Quality Assessment of Ground Coffee Samples from Greek Market Using Various Instrumental Analytical Methods, In Silico Studies and Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Preparation of Brewed Coffee Beverages
2.3. Color Assessment
2.4. Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.5. Spectrophotometric Assays
2.6. Discriminant Analysis
2.7. Statistical Analysis
2.8. Phytochemical Profile Using Data Dependent LC-ESI(−)-MS/MS Analysis
2.9. In Silico Inhibitory Activity of Principal Coffee Phenolic Compounds against Acetylcholinesterase and α-Glucosidase Enzymes
3. Results
3.1. Color Parameters of Coffee Sample Categories
3.2. Spectrophotometric Assays of Brewed Coffee Beverages
3.3. Interpretation of ATR-FTIR Spectra
3.4. Discriminant Analysis
3.5. Metabolite Identification of Coffee Samples via LC-MS/MS
3.6. Molecular Docking Results Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mestanza, M.; Mori-Culqui, P.L.; Chavez, S.G. Changes of Polyphenols and Antioxidants of Arabica Coffee Varieties during Roasting. Front. Nutr. 2023, 10, 1078701. [Google Scholar] [CrossRef] [PubMed]
- International Coffee Organization. The Future of Coffee; Coffee Development Report; International Coffee Organization: London, UK, 2021. [Google Scholar]
- Shokouh, P.; Jeppesen, P.B.; Christiansen, C.B.; Mellbye, F.B.; Hermansen, K.; Gregersen, S. Efficacy of Arabica Versus Robusta Coffee in Improving Weight, Insulin Resistance, and Liver Steatosis in a Rat Model of Type-2 Diabetes. Nutrients 2019, 11, 2074. [Google Scholar] [CrossRef] [PubMed]
- Velásquez, S.; Banchón, C. Influence of Pre-and Post-Harvest Factors on the Organoleptic and Physicochemical Quality of Coffee: A Short Review. J. Food Sci. Technol. 2022, 1–13. [Google Scholar] [CrossRef]
- Seninde, D.R.; Chambers, E. Coffee Flavor: A Review. Beverages 2020, 6, 44. [Google Scholar] [CrossRef]
- Dippong, T.; Dan, M.; Kovacs, M.H.; Kovacs, E.D.; Levei, E.A.; Cadar, O. Analysis of Volatile Compounds, Composition, and Thermal Behavior of Coffee Beans According to Variety and Roasting Intensity. Foods 2022, 11, 3146. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, L.; Maddaloni, L.; Prencipe, S.A.; Vinci, G. Bioactive Compounds in Different Coffee Beverages for Quality and Sustainability Assessment. Beverages 2023, 9, 3. [Google Scholar] [CrossRef]
- Heo, J.; Adhikari, K.; Choi, K.S.; Lee, J. Analysis of Caffeine, Chlorogenic Acid, Trigonelline, and Volatile Compounds in Cold Brew Coffee Using High-Performance Liquid Chromatography and Solid-Phase Microextraction—Gas Chromatography-Mass Spectrometry. Foods 2020, 9, 1746. [Google Scholar] [CrossRef] [PubMed]
- dePaula, J.; Farah, A. Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks. Beverages 2019, 5, 37. [Google Scholar] [CrossRef]
- van Dam, R.M.; Hu, F.B.; Willett, W.C. Coffee, Caffeine, and Health. N. Engl. J. Med. 2020, 383, 369–378. [Google Scholar] [CrossRef]
- Safe, S.; Kothari, J.; Hailemariam, A.; Upadhyay, S.; Davidson, L.A.; Chapkin, R.S. Health Benefits of Coffee Consumption for Cancer and Other Diseases and Mechanisms of Action. Int. J. Mol. Sci. 2023, 24, 2706. [Google Scholar] [CrossRef]
- Yoshinari, O.; Igarashi, K. Chapter 85—Antidiabetic Effects of Trigonelline: Comparison with Nicotinic Acid. In Coffee in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 765–775. ISBN 978-0-12-409517-5. [Google Scholar]
- Socała, K.; Szopa, A.; Serefko, A.; Poleszak, E.; Wlaź, P. Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int. J. Mol. Sci. 2020, 22, 107. [Google Scholar] [CrossRef] [PubMed]
- Makino, T.; Izumi, K.; Hiratsuka, K.; Kano, H.; Shimada, T.; Nakano, T.; Kadomoto, S.; Naito, R.; Iwamoto, H.; Yaegashi, H.; et al. Anti-Proliferative and Anti-Migratory Properties of Coffee Diterpenes Kahweol Acetate and Cafestol in Human Renal Cancer Cells. Sci. Rep. 2021, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K. Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence. Antioxidants 2018, 7, 26. [Google Scholar] [CrossRef]
