pulsed electric field treatment and high pressure processing: The example of carrot juice. In Case Studies in Novel Food Processing Technologies; Doona, C., Kustin, K., Feehery, F., Eds.; Woodhead Publishing: Cambridge, UK, 2010; pp. 103–115. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem. X 2022, 15, 100398. [Google Scholar] [CrossRef]
- López, N.; Puértolas, E.; Condón, S.; Álvarez, I.; Raso, J. Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innov. Food Sci. Emerg. Technol. 2008, 9, 477–482. [Google Scholar] [CrossRef]
- Puértolas, E.; López, N.; Saldaña, G.; Álvarez, I.; Raso, J. Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. J. Food Eng. 2010, 98, 120–125. [Google Scholar] [CrossRef]
- Puértolas, E.; Saldaña, G.; Álvarez, I.; Raso, J. Experimental design approach for the evaluation of anthocyanin content of rosé wines obtained by pulsed electric fields. Influence of temperature and time of maceration. Food Chem. 2011, 126, 1482–1487. [Google Scholar] [CrossRef]
- Delsart, C.; Ghidossi, R.; Poupot, C.; Cholet, C.; Grimi, N.; Vorobiev, E.; Milisic, V.; Mietton Peuchot, M. Enhanced extraction of phenolic compounds from merlot grapes by Pulsed Electric Field treatment. Am. J. Enol. Vitic. 2012, 63, 205–211. [Google Scholar] [CrossRef]
- El Darra, N.; Grimi, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Pulsed electric field, ultrasound, and thermal pretreatments for better phenolic extraction during red fermentation. Eur. Food Res. Technol. 2013, 236, 47–56. [Google Scholar] [CrossRef]
- Maza, M.A.; Martínez, J.M.; Cebrián, G.; Sánchez-Gimeno, A.C.; Camargo, A.; Álvarez, I.; Raso, J. Evolution of Polyphenolic Compounds and Sensory Properties of Wines Obtained from Grenache Grapes Treated by Pulsed Electric Fields during Aging in Bottles and in Oak Barrels. Foods 2020, 9, 542. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.Y.; Burritt, D.J.; Oey, I. Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chem. 2016, 196, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.-H.; Sastry, S. Extraction from food and natural products by moderate electric field: Mechanisms, benefits, and potential industrial applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1040–1052. [Google Scholar] [CrossRef]
- Nguyen, T.M.C.; Gavahian, M.; Tsai, P.-J. Effects of ultrasound-assisted extraction (UAE), high voltage electric field (HVEF), high pressure processing (HPP), and combined methods (HVEF+UAE and HPP+UAE) on Gac leaves extraction. LWT 2021, 143, 111131. [Google Scholar] [CrossRef]
- Vichakshana, G.A.D.; Young, D.J.; Choo, W.S. Extraction, purification, food applications, and recent advances for enhancing the bioavailability of 6-gingerol from ginger—A review. Qual. Assur. Saf. Crop. Foods 2022, 14, 67–83. [Google Scholar] [CrossRef]
Fruit | Anthocyanins | HHP Parameters | Effects | References |
---|---|---|---|---|
Muscadine grape juice (Vitis rotundifolia) | Delphinidin, Petunidin, Peonidin and Malvidin 3,5-diglucosides (D35G, Pt35G, Pn35G, M35G) | 400–550 1 MPa, 15 min | Anthocyanin loss of 70% (400 MPa) and 46% at (550 MPa) | [42] |
Merlot grape juice (Vitis vinifera L.) | C3G, Pt3G, Pn3G & M3G, acetyl C3G, acetyl Pn3G, acetyl M3G | 600 MPa, 10 °C, 3 min | Higher anthocyanin content in HHP treatments compared to controls | [43] |
Grape pomace from Dornfelder variety (Vitis vinifera L.) | D3G, C3G, Pt3G, Pn3G & M3G | 200–600 MPa, ethanol (20–100%), 30–90 min, and temperature 20–70 °C | Higher extraction at 600 MPa, 50 °C, 100% ethanol (+23%) and related to the higher number of -OCH3 and -OH groups in the flavylium nucleus, extraction of M3G > Pn3G > Pt3G > D3G > C3G | [32] |
Tempranillo grapes (Vitis vinifera L.) | D3G, C3G, Pt3G, Pn3G and M3G and acylated derivatives (acetyl, caffeoyl and p-coumaroyl) | 200–550 MPa, 20 °C, 10 min | Migration of anthocyanins from skins to pulp and seeds. Increased extraction +80%. Higher concentration after fermentation. | [29] |
Concord grape puree (Vitis labrusca) | Total monomers | 600 MPa, 5 °C, 3 min, | Higher contents that the control and enough stability for 4 months | [39] |
Raspberry (Rubus idaeus) | Cyanidin-3-glucoside (C3G) Cyanidin-3-sophoroside (C3S) | 200–800 MPa, 18–22 °C, 15 min. Stored at: 4, 20, 30 °C for 9 days | Higher stability for 800 MPa stored at 4 °C | [44] |