- Ali, A.; Zahid, H.F.; Cottrell, J.J.; Dunshea, F.R. A Comparative Study for Nutritional and Phytochemical Profiling of Coffea Arabica (C. Arabica) from Different Origins and Their Antioxidant Potential and Molecular Docking. Molecules 2022, 27, 5126. [Google Scholar] [CrossRef]
- Erskine, E.; Gültekin Subaşı, B.; Vahapoglu, B.; Capanoglu, E. Coffee Phenolics and Their Interaction with Other Food Phenolics: Antagonistic and Synergistic Effects. ACS Omega 2022, 7, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Pugliese, G.; Frias-Toral, E.; El Ghoch, M.; Castellucci, B.; Chapela, S.P.; de los Angeles Carignano, M.; Laudisio, D.; Savastano, S.; Colao, A.; et al. Coffee Consumption, Health Benefits and Side Effects: A Narrative Review and Update for Dietitians and Nutritionists. Crit. Rev. Food Sci. Nutr. 2023, 63, 1238–1261. [Google Scholar] [CrossRef]
- Rojas-González, A.; Figueroa-Hernández, C.Y.; González-Rios, O.; Suárez-Quiroz, M.L.; González-Amaro, R.M.; Hernández-Estrada, Z.J.; Rayas-Duarte, P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022, 27, 3400. [Google Scholar] [CrossRef]
- Bai, J.; Wu, Y.; Zhong, K.; Xiao, K.; Liu, L.; Huang, Y.; Wang, Z.; Gao, H. A Comparative Study on the Effects of Quinic Acid and Shikimic Acid on Cellular Functions of Staphylococcus aureus. J. Food Prot. 2018, 81, 1187–1192. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, Y.; Yi, G.; Li, M.; Liao, L.; Yang, C.; Cho, C.; Zhang, B.; Zhu, J.; Zou, K.; et al. Quinic Acid: A Potential Antibiofilm Agent against Clinical Resistant Pseudomonas aeruginosa. Chin. Med. 2021, 16, 72. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2021, 27, 233. [Google Scholar] [CrossRef]
- Alnsour, L.; Issa, R.; Awwad, S.; Albals, D.; Al-Momani, I. Quantification of Total Phenols and Antioxidants in Coffee Samples of Different Origins and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules 2022, 27, 1591. [Google Scholar] [CrossRef]
- Wołosiak, R.; Pakosz, P.; Drużyńska, B.; Janowicz, M. Antioxidant Activity of Coffee Components Influenced by Roast Degree and Preparation Method. Appl. Sci. 2023, 13, 2057. [Google Scholar] [CrossRef]
- Bastian, F.; Hutabarat, O.S.; Dirpan, A.; Nainu, F.; Harapan, H.; Emran, T.B.; Simal-Gandara, J. From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods 2021, 10, 2827. [Google Scholar] [CrossRef]
- Andreou, V.; Strati, I.F.; Fotakis, C.; Liouni, M.; Zoumpoulakis, P.; Sinanoglou, V.J. Herbal Distillates: A New Era of Grape Marc Distillates with Enriched Antioxidant Profile. Food Chem. 2018, 253, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Zoumpoulakis, P.G.; Glamočlija, J.; Ćirić, A.; Soković, M.; Heropoulos, G.; Proestos, C. Antiradical–Antimicrobial Activity and Phenolic Profile of Pomegranate (Punica granatum L.) Juices from Different Cultivars: A Comparative Study. RSC Adv. 2014, 5, 2602–2614. [Google Scholar] [CrossRef]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Zoumpoulakis, P.; Proestos, C. Comparison of the Antioxidant and Antiradical Activity of Pomegranate (Punica granatum L.) by Ultrasound-Assisted and Classical Extraction. Anal. Lett. 2016, 49, 969–978. [Google Scholar] [CrossRef]
- Kritsi, E.; Tsiaka, T.; Sotiroudis, G.; Mouka, E.; Aouant, K.; Ladika, G.; Zoumpoulakis, P.; Cavouras, D.; Sinanoglou, V.J. Potential Health Benefits of Banana Phenolic Content during Ripening by Implementing Analytical and In Silico Techniques. Life 2023, 13, 332. [Google Scholar] [CrossRef]
- Tsiaka, T.; Kritsi, E.; Lantzouraki, D.Z.; Christodoulou, P.; Tsigrimani, D.; Strati, I.F.; Sinanoglou, V.J.; Zoumpoulakis, P. Assessing the Phytochemical Profile and Potential of Traditional Herbal Infusions against Aldose Reductase through In Silico Studies and LC-MS/MS Analysis. Appl. Sci. 2022, 12, 8361. [Google Scholar] [CrossRef]
- El-Hawary, E.A.; Zayed, A.; Laub, A.; Modolo, L.V.; Wessjohann, L.; Farag, M.A. How Does LC/MS Compare to UV in Coffee Authentication and Determination of Antioxidant Effects? Brazilian and Middle Eastern Coffee as Case Studies. Antioxidants 2022, 11, 131. [Google Scholar] [CrossRef]
- Schrödinger Release 2020-3, Protein Preparation Wizard; Schrödinger, LLC: New York, NY, USA, 2020.
- Schrödinger Release 2020-3: LigPrep; Schrödinger, LLC: New York, NY, USA, 2020.
- Schrödinger Release 2020-3, Glide; Schrödinger, LLC: New York, NY, USA, 2020.
- Schrödinger Release 2020-3: Maestro; Schrödinger, LLC: New York, NY, USA, 2020.
- Mehaya, F.M.; Mohammad, A.A. Thermostability of Bioactive Compounds during Roasting Process of Coffee Beans. Heliyon 2020, 6, e05508. [Google Scholar] [CrossRef]
- Herawati, D.; Giriwono, P.E.; Dewi, F.N.A.; Kashiwagi, T.; Andarwulan, N. Critical Roasting Level Determines Bioactive Content and Antioxidant Activity of Robusta Coffee Beans. Food Sci. Biotechnol. 2019, 28, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, G.; Tefera, M. Total Polyphenol Content of Green, Roasted and Cooked Harar and Yirgacheffee Coffee, Ethiopia. JASEM 2020, 24, 187–192. [Google Scholar] [CrossRef]
- Wu, H.; Lu, P.; Liu, Z.; Sharifi-Rad, J.; Suleria, H.A.R. Impact of Roasting on the Phenolic and Volatile Compounds in Coffee Beans. Food Sci. Nutr. 2022, 10, 2408–2425. [Google Scholar] [CrossRef]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S. Evaluation of the Potential of FTIR and Chemometrics for Separation between Defective and Non-Defective Coffees. Food Chem. 2012, 132, 1368–1374. [Google Scholar] [CrossRef]
- Belay, A.; Kim, H.K.; Hwang, Y.-H. Binding of Caffeine with Caffeic Acid and Chlorogenic Acid Using Fluorescence Quenching, UV/Vis and FTIR Spectroscopic Techniques. Luminescence 2016, 31, 565–572. [Google Scholar] [CrossRef]
- Nyoro, F.D.; Sim, S.F.; Kimura, A.L.J. Estimation of Caffeine Content in Coffee of Malaysian Market Using Fourier Transform Infrared (FTIR) Spectroscopy. Trends Undergrad. Res. 2019, 1, 16–22. [Google Scholar] [CrossRef]
- Munyendo, L.; Njoroge, D.; Hitzmann, B. The Potential of Spectroscopic Techniques in Coffee Analysis—A Review. Processes 2022, 10, 71. [Google Scholar] [CrossRef]
- Lyman, D.J.; Benck, R.; Dell, S.; Merle, S.; Murray-Wijelath, J. FTIR-ATR Analysis of Brewed Coffee: Effect of Roasting Conditions. J. Agric. Food Chem. 2003, 51, 3268–3272. [Google Scholar] [CrossRef]
- Capek, P.; Paulovičová, E.; Matulová, M.; Mislovičová, D.; Navarini, L.; Suggi-Liverani, F. Coffea arabica Instant Coffee--Chemical View and Immunomodulating Properties. Carbohydr. Polym. 2014, 103, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Barrios Rodriguez, Y.; Collazos Escobar, G.; Guzmán, N. ATR-FTIR for Characterizing and Differentiating Dried and Ground Coffee Cherry Pulp of Different Varieties (Coffea arabica L.). Eng. Agrícola 2021, 41, 70–77. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indones. J. Sci. Technol. 2019, 4, 97. [Google Scholar] [CrossRef]
- Flores-Valdez, M.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Identification and Quantification of Adulterants in Coffee (Coffea arabica L.) Using FT-MIR Spectroscopy Coupled with Chemometrics. Foods 2020, 9, 851. [Google Scholar] [CrossRef] [PubMed]