Strawberry (Fragaria × ananassa, cv. Elsanta) | Pelargonidin-3-glucoside (P3G) Pelargonidin-3-rutinoside (P3R) | 200–800 MPa, 18–22 °C, 15 min. Stored at: 4, 20, 30 °C for 9 days | Higher stability for 800 MPa stored at 4 °C | [45] |
Blackcurrant (Ribes nigrum) | Delphinidin-3-rutinoside (D3R) Cyanidin-3-rutinoside (C3R) | 200–800 MPa, 18–22 °C, 15 min. Stored at: 5, 20, 30 °C for 7 days | Higher stability for 600–800 MPa stored at 5 °C | [46] |
Lonicera caerulea | C3G, p-coumaroyl D3G, and D3R | 200–600 MPa, 20 °C, 10 min | Anthocyanins protected, higher antioxidant activity | [33] |
Blueberry pulp (Vaccinium spp.) | Delphinidin3-galactoside (D3Gal), D3G, Cyanidin-3-galactopyranoside (Cy3Gal), Delphinidin-3-arabinoside (D3A), C3G, Petunidin-3-galactoside (Pt3Gal); Peonidin-3-galactoside (Pn3Gal), Cyanidin-3-arabinoside (C3A), Pt3G, Pn3G, Malvidin-3-galactoside (M3Gal), Peonidin-3-arabinoside (Pn3A), Malvidin-3-arabinoside (M3A). | 500 MPa, 5 min | HHP with low oxygen shows higher anthocyanin content and protective effect on color | [40] |
Blueberry (Vaccinium spp.) puree | D3Gal, D3G, Cy3Gal, C3G, C3A, Petunidin-3-arabinoside (Pt3A), M3Gal, M3G, M3A | 200–600 MPa, 20 °C, 20 min | Protective effect on color. At 300MPa was obtained the higher concentration of anthocyanins | [41] |
Aronia (Aronia melanocarpa) berry purée | Total anthocyanins | 200–600 MPa, 21–33 °C, 2.5–5 min | Preservation of anthocyanins, phenols and color. Antioxidant capacity unaffected | [38] |
Strawberry (Fragaria × ananassa Duch.) cv. Senga Sengana purée and juice | Total monomeric anthocyanins | 400–600 MPa, 20 °C, 1.5–3 min | Good stability of anthocyanins specially in juices | [47] |
Fruit | Anthocyanins | UHPH Parameters | Effects | References |
---|---|---|---|---|
Cabernet sauvignon red must (Vitis vinifera L.) | D3G, C3G, Pt3G, Pn3G and M3G, acylated derivatives (acetyl, caffeoyl and p-coumaroyl), Vitisin B and Malvidin 3-glucoside vinylphenol (M3GvPh) and Malvidin 3-glucoside vinylguaiacol (M3GvG) | 60 L/h, 300 ± 3 1 MPa, inlet temperature 4 °C, in-valve 78 ± 2 °C (0.2 s) outlet temperature of 15 °C | Higher contents of anthocyanins in UHPH must with a selective protection of the acylated derivatives +9.3% with more red-bluish color Absence of anthocyanins in colloids. | [22] |
Pomegranate (Punica granatum L.) juice | C3G, D3G, just optically evaluated OD520nm | 100–150 MPa, inlet temperature 10 °C, 1–10 cycles, outlet max 42–46 °C | Not differences in color. In certain conditions higher polyphenol content and antioxidant activity than in the fresh juice. | [59] |
Blackcurrant (Ribes nigrum) fruit juice | D3G, D3R, C3G and C3R | 50–220 MPa, inlet temperature 4–20 °C, 1–5 passes | Slight reduction of anthocyanins. Preserve the bioactive and physicochemical quality. | [60] |
Strawberry nectar | P3G | 50–200 MPa, inlet temperature 25 °C, 1–5 passes, ΔT ≈ 19 °C/100 MPa | Anthocyanins and color slightly affected depending on number of cycles. Higher polyphenol content with multi passes at 200 MPa | [62] |
Strawberry (F. Ananassa) juice | Color evaluation CieLab | 60–100 MPa, inlet temperature 4–20 °C, 1–5 passes | Color, anthocyanins and antioxidant activity increases until 2 passes. Later degradation probably by thermal effect. | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morata, A.; del Fresno, J.M.; Gavahian, M.; Guamis, B.; Palomero, F.; López, C. Effect of HHP and UHPH High-Pressure Techniques on the Extraction and Stability of Grape and Other Fruit Anthocyanins. Antioxidants 2023, 12, 1746. https://doi.org/10.3390/antiox12091746
Morata A, del Fresno JM, Gavahian M, Guamis B, Palomero F, López C. Effect of HHP and UHPH High-Pressure Techniques on the Extraction and Stability of Grape and Other Fruit Anthocyanins. Antioxidants. 2023; 12(9):1746. https://doi.org/10.3390/antiox12091746
Chicago/Turabian StyleMorata, Antonio, Juan Manuel del Fresno, Mohsen Gavahian, Buenaventura Guamis, Felipe Palomero, and Carmen López. 2023. "Effect of HHP and UHPH High-Pressure Techniques on the Extraction and Stability of Grape and Other Fruit Anthocyanins" Antioxidants 12, no. 9: 1746. https://doi.org/10.3390/antiox12091746
APA StyleMorata, A., del Fresno, J. M., Gavahian, M., Guamis, B., Palomero, F., & López, C. (2023). Effect of HHP and UHPH High-Pressure Techniques on the Extraction and Stability of Grape and Other Fruit Anthocyanins. Antioxidants, 12(9), 1746. https://doi.org/10.3390/antiox12091746