- Yeager, S.E.; Batali, M.E.; Guinard, J.-X.; Ristenpart, W.D. Acids in Coffee: A Review of Sensory Measurements and Meta-Analysis of Chemical Composition. Crit. Rev. Food Sci. Nutr. 2023, 63, 1010–1036. [Google Scholar] [CrossRef]
- Moon, J.-K.; Yoo, H.S.; Shibamoto, T. Role of Roasting Conditions in the Level of Chlorogenic Acid Content in Coffee Beans: Correlation with Coffee Acidity. J. Agric. Food Chem. 2009, 57, 5365–5369. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, S.; Mustafa, A.M.; Abouelenein, D.; Alessandroni, L.; Acquaticci, L.; Nzekoue, F.K.; Petrelli, R.; Sagratini, G.; Vittori, S.; Torregiani, E.; et al. Characterization of the aroma profile and main key odorants of espresso coffee. Molecules 2021, 26, 3856. [Google Scholar] [CrossRef]
- Moeenfard, M.; Alves, A. New Trends in Coffee Diterpenes Research from Technological to Health Aspects. Food Res. Int. 2020, 134, 109207. [Google Scholar] [CrossRef] [PubMed]
- Etsassala, N.G.E.R.; Badmus, J.A.; Marnewick, J.L.; Iwuoha, E.I.; Nchu, F.; Hussein, A.A. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Salvia Aurita Constituents. Antioxidants 2020, 9, 1149. [Google Scholar] [CrossRef] [PubMed]
- Münchow, M.; Alstrup, J.; Steen, I.; Giacalone, D. Roasting Conditions and Coffee Flavor: A Multi-Study Empirical Investigation. Beverages 2020, 6, 29. [Google Scholar] [CrossRef]
- Yeager, S.E.; Batali, M.E.; Lim, L.X.; Liang, J.; Han, J.; Thompson, A.N.; Guinard, J.-X.; Ristenpart, W.D. Roast Level and Brew Temperature Significantly Affect the Color of Brewed Coffee. J. Food Sci. 2022, 87, 1837–1850. [Google Scholar] [CrossRef]
- Hall, S.; Yuen, J.W.; Grant, G.D. Bioactive Constituents in Caffeinated and Decaffeinated Coffee and Their Effect on the Risk of Depression—A Comparative Constituent Analysis Study. Beverages 2018, 4, 79. [Google Scholar] [CrossRef]
- Liao, Y.-C.; Kim, T.; Silva, J.L.; Hu, W.-Y.; Chen, B.-Y. Effects of Roasting Degrees on Phenolic Compounds and Antioxidant Activity in Coffee Beans from Different Geographic Origins. LWT 2022, 168, 113965. [Google Scholar] [CrossRef]
- Barroso, L.A.; Macedo, A.S.; Lemos, I.L.; de Andrade Neves, N.; Schmiele, M.; da Silveira, J.V.W.; Amaral, T.N.; Fonte, P. Optimization of the Brewing Parameters on Coffee Extraction Using a Central Composite Rotatable Design. JSFA Rep. 2022, 2, 107–115. [Google Scholar] [CrossRef]
- Górecki, M.; Hallmann, E. The Antioxidant Content of Coffee and Its In Vitro Activity as an Effect of Its Production Method and Roasting and Brewing Time. Antioxidants 2020, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Costea, T.; Sevde, A. Phenolic Content and Antioxidant Activity of Simple and Flavoured Turkish Coffee. Studia Universitatis “Vasile Goldis”. Arad. Ser. Stiintele Vietii (Life Sci. Ser.) 2020, 30, 169–178. [Google Scholar]
- Eren, F.H.; Besler, H.T. Bioactive Diterpenes (Cafestol and Kahweol) in Turkish Coffees: Impact of Roasting. IFRJ 2022, 29, 328–337. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, C.; Xu, J.; Wang, S. Cafestol and Kahweol: A Review on Their Bioactivities and Pharmacological Properties. Int. J. Mol. Sci. 2019, 20, 4238. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.T.; Hsueh, M.C.; Hung, S.P.; Lu, J.M.; Peng, J.H.; Chen, S.F. Prediction of specialty coffee flavors based on near-infrared spectra using machine-and deep-learning methods. J. Sci. Food Agric. 2021, 101, 4705–4714. [Google Scholar] [CrossRef]
- Hu, G.; Peng, X.; Gao, Y.; Huang, Y.; Li, X.; Su, H.; Qiu, M. Effect of Roasting Degree of Coffee Beans on Sensory Evaluation: Research from the Perspective of Major Chemical Ingredients. Food Chem. 2020, 331, 127329. [Google Scholar] [CrossRef]
- Aree, T. Understanding structures and thermodynamics of β-cyclodextrin encapsulation of chlorogenic, caffeic and quinic acids: Implications for enriching antioxidant capacity and masking bitterness in coffee. Food Chem. 2019, 293, 550–560. [Google Scholar] [CrossRef]
Ground Coffee Code | Ground Coffee Category | Species | Geographical Origin |
---|---|---|---|
101 | Traditional-Blonde light roast blend | Arabica-Robusta | Brazil, Colombia, Ethiopia, India |
102 | Arabica-Robusta | Costa Rica, Guatemala, Colombia | |
103 | Arabica-Robusta | Brazil, Ethiopia | |
104 | Arabica-Robusta | Brazil, Ethiopia | |
105 | Arabica-Robusta | Brazil, Ethiopia | |
106 | Arabica-Robusta | Brazil, Ethiopia | |
107 | Arabica-Robusta | Ethiopia | |
108 | Arabica | Brazil | |
109 | Arabica-Robusta | Brazil, India | |
110 | Arabica-Robusta | Brazil, India | |
111 | Arabica | Brazil, Ethiopia | |
112 | Arabica-Robusta | Brazil, Ethiopia | |
113 | Arabica-Robusta | Brazil, India | |
114 | Arabica-Robusta | Brazil, India | |
115 | Arabica | Brazil, Kenya, Colombia | |
116 | Arabica | Brazil, Ethiopia | |
117 | Arabica | Harar (Ethiopia) | |
118 | Arabica | Kenya | |
119 | Arabica | Colombia | |
120 | Arabica | Brazil, Ethiopia | |
121 | Arabica | Guatemala | |
122 | Arabica | Colombia | |
123 | Arabica | Santos (Brazil) | |
124 | Arabica-Robusta | South America, Africa, India | |
125 | Arabica-Robusta | South America, India | |
201 | Medium roast blend | Arabica-Robusta | Brazil, Ethiopia |
202 | Arabica | Brazil, Colombia | |
203 | Arabica-Robusta | Ethiopia | |
204 | Arabica-Robusta | Brazil, India | |
205 | Arabica | Brazil, Ethiopia | |
206 | Arabica-Robusta | Brazil, India | |
207 | Arabica | Brazil, India | |
208 | Arabica-Robusta | Costa Rica, Guatemala, Colombia | |
209 | Arabica | Guatemala | |
210 | Arabica | Peru | |
211 | Arabica | Limu (Ethiopia) | |
301 | Dark roast blend | Arabica-Robusta | Brazil, Ethiopia |
302 | Arabica | Brazil, Colombia | |
303 | Dark roast blend | Arabica-Robusta | Ethiopia |
304 | Arabica-Robusta | Brazil, India | |
305 | Arabica-Robusta | Brazil, India | |
306 | Arabica-Robusta | Costa Rica, Guatemala, Colombia | |
401 | Decaffeinated blend | Arabica-Robusta | Brazil, Colombia, India |
402 | Arabica-Robusta | Ethiopia | |
403 | Arabica-Robusta | Brazil, India | |
404 | Arabica | Brazil, Central America | |
405 | Arabica | Colombia | |
406 | Arabica | Colombia | |
501 | Aroma Blend—Mastiha | Arabica-Robusta | Brazil, India |
502 | Aroma Blend—Mastiha | Ethiopia | |
503 | Aroma Blend—Mastiha | Brazil, India | |
504 | Aroma Blend—Cardamom | Ethiopia | |
505 | Aroma Blend—Cardamom | Brazil, India | |
506 | Aroma Blend—Baklava | Brazil, India | |
507 | Aroma Blend—Hazelnut | Brazil, India | |
508 | Aroma Blend—Mastiha | Brazil, India | |
509 | Aroma Blend—Spices | Ethiopia |
Coffee Samples’ Categories | Lightness (L*) * | Redness/Greenness (a*) * | Yellowness/Blueness (b*) * | Hue Angle (h) * |
---|---|---|---|---|
Traditional-Blonde light roast blends (100–125) | 38.75 ± 1.48 a | 5.70 ± 0.71 a | 8.02 ± 1.73 a | 54.05 ± 3.88 a |
Medium roast blends (201–211) | 34.85 ± 0.86 bc | 3.64 ± 0.67 b | 3.37 ± 1.04 b | 41.94 ± 3.94 b |
Dark roast blends (301–306) | 34.16 ± 0.82 b | 3.13 ± 0.78 b | 2.41 ± 0.90 b | 36.34 ± 5.87 b |
Decaffeinated blends (401–406) | 36.64 ± 1.35 c | 4.86 ± 0.68 ac | 5.84 ± 1.68 c | 49.48 ± 3.85 a |
Aroma blends (501–509) | 36.47 ± 1.35 c | 4.67 ± 0.62 c | 5.67 ± 1.61 c | 49.63 ± 4.31 a |
Coffee Samples Categories | TPC (mg GAE/100 mL of Coffee Beverage) * | ABTS (mg Trolox (TE)/100 mL of Coffee Beverage) * | FRAP (mg Fe(II)/100 mL of Coffee Beverage) * |
---|---|---|---|
Traditional-Blonde light roast blends (100–125) | 136.49 ± 13.52 a | 333.56 ± 22.57 a | 1498.49 ± 29.03 ac |
Medium roast blends (201–211) | 117.93 ± 11.59 b | 328.70 ± 29.04 a | 1464.19 ± 46.01 a |
Dark roast blends (301–306) | 77.51 ± 9.25 c | 278.13 ± 19.78 b | 1301.79 ± 103.00 b |
Decaffeinated blends (401–406) | 144.23 ± 13.02 ad | 342.93 ± 36.70 a | 1548.96 ± 18.61 c |
Aroma blends (501–509) | 155.69 ± 23.18 d | 322.58 ± 26.66 a | 1499.10 ± 33.83 ac |
Functional Groups | Characteristic Absorption Bands | Traditional-Blonde Light Roast Blends (100–125) * | Medium Roast Blends (201–211) * | Dark Roast Blends (301–306) * | Decaffeinated Blends (401–406) * | Aroma Blends (501–509) * |
---|---|---|---|---|---|---|
O–H stretch in phenols | 3640–3530 | 0.014 ± 0.003 a | 0.009 ± 0.002 a | 0.012 ± 0.003 a | 0.025 ± 0.007 b | 0.013 ± 0.003 a |
O–H stretch in alcohols | 3500–3300 | 0.010 ± 0.003 a | 0.010 ± 0.003 a | 0.010 ± 0.001 a | 0.012 ± 0.004 a | 0.010 ± 0.002 a |
O–H stretch in water | 3280 | 0.006 ± 0.003 a | 0.007 ± 0.003 a | 0.002 ± 0.001 b | 0.006 ± 0.003 a | 0.006 ± 0.002 a |
C–H stretch in aromatic ring | 3130–3010 | 0.044 ± 0.002 a | 0.044 ± 0.003 a | 0.043 ± 0.002 ab | 0.040 ± 0.002 b | 0.042 ± 0.005 ab |
C–H asymmetric and symmetric stretch of CH2 and CH3 in lipids and caffeine | 2922 | 0.679 ± 0.016 a | 0.688 ± 0.019 a | 0.679 ± 0.016 a | 0.538 ± 0.016 b | 0.691 ± 0.017 a |
2855 | 0.375 ± 0.011 a | 0.381 ± 0.010 a | 0.383 ± 0.009 a | 0.344 ± 0.009 b | 0.380 ± 0.010 a | |
C=O stretch in aliphatic esters | 1743 | 0.282 ± 0.016 a | 0.275 ± 0.018 a | 0.280 ± 0.020 a | 0.313 ± 0.021 ab | 0.328 ± 0.022 b |
C=O stretch in amides | 1640–1660 | 0.031 ± 0.004 a | 0.025 ± 0.003 a | 0.026 ± 0.003 a | 0.012 ± 0.003 b | 0.026 ± 0.004 a |
conjugated C=C stretch | 1603 | 0.011 ± 0.003 a | 0.008 ± 0.001 ab | 0.007 ± 0.002 b | 0.008 ± 0.002 ab | 0.010 ± 0.003 ab |
aromatic ring stretch | 1600–1500 | 0.007 ± 0.007 a | 0.010 ± 0.007 ac | 0.011 ± 0.005 ac | 0.028 ± 0.004 b | 0.014 ± 0.007 c |
C–H scissoring bend of CH2 | 1485–1445 | 0.079 ± 0.019 ab | 0.066 ± 0.027 a | 0.086 ± 0.007 ab | 0.068 ± 0.020 ab | 0.093 ± 0.005 b |
O–H angular bend | 1410–1420 | 0.007 ± 0.002 ab | 0.006 ± 0.001 a | 0.007 ± 0.001 ab | 0.009 ± 0.003 b | 0.008 ± 0.001 ab |
O–H bend in organic acids | 1381–1376 | 0.064 ± 0.003 a | 0.062 ± 0.003 a | 0.059 ± 0.004 a | 0.062 ± 0.003 a | 0.075 ± 0.005 b |
C–N stretch | 1242–1218 | 0.042 ± 0.006 a | 0.046 ± 0.002 a | 0.045 ± 0.004 a | 0.026 ± 0.003 b | 0.050 ± 0.007 a |
C–O stretch in organic acids | 1161–1153 | 0.086 ± 0.003 a | 0.083 ± 0.003 ab | 0.083 ± 0.003 ab | 0.077 ± 0.005 b | 0.092 ± 0.004 c |
C–O bend | 1053 | 0.018 ± 0.003 a | 0.021 ± 0.005 a | 0.025 ± 0.004 a | 0.021 ± 0.005 a | 0.022 ± 0.004 a |
side-chain N–CH3 stretch/C–O–H and C–O–C bend | 1028 | 0.088 ± 0.009 a | 0.088 ± 0.006 a | 0.087 ± 0.007 a | 0.022 ± 0.002 b | 0.073 ± 0.011 c |
C–H bend in alkenes | 869 | 0.026 ± 0.006 a | 0.028 ± 0.004 a | 0.027 ± 0.006 a | 0.024 ± 0.002 a | 0.025 ± 0.004 a |
C–H out-of-plane bend in para-substituted aromatics | 860–800 | 0.052 ± 0.005 a | 0.052 ± 0.006 a | 0.051 ± 0.003 a | 0.039 ± 0.003 b | 0.049 ± 0.005 a |
C–H out-of-plane bend in ortho-substituted aromatics | 770–735 | 0.015 ± 0.002 a | 0.014 ± 0.001 a | 0.013 ± 0.003 a | 0.010 ± 0.001 b | 0.015 ± 0.001 a |
C–H rocking bend of CH2 | 745–705 | 0.018 ± 0.008 a | 0.023 ± 0.004 a | 0.016 ± 0.011 a | 0.020 ± 0.007 a | 0.022 ± 0.005 a |
Intensities Ratios | Traditional-Blonde Light Roast Blend (100–125) * | Medium Roast Blend (201–211) * | Dark Roast Blend (301–306) * | Decaffeinated Blend (401–406) * | Aroma Blend (501–509) * |
---|---|---|---|---|---|
2922/2855 | 1.81 ± 0.02 a | 1.81 ± 0.02 a | 1.77 ± 0.01 b | 1.56 ± 0.04 c | 1.82 ± 0.03 a |
1028/1163 | 1.02 ± 0.10 a | 1.06 ± 0.09 a | 1.05 ± 0.11 a | 0.29 ± 0.01 b | 0.80 ± 0.09 c |
1743/2922 | 0.42 ± 0.03 a | 0.40 ± 0.02 a | 0.41 ± 0.02 a | 0.58 ± 0.03 b | 0.47 ± 0.03 c |
1743/2855 | 0.75 ± 0.04 a | 0.72 ± 0.04 a | 0.73 ± 0.04 a | 0.91 ± 0.06 b | 0.86 ± 0.09 b |
Metabolite | Chemical Group | Retention Time (min) | Precursor Ion (m/z) | MS/MS Fragments (m/z) |
---|---|---|---|---|
Benzoic acid * | Phenolic acids | 4.53 | 121.1 | 121.5, 93.4, 77.5 |
Coumaric acid * | Phenolic acids | 3.77 | 163.1 | 120.3, 93.4 |
Caffeic acid * | Phenolic acids | 2.40 | 179.1 | 135.4, 107.3 |
Chlorogenic acid * | Phenolic acids | 1.72 | 353.2 | 191.5 |
Quinic acid ** | Organic acid | 0.53 | 191.1 | 111, 173 |
Caffeoyl-quinolactone ** | Hydroxycinnamate esters and lactones | 1.31 | 335.1 | 161, 135, 179 |
p-Coumaroyl quinic acid ** | Hydroxycinnamate esters and lactones | 8.73 | 337.1 | 191, 163 |
Feruloyl-quinolactone ** | Hydroxycinnamate esters and lactones | 4.52 | 349.1 | 175, 193, 149, 134 |
Dicaffeoyl quinic acid ** | Hydroxycinnamate esters and lactones | 4.40 | 515.1 | 353, 335 |
Caffeoyl-feruloylquinic acid ** | Hydroxycinnamate esters and lactones | 5.12 | 529.1 | 367, 353 |
Dihydroxy-kaurenoic acid ** | Diterpenes | 6.40 | 333.2 | 303 |
Atracyligenin-O-hexoside ** | Diterpenes | 3.93 | 481.2 | 301 |
Isovaleryl-atractyligenin-O-hexoside derivative ** | Diterpenes | 6.41 | 565.3 | 481, 463, 303 |
Cafestol ** | Diterpenes | 7.75 | 315.1 | 285, 297, 267 |
Kahweol ** | Diterpenes | 7.54 | 313.1 | 283, 265, 295 |
Trihydroxy-octadecaenoic acid ** | Fatty acids and derivatives | 14.1 | 329.2 | 311, 293, 229, 171 |
Linoleic acid methyl ester ** | Fatty acids and derivatives | 7.22 | 293.2 | 236, 221 |
Caffeoyl-N-tryptophan ** | Hydroxycinnamoyl amides | 5.83 | 365.1 | 135, 229 |
Phenolic Acids | Human Acetylcholinesterase Enzyme (PDB ID: 7XN1) | Human Alpha-Glucosidase Enzyme (PDB ID: 2QMJ) |
---|---|---|
Docking Score (kcal mol−1) | ||
Tacrine | −8.64 | NT 1 |
Acarbose | NT 1 | −7.33 |
Benzoic acid | −6.02 | −4.53 |
Caffeic acid | −6.00 | −4.17 |
Chlorogenic acid | −7.25 | −5.54 |
Coumaric acid | −5.72 | −5.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiaka, T.; Kritsi, E.; Bratakos, S.M.; Sotiroudis, G.; Petridi, P.; Savva, I.; Christodoulou, P.; Strati, I.F.; Zoumpoulakis, P.; Cavouras, D.; et al. Quality Assessment of Ground Coffee Samples from Greek Market Using Various Instrumental Analytical Methods, In Silico Studies and Chemometrics. Antioxidants 2023, 12, 1184. https://doi.org/10.3390/antiox12061184
Tsiaka T, Kritsi E, Bratakos SM, Sotiroudis G, Petridi P, Savva I, Christodoulou P, Strati IF, Zoumpoulakis P, Cavouras D, et al. Quality Assessment of Ground Coffee Samples from Greek Market Using Various Instrumental Analytical Methods, In Silico Studies and Chemometrics. Antioxidants. 2023; 12(6):1184. https://doi.org/10.3390/antiox12061184
Chicago/Turabian StyleTsiaka, Thalia, Eftichia Kritsi, Sotirios M. Bratakos, Georgios Sotiroudis, Panagiota Petridi, Ioanna Savva, Paris Christodoulou, Irini F. Strati, Panagiotis Zoumpoulakis, Dionisis Cavouras, and et al. 2023. "Quality Assessment of Ground Coffee Samples from Greek Market Using Various Instrumental Analytical Methods, In Silico Studies and Chemometrics" Antioxidants 12, no. 6: 1184. https://doi.org/10.3390/antiox12061184
APA StyleTsiaka, T., Kritsi, E., Bratakos, S. M., Sotiroudis, G., Petridi, P., Savva, I., Christodoulou, P., Strati, I. F., Zoumpoulakis, P., Cavouras, D., & Sinanoglou, V. J. (2023). Quality Assessment of Ground Coffee Samples from Greek Market Using Various Instrumental Analytical Methods, In Silico Studies and Chemometrics. Antioxidants, 12(6), 1184. https://doi.org/10.3390/antiox12061184